Guanhua Huang


2024

pdf
Are AI-Generated Text Detectors Robust to Adversarial Perturbations?
Guanhua Huang | Yuchen Zhang | Zhe Li | Yongjian You | Mingze Wang | Zhouwang Yang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The widespread use of large language models (LLMs) has sparked concerns about the potential misuse of AI-generated text, as these models can produce content that closely resembles human-generated text. Current detectors for AI-generated text (AIGT) lack robustness against adversarial perturbations, with even minor changes in characters or words causing a reversal in distinguishing between human-created and AI-generated text. This paper investigates the robustness of existing AIGT detection methods and introduces a novel detector, the Siamese Calibrated Reconstruction Network (SCRN). The SCRN employs a reconstruction network to add and remove noise from text, extracting a semantic representation that is robust to local perturbations. We also propose a siamese calibration technique to train the model to make equally confident predictions under different noise, which improves the model’s robustness against adversarial perturbations. Experiments on four publicly available datasets show that the SCRN outperforms all baseline methods, achieving 6.5%-18.25% absolute accuracy improvement over the best baseline method under adversarial attacks. Moreover, it exhibits superior generalizability in cross-domain, cross-genre, and mixed-source scenarios. The code is available at https://github.com/CarlanLark/Robust-AIGC-Detector.

2023

pdf
An Iteratively Parallel Generation Method with the Pre-Filling Strategy for Document-level Event Extraction
Guanhua Huang | Runxin Xu | Ying Zeng | Jiaze Chen | Zhouwang Yang | Weinan E
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

In document-level event extraction (DEE) tasks, a document typically contains many event records with multiple event roles. Therefore, accurately extracting all event records is a big challenge since the number of event records is not given. Previous works present the entity-based directed acyclic graph (EDAG) generation methods to autoregressively generate event roles, which requires a given generation order. Meanwhile, parallel methods are proposed to generate all event roles simultaneously, but suffer from the inadequate training which manifests zero accuracies on some event roles. In this paper, we propose an Iteratively Parallel Generation method with the Pre-Filling strategy (IPGPF). Event roles in an event record are generated in parallel to avoid order selection, and the event records are iteratively generated to utilize historical results. Experiments on two public datasets show our IPGPF improves 11.7 F1 than previous parallel models and up to 5.1 F1 than auto-regressive models under the control variable settings. Moreover, our enhanced IPGPF outperforms other entity-enhanced models and achieves new state-of-the-art performance.