Giulia Pucci


2024

pdf
A Tree-of-Thoughts to Broaden Multi-step Reasoning across Languages
Leonardo Ranaldi | Giulia Pucci | Federico Ranaldi | Elena Sofia Ruzzetti | Fabio Massimo Zanzotto
Findings of the Association for Computational Linguistics: NAACL 2024

Reasoning methods, best exemplified by the well-known Chain-of-Thought (CoT), empower the reasoning abilities of Large Language Models (LLMs) by eliciting them to solve complex tasks in a step-by-step manner. Although they are achieving significant success, the ability to deliver multi-step reasoning remains limited to English because of the imbalance in the distribution of pre-training data, which makes other languages a barrier. In this paper, we propose Cross-lingual Tree-of-Thoughts (Cross-ToT), a method for aligning Cross-lingual CoT reasoning across languages. The proposed method, through a self-consistent cross-lingual prompting mechanism inspired by the Tree-of-Thoughts approach, provides multi-step reasoning paths in different languages that, during the steps, lead to the final solution. Experimental evaluations show that our method significantly outperforms existing prompting methods by reducing the number of interactions and achieving state-of-the-art performance.

pdf
Empowering cross-lingual abilities of instruction-tuned large language models by translation-following demonstrations
Leonardo Ranaldi | Giulia Pucci | Andre Freitas
Findings of the Association for Computational Linguistics: ACL 2024

The language ability of Large Language Models (LLMs) is often unbalanced towards English because of the imbalance in the distribution of the pre-training data. This disparity is demanded in further fine-tuning and affecting the cross-lingual abilities of LLMs. In this paper, we propose to empower Instruction-tuned LLMs (It-LLMs) in languages other than English by building semantic alignment between them. Hence, we propose CrossAlpaca, an It-LLM with cross-lingual Instruction-following and Translation-following demonstrations to improve semantic alignment between languages. We validate our approach on the multilingual Question Answering (QA) benchmarks XQUAD and MLQA and adapted versions of MMLU and BBH.Our models, tested over six different languages, outperform the It-LLMs tuned on monolingual data. The final results show that instruction tuning on non-English data is not enough and that semantic alignment can be further improved by Translation-following demonstrations.

pdf
Does the Language Matter? Curriculum Learning over Neo-Latin Languages
Leonardo Ranaldi | Giulia Pucci | André Freitas
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Curriculum Learning (CL) has been emerged as an effective technique for improving the performances and reducing the cost of pre-training Large Language Models (LLMs). The efficacy of CL demonstrated in different scenarios is in the training LLMs by organizing examples from the simplest to the most complex. Although improvements have been shown extensively, this approach was used for pre-training, leaving novel fine-tuning approaches such as instruction-tuning unexplored. In this paper, we propose a novel complexity measure to empower the instruction-tuning method using the CL paradigm. To complement previous works, we propose cognitively motivated measures to determine the complexity of training demonstrations used in the instruction-tuning paradigm. Hence, we experiment with the proposed heuristics first in English and then in other languages. The downstream results show that delivering training examples by complexity ranking is also effective for instruction tuning, as it improves downstream performance while reducing costs. Furthermore, the technique can be easily transferred to languages other than English, e.g., Italian and French, without any adaptation, maintaining functionality and effectiveness.

2023

pdf
Modeling Easiness for Training Transformers with Curriculum Learning
Leonardo Ranaldi | Giulia Pucci | Fabio Massimo Zanzotto
Proceedings of the 14th International Conference on Recent Advances in Natural Language Processing

Directly learning from complex examples is generally problematic for humans and machines. Indeed, a better strategy is exposing learners to examples in a reasonable, pedagogically-motivated order. Curriculum Learning (CL) has been proposed to import this strategy when training machine learning models. In this paper, building on Curriculum Learning, we propose a novel, linguistically motivated measure to determine example complexity for organizing examples during learning. Our complexity measure - LRC- is based on length, rarity, and comprehensibility. Our resulting learning model is CL-LRC, that is, CL with LRC. Experiments on downstream tasks show that CL-LRC outperforms existing CL and non-CL methods for training BERT and RoBERTa from scratch. Furthermore, we analyzed different measures, including perplexity, loss, and learning curve of different models pre-trained from scratch, showing that CL-LRC performs better than the state-of-the-art.

pdf
Does the English Matter? Elicit Cross-lingual Abilities of Large Language Models
Leonardo Ranaldi | Giulia Pucci
Proceedings of the 3rd Workshop on Multi-lingual Representation Learning (MRL)