2024
pdf
abs
SocialBench: Sociality Evaluation of Role-Playing Conversational Agents
Hongzhan Chen
|
Hehong Chen
|
Ming Yan
|
Wenshen Xu
|
Gao Xing
|
Weizhou Shen
|
Xiaojun Quan
|
Chenliang Li
|
Ji Zhang
|
Fei Huang
Findings of the Association for Computational Linguistics: ACL 2024
Large language models (LLMs) have advanced the development of various AI conversational agents, including role-playing agents that mimic diverse characters and human behaviors. While prior research has predominantly focused on enhancing the conversational capability, role-specific knowledge and style of these agents, there has been a noticeable gap in assessing their social intelligence. In this paper, we introduce SocialBench, the first benchmark designed to systematically evaluate the sociality of role-playing agents at both individual and group levels of social interactions. SocialBench is constructed from various sources and covers a wide range of 500 characters and over 6,000 question prompts and 30,800 multi-turn role-playing utterances. We conduct comprehensive evaluations on this benchmark using mainstream LLMs. We find that agents excelling in individual level does not imply their proficiency in group level. Experimental results on SocialBench confirm its significance as a testbed for assessing the social interaction of role-playing agents. The benchmark is publicly accessible at https://github.com/X-PLUG/RoleInteract.
pdf
abs
CycleAlign: Iterative Distillation from Black-box LLM to White-box Models for Better Human Alignment
Jixiang Hong
|
Quan Tu
|
Changyu Chen
|
Gao Xing
|
Ji Zhang
|
Rui Yan
Findings of the Association for Computational Linguistics: ACL 2024
Language models trained on large-scale corpus often generate harmful responses that are harmful and contrary to human values. A prevalent approach for human alignment is reinforcement learning from human feedback (RLHF), utilizing algorithms such as proximal policy optimization (PPO). However, these methods are often characterized by complexity, instability, and substantial resource consumption. Considering that existing large language models (LLMs) like ChatGPT are already relatively well-aligned and cost-friendly, researchers propose to align the language model with human preferences from AI feedback. Nevertheless, the common practices, that unidirectionally distill the responses, are constrained by the inherent capability of LLMs. To address it, we introduce CycleAlign, a framework that distills alignment capabilities from the parameter-invisible LLMs (black-box) to the parameter-visible models (white-box) in an iterative manner. CycleAlign iteratively improves both the white-box and black-box models by integrating static and dynamic in-context learning and a belief alignment method.Empirical results illustrate that the model fine-tuned by CycleAlign remarkably exceeds existing methods, and achieves the state-of-the-art performance in alignment with human value.
pdf
abs
IAD: In-Context Learning Ability Decoupler of Large Language Models in Meta-Training
Yuhan Liu
|
Xiuying Chen
|
Gao Xing
|
Ji Zhang
|
Rui Yan
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Large Language Models (LLMs) exhibit remarkable In-Context Learning (ICL) ability, where the model learns tasks from prompts consisting of input-output examples. However, the pre-training objectives of LLMs often misalign with ICL objectives. They’re mainly pre-trained with methods like masked language modeling and next-sentence prediction. On the other hand, ICL leverages example pairs to guide the model in generating task-aware responses such as text classification and question-answering tasks. The basic pre-training task-related capabilities can sometimes overshadow or conflict with task-specific subtleties required in ICL. To address this, we propose an In-context learning Ability Decoupler (IAD). The model aims to separate the ICL ability from the general ability of LLMs in the meta-training phase, where the ICL-related parameters are separately tuned to adapt for ICL tasks. Concretely, we first identify the parameters that are suitable for ICL by transference-driven gradient importance. We then propose a new max-margin loss to emphasize the separation of the general and ICL abilities. The loss is defined as the difference between the output of ICL and the original LLM, aiming to prevent the overconfidence of the LLM. By meta-training these ICL-related parameters with max-margin loss, we enable the model to learn and adapt to new tasks with limited data effectively. Experimental results show that IAD’s capability yields state-of-the-art performance on benchmark datasets by utilizing only 30% of the model’s parameters. Ablation study and detailed analysis prove the separation of the two abilities.
2023
pdf
abs
DialoGPS: Dialogue Path Sampling in Continuous Semantic Space for Data Augmentation in Multi-Turn Conversations
Ang Lv
|
Jinpeng Li
|
Yuhan Chen
|
Gao Xing
|
Ji Zhang
|
Rui Yan
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
In open-domain dialogue generation tasks, contexts and responses in most datasets are one-to-one mapped, violating an important many-to-many characteristic: a context leads to various responses, and a response answers multiple contexts. Without such patterns, models poorly generalize and prefer responding safely. Many attempts have been made in either multi-turn settings from a one-to-many perspective or in a many-to-many perspective but limited to single-turn settings. The major challenge to many-to-many augment multi-turn dialogues is that discretely replacing each turn with semantic similarity breaks fragile context coherence. In this paper, we propose DialoGue Path Sampling (DialoGPS) method in continuous semantic space, the first many-to-many augmentation method for multi-turn dialogues. Specifically, we map a dialogue to our extended Brownian Bridge, a special Gaussian process. We sample latent variables to form coherent dialogue paths in the continuous space. A dialogue path corresponds to a new multi-turn dialogue and is used as augmented training data. We show the effect of DialoGPS with both automatic and human evaluation.
2022
pdf
abs
MGIMN: Multi-Grained Interactive Matching Network for Few-shot Text Classification
Jianhai Zhang
|
Mieradilijiang Maimaiti
|
Gao Xing
|
Yuanhang Zheng
|
Ji Zhang
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
Text classification struggles to generalize to unseen classes with very few labeled text instances per class. In such a few-shot learning (FSL) setting, metric-based meta-learning approaches have shown promising results. Previous studies mainly aim to derive a prototype representation for each class. However, they neglect that it is challenging-yet-unnecessary to construct a compact representation which expresses the entire meaning for each class. They also ignore the importance to capture the inter-dependency between query and the support set for few-shot text classification. To deal with these issues, we propose a meta-learning based method MGIMN which performs instance-wise comparison followed by aggregation to generate class-wise matching vectors instead of prototype learning. The key of instance-wise comparison is the interactive matching within the class-specific context and episode-specific context. Extensive experiments demonstrate that the proposed method significantly outperforms the existing SOTA approaches, under both the standard FSL and generalized FSL settings.