Status is widely used to incentivize user engagement online. However, visible status indicators could inadvertently bias online deliberation to favor high-status users. In this work, we design and deploy a randomized experiment on the ChangeMyView platform to quantify status biases in deliberation online. We find strong evidence of status bias: hiding status on ChangeMyView increases the persuasion rate of moderate-status users by 84% and decreases the persuasion rate of high-status users by 41% relative to the control group. We also find that the persuasive power of status is moderated by verbosity, suggesting that status is used as an information-processing heuristic under cognitive load. Finally, we find that a user’s status influences the argumentation behavior of other users they interact with in a manner that disadvantages low and moderate-status users.
A fundamental goal of scientific research is to learn about causal relationships. However, despite its critical role in the life and social sciences, causality has not had the same importance in Natural Language Processing (NLP), which has traditionally placed more emphasis on predictive tasks. This distinction is beginning to fade, with an emerging area of interdisciplinary research at the convergence of causal inference and language processing. Still, research on causality in NLP remains scattered across domains without unified definitions, benchmark datasets and clear articulations of the challenges and opportunities in the application of causal inference to the textual domain, with its unique properties. In this survey, we consolidate research across academic areas and situate it in the broader NLP landscape. We introduce the statistical challenge of estimating causal effects with text, encompassing settings where text is used as an outcome, treatment, or to address confounding. In addition, we explore potential uses of causal inference to improve the robustness, fairness, and interpretability of NLP models. We thus provide a unified overview of causal inference for the NLP community.1
Finding attackable sentences in an argument is the first step toward successful refutation in argumentation. We present a first large-scale analysis of sentence attackability in online arguments. We analyze driving reasons for attacks in argumentation and identify relevant characteristics of sentences. We demonstrate that a sentence’s attackability is associated with many of these characteristics regarding the sentence’s content, proposition types, and tone, and that an external knowledge source can provide useful information about attackability. Building on these findings, we demonstrate that machine learning models can automatically detect attackable sentences in arguments, significantly better than several baselines and comparably well to laypeople.