This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Learning job title representation is a vital process for developing automatic human resource tools. To do so, existing methods primarily rely on learning the title representation through skills extracted from the job description, neglecting the rich and diverse content within. Thus, we propose an alternative framework for learning job titles through their respective job description (JD) and utilize a Job Description Aggregator component to handle the lengthy description and bidirectional contrastive loss to account for the bidirectional relationship between the job title and its description. We evaluated the performance of our method on both in-domain and out-of-domain settings, achieving a superior performance over the skill-based approach.
Large Language Models (LLMs) often struggle with hallucinations and outdated information. To address this, Information Retrieval (IR) systems can be employed to augment LLMs with up-to-date knowledge. However, existing IR techniques contain deficiencies, posing a performance bottleneck. Given the extensive array of IR systems, combining diverse approaches presents a viable strategy. Nevertheless, prior attempts have yielded restricted efficacy. In this work, we propose an approach that leverages learning-to-rank techniques to combine heterogeneous IR systems. We demonstrate the method on two Retrieval Question Answering (ReQA) tasks. Our empirical findings exhibit a significant performance enhancement, outperforming previous approaches and achieving state-of-the-art results on ReQA SQuAD.
Determining sentence pair similarity is crucial for various NLP tasks. A common technique to address this is typically evaluated on a continuous semantic textual similarity scale from 0 to 5. However, based on a linguistic observation in STS annotation guidelines, we found that the score in the range [4,5] indicates an upper-range sample, while the rest are lower-range samples. This necessitates a new approach to treating the upper-range and lower-range classes separately. In this paper, we introduce a novel embedding space decomposition method called MixSP utilizing a Mixture of Specialized Projectors, designed to distinguish and rank upper-range and lower-range samples accurately. The experimental results demonstrate that MixSP decreased the overlap representation between upper-range and lower-range classes significantly while outperforming competitors on STS and zero-shot benchmarks.
NLU models have achieved promising results on standard benchmarks. Despite state-of-the-art accuracy, analysis reveals that many models make predictions using annotation bias rather than the properties we intend the model to learn. Consequently, these models perform poorly on out-of-distribution datasets. Recent advances in bias mitigation show that annotation bias can be alleviated through fine-tuning debiasing objectives. In this paper, we apply causal mediation analysis to gauge how much each model component mediates annotation biases. Using the knowledge from the causal analysis, we improve the model’s robustness against annotation bias through two bias mitigation methods: causal-grounded masking and gradient unlearning. Causal analysis reveals that biases concentrated in specific components, even after employing other training-time debiasing techniques. Manipulating these components by masking out neurons’ activations or updating specific weight blocks both demonstrably improve robustness against annotation artifacts.
Dense retrieval is a basic building block of information retrieval applications. One of the main challenges of dense retrieval in real-world settings is the handling of queries containing misspelled words. A popular approach for handling misspelled queries is minimizing the representations discrepancy between misspelled queries and their pristine ones. Unlike the existing approaches, which only focus on the alignment between misspelled and pristine queries, our method also improves the contrast between each misspelled query and its surrounding queries. To assess the effectiveness of our proposed method, we compare it against the existing competitors using two benchmark datasets and two base encoders. Our method outperforms the competitors in all cases with misspelled queries. Our code and models are available at https://github.com/panuthept/DST-DenseRetrieval.
Self-supervised sentence representation learning is the task of constructing an embedding space for sentences without relying on human annotation efforts. One straightforward approach is to finetune a pretrained language model (PLM) with a representation learning method such as contrastive learning. While this approach achieves impressive performance on larger PLMs, the performance rapidly degrades as the number of parameters decreases. In this paper, we propose a framework called Self-supervised Cross-View Training (SCT) to narrow the performance gap between large and small PLMs. To evaluate the effectiveness of SCT, we compare it to 5 baseline and state-of-the-art competitors on seven Semantic Textual Similarity (STS) benchmarks using 5 PLMs with the number of parameters ranging from 4M to 340M. The experimental results show that STC outperforms the competitors for PLMs with less than 100M parameters in 18 of 21 cases.1
Despite their promising results on standard benchmarks, NLU models are still prone to make predictions based on shortcuts caused by unintended bias in the dataset. For example, an NLI model may use lexical overlap as a shortcut to make entailment predictions due to repetitive data generation patterns from annotators, also called annotation artifacts. In this paper, we propose a causal analysis framework to help debias NLU models. We show that (1) by defining causal relationships, we can introspect how much annotation artifacts affect the outcomes. (2) We can utilize counterfactual inference to mitigate bias with this knowledge. We found that viewing a model as a treatment can mitigate bias more effectively than viewing annotation artifacts as treatment. (3) In addition to bias mitigation, we can interpret how much each debiasing strategy is affected by annotation artifacts. Our experimental results show that using counterfactual inference can improve out-of-distribution performance in all settings while maintaining high in-distribution performance.
Cross-Lingual Retrieval Question Answering (CL-ReQA) is concerned with retrieving answer documents or passages to a question written in a different language. A common approach to CL-ReQA is to create a multilingual sentence embedding space such that question-answer pairs across different languages are close to each other. In this paper, we propose a novel CL-ReQA method utilizing the concept of language knowledge transfer and a new cross-lingual consistency training technique to create a multilingual embedding space for ReQA. To assess the effectiveness of our work, we conducted comprehensive experiments on CL-ReQA and a downstream task, machine reading QA. We compared our proposed method with the current state-of-the-art solutions across three public CL-ReQA corpora. Our method outperforms competitors in 19 out of 21 settings of CL-ReQA. When used with a downstream machine reading QA task, our method outperforms the best existing language-model-based method by 10% in F1 while being 10 times faster in sentence embedding computation. The code and models are available at https://github.com/mrpeerat/CL-ReLKT.
Sentence representations are essential in many NLP tasks operating at the sentence level.Recently, research attention has shifted towards learning how to represent sentences without any annotations, i.e., unsupervised representation learning. Despite the benefit of training without supervised data, there is still a performance penalty compared to supervised methods.Furthermore, the supervised-unsupervised performance gap widens as we reduce the model size. In this paper, we propose an unsupervised sentence representation method to reduce the supervised-unsupervised performance gap, especially for smaller models. Utilizing the concept for knowledge distillation, we derive a distillation framework comprising two training objectives, control and generalize, called ConGen. Experiments on semantic textual similarity (STS), text classification (transfer), and natural language inference (NLI) tasks show that ConGen is on par with supervised training even on smaller models.Furthermore, our method consistently outperformed competitors on multilingual STS.The code and models are available at https://github.com/KornWtp/ConGen.
Cross-lingual Sentence Retrieval (CLSR) aims at retrieving parallel sentence pairs that are translations of each other from a multilingual set of comparable documents. The retrieved parallel sentence pairs can be used in other downstream NLP tasks such as machine translation and cross-lingual word sense disambiguation. We propose a CLSR framework called Robust Fragment-level Representation (RFR) CLSR framework to address Out-of-Domain (OOD) CLSR problems. In particular, we improve the sentence retrieval robustness by representing each sentence as a collection of fragments. In this way, we change the retrieval granularity from the sentence to the fragment level. We performed CLSR experiments based on three OOD datasets, four language pairs, and three base well-known sentence encoders: m-USE, LASER, and LaBSE. Experimental results show that RFR significantly improves the base encoders’ performance for more than 85% of the cases.
Like many Natural Language Processing tasks, Thai word segmentation is domain-dependent. Researchers have been relying on transfer learning to adapt an existing model to a new domain. However, this approach is inapplicable to cases where we can interact with only input and output layers of the models, also known as “black boxes”. We propose a filter-and-refine solution based on the stacked-ensemble learning paradigm to address this black-box limitation. We conducted extensive experimental studies comparing our method against state-of-the-art models and transfer learning. Experimental results show that our proposed solution is an effective domain adaptation method and has a similar performance as the transfer learning method.