Dhruv Kumar


2024

pdf
mEdIT: Multilingual Text Editing via Instruction Tuning
Vipul Raheja | Dimitris Alikaniotis | Vivek Kulkarni | Bashar Alhafni | Dhruv Kumar
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

We introduce mEdIT, a multi-lingual extension to CoEdIT – the recent state-of-the-art text editing models for writing assistance. mEdIT models are trained by fine-tuning multi-lingual large, pre-trained language models (LLMs) via instruction tuning. They are designed to take instructions from the user specifying the attributes of the desired text in the form of natural language instructions, such as “Grammatik korrigieren” (German) or “이 텍스 트를 단순화” (Korean). We build mEdIT by curating data from multiple publicly available human-annotated text editing datasets for three text editing tasks (Grammatical Error Correction (GEC), Text Simplification, and Paraphrasing) across diverse languages belonging to six different language families. We detail the design and training of mEdIT models and demonstrate their strong performance on many multi-lingual text editing benchmarks against other multilingual LLMs. We also find that mEdIT generalizes effectively to new languages over multilingual baselines. We publicly release our data, code, and trained models.

pdf
ContraDoc: Understanding Self-Contradictions in Documents with Large Language Models
Jierui Li | Vipul Raheja | Dhruv Kumar
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

In recent times, large language models (LLMs) have shown impressive performance on various document-level tasks such as document classification, summarization, and question-answering. However, research on understanding their capabilities on the task of self-contradictions in long documents has been very limited. In this work, we introduce ContraDoc, the first human-annotated dataset to study self-contradictions in long documents across multiple domains, varying document lengths, self-contradiction types, and appearance scope. We then analyze the current capabilities of four state-of-the-art open-source and commercially available LLMs: GPT3.5, GPT4, PaLM2, and LLaMAv2 on this dataset. While GPT4 performs the best and can outperform humans on this task, we find that it is still unreliable and struggles with self-contradictions that require more nuance and context. We release the dataset and all the code associated with the experiments.

pdf
Personalized Text Generation with Fine-Grained Linguistic Control
Bashar Alhafni | Vivek Kulkarni | Dhruv Kumar | Vipul Raheja
Proceedings of the 1st Workshop on Personalization of Generative AI Systems (PERSONALIZE 2024)

As the text generation capabilities of large language models become increasingly prominent, recent studies have focused on controlling particular aspects of the generated text to make it more personalized. However, most research on controllable text generation focuses on controlling the content or modeling specific high-level/coarse-grained attributes that reflect authors’ writing styles, such as formality, domain, or sentiment. In this paper, we focus on controlling fine-grained attributes spanning multiple linguistic dimensions, such as lexical and syntactic attributes. We introduce a novel benchmark to train generative models and evaluate their ability to generate personalized text based on multiple fine-grained linguistic attributes. We systematically investigate the performance of various large language models on our benchmark and draw insights from the factors that impact their performance. We make our code, data, models, and benchmarks publicly available.

2023

pdf
CoEdIT: Text Editing by Task-Specific Instruction Tuning
Vipul Raheja | Dhruv Kumar | Ryan Koo | Dongyeop Kang
Findings of the Association for Computational Linguistics: EMNLP 2023

We introduce CoEdIT, a state-of-the-art text editing system for writing assistance. CoEdIT takes instructions from the user specifying the attributes of the desired text, such as “Make the sentence simpler” or “Write it in a more neutral style,” and outputs the edited text. We present a large language model fine-tuned on a diverse collection of task-specific instructions for text editing (a total of 82K instructions). Our model (1) achieves state-of-the-art performance on various text editing benchmarks, (2) is competitive with publicly available largest-sized LLMs trained on instructions while being ~60x smaller, (3) is capable of generalizing to unseen edit instructions, and (4) exhibits abilities to generalize to composite instructions containing different combinations of edit actions. Through extensive qualitative and quantitative analysis, we show that writers prefer the edits suggested by CoEdIT relative to other state-of-the-art text editing models. Our code, data, and models are publicly available at https://github.com/vipulraheja/coedit.

pdf
Speakerly: A Voice-based Writing Assistant for Text Composition
Dhruv Kumar | Vipul Raheja | Alice Kaiser-Schatzlein | Robyn Perry | Apurva Joshi | Justin Hugues-Nuger | Samuel Lou | Navid Chowdhury
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track

We present Speakerly, a new real-time voice-based writing assistance system that helps users with text composition across various use cases such as emails, instant messages, and notes. The user can interact with the system through instructions or dictation, and the system generates a well-formatted and coherent document. We describe the system architecture and detail how we address the various challenges while building and deploying such a system at scale. More specifically, our system uses a combination of small, task-specific models as well as pre-trained language models for fast and effective text composition while supporting a variety of input modes for better usability.

2022

pdf
Understanding Iterative Revision from Human-Written Text
Wanyu Du | Vipul Raheja | Dhruv Kumar | Zae Myung Kim | Melissa Lopez | Dongyeop Kang
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Writing is, by nature, a strategic, adaptive, and, more importantly, an iterative process. A crucial part of writing is editing and revising the text. Previous works on text revision have focused on defining edit intention taxonomies within a single domain or developing computational models with a single level of edit granularity, such as sentence-level edits, which differ from human’s revision cycles. This work describes IteraTeR: the first large-scale, multi-domain, edit-intention annotated corpus of iteratively revised text. In particular, IteraTeR is collected based on a new framework to comprehensively model the iterative text revisions that generalizes to a variety of domains, edit intentions, revision depths, and granularities. When we incorporate our annotated edit intentions, both generative and action-based text revision models significantly improve automatic evaluations. Through our work, we better understand the text revision process, making vital connections between edit intentions and writing quality, enabling the creation of diverse corpora to support computational modeling of iterative text revisions.

pdf
Improving Iterative Text Revision by Learning Where to Edit from Other Revision Tasks
Zae Myung Kim | Wanyu Du | Vipul Raheja | Dhruv Kumar | Dongyeop Kang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Iterative text revision improves text quality by fixing grammatical errors, rephrasing for better readability or contextual appropriateness, or reorganizing sentence structures throughout a document.Most recent research has focused on understanding and classifying different types of edits in the iterative revision process from human-written text instead of building accurate and robust systems for iterative text revision.In this work, we aim to build an end-to-end text revision system that can iteratively generate helpful edits by explicitly detecting editable spans (where-to-edit) with their corresponding edit intents and then instructing a revision model to revise the detected edit spans.Leveraging datasets from other related text editing NLP tasks, combined with the specification of editable spans, leads our system to more accurately model the process of iterative text refinement, as evidenced by empirical results and human evaluations.Our system significantly outperforms previous baselines on our text revision tasks and other standard text revision tasks, including grammatical error correction, text simplification, sentence fusion, and style transfer.Through extensive qualitative and quantitative analysis, we make vital connections between edit intentions and writing quality, and better computational modeling of iterative text revisions.

pdf
GRS: Combining Generation and Revision in Unsupervised Sentence Simplification
Mohammad Dehghan | Dhruv Kumar | Lukasz Golab
Findings of the Association for Computational Linguistics: ACL 2022

We propose GRS: an unsupervised approach to sentence simplification that combines text generation and text revision. We start with an iterative framework in which an input sentence is revised using explicit edit operations, and add paraphrasing as a new edit operation. This allows us to combine the advantages of generative and revision-based approaches: paraphrasing captures complex edit operations, and the use of explicit edit operations in an iterative manner provides controllability and interpretability. We demonstrate these advantages of GRS compared to existing methods on the Newsela and ASSET datasets.

pdf
Read, Revise, Repeat: A System Demonstration for Human-in-the-loop Iterative Text Revision
Wanyu Du | Zae Myung Kim | Vipul Raheja | Dhruv Kumar | Dongyeop Kang
Proceedings of the First Workshop on Intelligent and Interactive Writing Assistants (In2Writing 2022)

Revision is an essential part of the human writing process. It tends to be strategic, adaptive, and, more importantly, iterative in nature. Despite the success of large language models on text revision tasks, they are limited to non-iterative, one-shot revisions. Examining and evaluating the capability of large language models for making continuous revisions and collaborating with human writers is a critical step towards building effective writing assistants. In this work, we present a human-in-the-loop iterative text revision system, Read, Revise, Repeat (R3), which aims at achieving high quality text revisions with minimal human efforts by reading model-generated revisions and user feedbacks, revising documents, and repeating human-machine interactions. In R3, a text revision model provides text editing suggestions for human writers, who can accept or reject the suggested edits. The accepted edits are then incorporated into the model for the next iteration of document revision. Writers can therefore revise documents iteratively by interacting with the system and simply accepting/rejecting its suggested edits until the text revision model stops making further revisions or reaches a predefined maximum number of revisions. Empirical experiments show that R3 can generate revisions with comparable acceptance rate to human writers at early revision depths, and the human-machine interaction can get higher quality revisions with fewer iterations and edits. The collected human-model interaction dataset and system code are available at https://github.com/vipulraheja/IteraTeR. Our system demonstration is available at https://youtu.be/lK08tIpEoaE.

2021

pdf
Optimizing Deeper Transformers on Small Datasets
Peng Xu | Dhruv Kumar | Wei Yang | Wenjie Zi | Keyi Tang | Chenyang Huang | Jackie Chi Kit Cheung | Simon J.D. Prince | Yanshuai Cao
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

It is a common belief that training deep transformers from scratch requires large datasets. Consequently, for small datasets, people usually use shallow and simple additional layers on top of pre-trained models during fine-tuning. This work shows that this does not always need to be the case: with proper initialization and optimization, the benefits of very deep transformers can carry over to challenging tasks with small datasets, including Text-to-SQL semantic parsing and logical reading comprehension. In particular, we successfully train 48 layers of transformers, comprising 24 fine-tuned layers from pre-trained RoBERTa and 24 relation-aware layers trained from scratch. With fewer training steps and no task-specific pre-training, we obtain the state of the art performance on the challenging cross-domain Text-to-SQL parsing benchmark Spider. We achieve this by deriving a novel Data dependent Transformer Fixed-update initialization scheme (DT-Fixup), inspired by the prior T-Fixup work. Further error analysis shows that increasing depth can help improve generalization on small datasets for hard cases that require reasoning and structural understanding.

pdf
The GEM Benchmark: Natural Language Generation, its Evaluation and Metrics
Sebastian Gehrmann | Tosin Adewumi | Karmanya Aggarwal | Pawan Sasanka Ammanamanchi | Anuoluwapo Aremu | Antoine Bosselut | Khyathi Raghavi Chandu | Miruna-Adriana Clinciu | Dipanjan Das | Kaustubh Dhole | Wanyu Du | Esin Durmus | Ondřej Dušek | Chris Chinenye Emezue | Varun Gangal | Cristina Garbacea | Tatsunori Hashimoto | Yufang Hou | Yacine Jernite | Harsh Jhamtani | Yangfeng Ji | Shailza Jolly | Mihir Kale | Dhruv Kumar | Faisal Ladhak | Aman Madaan | Mounica Maddela | Khyati Mahajan | Saad Mahamood | Bodhisattwa Prasad Majumder | Pedro Henrique Martins | Angelina McMillan-Major | Simon Mille | Emiel van Miltenburg | Moin Nadeem | Shashi Narayan | Vitaly Nikolaev | Andre Niyongabo Rubungo | Salomey Osei | Ankur Parikh | Laura Perez-Beltrachini | Niranjan Ramesh Rao | Vikas Raunak | Juan Diego Rodriguez | Sashank Santhanam | João Sedoc | Thibault Sellam | Samira Shaikh | Anastasia Shimorina | Marco Antonio Sobrevilla Cabezudo | Hendrik Strobelt | Nishant Subramani | Wei Xu | Diyi Yang | Akhila Yerukola | Jiawei Zhou
Proceedings of the 1st Workshop on Natural Language Generation, Evaluation, and Metrics (GEM 2021)

We introduce GEM, a living benchmark for natural language Generation (NLG), its Evaluation, and Metrics. Measuring progress in NLG relies on a constantly evolving ecosystem of automated metrics, datasets, and human evaluation standards. Due to this moving target, new models often still evaluate on divergent anglo-centric corpora with well-established, but flawed, metrics. This disconnect makes it challenging to identify the limitations of current models and opportunities for progress. Addressing this limitation, GEM provides an environment in which models can easily be applied to a wide set of tasks and in which evaluation strategies can be tested. Regular updates to the benchmark will help NLG research become more multilingual and evolve the challenge alongside models. This paper serves as the description of the data for the 2021 shared task at the associated GEM Workshop.

2020

pdf
Generation of lyrics lines conditioned on music audio clips
Olga Vechtomova | Gaurav Sahu | Dhruv Kumar
Proceedings of the 1st Workshop on NLP for Music and Audio (NLP4MusA)

pdf
Iterative Edit-Based Unsupervised Sentence Simplification
Dhruv Kumar | Lili Mou | Lukasz Golab | Olga Vechtomova
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

We present a novel iterative, edit-based approach to unsupervised sentence simplification. Our model is guided by a scoring function involving fluency, simplicity, and meaning preservation. Then, we iteratively perform word and phrase-level edits on the complex sentence. Compared with previous approaches, our model does not require a parallel training set, but is more controllable and interpretable. Experiments on Newsela and WikiLarge datasets show that our approach is nearly as effective as state-of-the-art supervised approaches.

2019

pdf
Online abuse detection: the value of preprocessing and neural attention models
Dhruv Kumar | Robin Cohen | Lukasz Golab
Proceedings of the Tenth Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis

We propose an attention-based neural network approach to detect abusive speech in online social networks. Our approach enables more effective modeling of context and the semantic relationships between words. We also empirically evaluate the value of text pre-processing techniques in addressing the challenge of out-of-vocabulary words in toxic content. Finally, we conduct extensive experiments on the Wikipedia Talk page datasets, showing improved predictive power over the previous state-of-the-art.
Search