This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Since most large language models (LLMs) are trained once and never updated, they struggle to dynamically adapt to our ever-changing world. In this work, we present FreshQA, a dynamic QA benchmark that tests a model’s ability to answer questions that may require reasoning over up-to-date world knowledge. We develop a two-mode human evaluation procedure to measure both correctness and hallucination, which we use to benchmark both closed and open-source LLMs by collecting >50K human judgments. We observe that all LLMs struggle to answer questions that require fast-changing world knowledge as well as questions with false premises that need to be debunked. In response, we develop FreshPrompt, a few-shot prompting method that curates and organizes relevant information from a search engine into an LLM’s prompt. Our experiments show that FreshPrompt outperforms both competing search engine-augmented prompting methods such as Self-Ask (Press et al., 2022) as well as commercial systems such as Perplexity.AI. To facilitate future work, we additionally develop FreshEval, a reliable autorater for quick evaluation and comparison on FreshQA. Our latest results with FreshEval suggest that open-source LLMs such as Mixtral (Jiang et al., 2024), when combined with FreshPrompt, are competitive with closed-source and commercial systems on search-augmented QA.
Pretraining data design is critically under-documented and often guided by empirically unsupported intuitions. We pretrain models on data curated (1) at different collection times, (2) with varying toxicity and quality filters, and (3) with different domain compositions. First, we find that temporal shift between evaluation data and pretraining data leads to performance degradation, which is not overcome by finetuning. Second, we measure the effect of quality and toxicity filters, showing a trade-off between performance on standard benchmarks and risk of toxic generations. We also find that the effects of different types of filtering are not predictable from text domain characteristics. Third, we empirically validate that heterogeneous data sources, like books and web, are beneficial and warrant greater prioritization. To date, these experiments constitute the single largest publicly documented empirical study of the effects of pretraining data. Spanning 28 unique 1.5 billion parameter models pretrained from scratch, these findings validate, quantify, and expose many undocumented intuitions about text pretraining, which ultimately support more informed data-centric decisions in model development.
BIG-Bench (Srivastava et al., 2022) is a diverse evaluation suite that focuses on tasks believed to be beyond the capabilities of current language models. Language models have already made good progress on this benchmark, with the best model in the BIG-Bench paper outperforming average reported human-rater results on 65% of the BIG-Bench tasks via few-shot prompting. But on what tasks do language models fall short of average human-rater performance, and are those tasks actually unsolvable by current language models? In this work, we focus on a suite of 23 challenging BIG-Bench tasks which we call BIG-Bench Hard (BBH). These are the tasks for which prior language model evaluations did not outperform the average human-rater. We find that applying chain-of-thought (CoT) prompting to BBH tasks enables PaLM to surpass the average human-rater performance on 10 of the 23 tasks, and Codex (code-davinci-002) to surpass the average human-rater performance on 17 of the 23 tasks. Since many tasks in BBH require multi-step reasoning, few-shot prompting without CoT, as done in the BIG-Bench evaluations (Srivastava et al., 2022), substantially underestimates the best performance and capabilities of language models, which is better captured via CoT prompting. As further analysis, we explore the interaction between CoT and model scale on BBH, finding that CoT enables emergent task performance on several BBH tasks with otherwise flat scaling curves.
We present symbol tuning - finetuning language models on in-context input-label pairs where natural language labels (e.g., “positive/negative sentiment”) are replaced with arbitrary symbols (e.g., “foo/bar”). Symbol tuning leverages the intuition that when a model cannot use instructions or natural language labels to figure out a task, it must instead do so by learning the input-label mappings. We experiment with symbol tuning across PaLM models up to 540B parameters and observe benefits across various settings. First, symbol tuning boosts performance on unseen in-context learning tasks and is much more robust to underspecified prompts, such as those without instructions or without natural language labels. Second, symbol-tuned models are much stronger at algorithmic reasoning tasks, with up to 18.2% better performance on the List Functions benchmark and up to 15.3% better performance on the Simple Turing Concepts benchmark. Finally, symbol-tuned models show large improvements in following flipped-labels presented in-context, meaning that they are more capable of using in-context information to override prior knowledge.
Scaling language models improves performance but comes with significant computational costs. This paper proposes UL2R, a method that substantially improves existing language models and their scaling curves with a relatively tiny amount of extra compute. The key idea is to continue training a state-of-the-art large language model on a few more steps with UL2’s mixture-of-denoiser objective. We show that, with almost negligible extra computational costs and no new sources of data, we are able to substantially improve the scaling properties of large language models on downstream metrics. In this paper, we continue training a baseline language model, PaLM, with ULR2, introducing a new set of models at 8B, 62B, and 540B scale which we call U-PaLM. Impressively, at 540B scale, we show an approximately 2x computational savings rate where U-PaLM achieves the same performance as the final PaLM 540B model at around half its computational budget (i.e., saving ~4.4 million TPUv4 hours). We further show that this improved scaling curve leads to “emergent abilities” on challenging BIG-Bench tasks—for instance, U-PaLM does much better on some tasks or demonstrates better quality at much smaller scale (62B as opposed to 540B). Overall, we show that U-PaLM outperforms PaLM on many few-shot setups, including reasoning tasks with chain-of-thought (e.g., GSM8K), multilingual tasks (MGSM, TydiQA), MMLU and challenging BIG-Bench tasks.
Transformer-based models generally allocate the same amount of computation for each token in a given sequence. We develop a simple but effective “token dropping” method to accelerate the pretraining of transformer models, such as BERT, without degrading its performance on downstream tasks. In particular, we drop unimportant tokens starting from an intermediate layer in the model to make the model focus on important tokens more efficiently if with limited computational resource. The dropped tokens are later picked up by the last layer of the model so that the model still produces full-length sequences. We leverage the already built-in masked language modeling (MLM) loss to identify unimportant tokens with practically no computational overhead. In our experiments, this simple approach reduces the pretraining cost of BERT by 25% while achieving similar overall fine-tuning performance on standard downstream tasks.
Pretrained language models like BERT have achieved good results on NLP tasks, but are impractical on resource-limited devices due to memory footprint. A large fraction of this footprint comes from the input embeddings with large input vocabulary and embedding dimensions. Existing knowledge distillation methods used for model compression cannot be directly applied to train student models with reduced vocabulary sizes. To this end, we propose a distillation method to align the teacher and student embeddings via mixed-vocabulary training. Our method compresses BERT-LARGE to a task-agnostic model with smaller vocabulary and hidden dimensions, which is an order of magnitude smaller than other distilled BERT models and offers a better size-accuracy trade-off on language understanding benchmarks as well as a practical dialogue task.
Tokenization is a fundamental preprocessing step for almost all NLP tasks. In this paper, we propose efficient algorithms for the WordPiece tokenization used in BERT, from single-word tokenization to general text (e.g., sentence) tokenization. When tokenizing a single word, WordPiece uses a longest-match-first strategy, known as maximum matching. The best known algorithms so far are O(nˆ2) (where n is the input length) or O(nm) (where m is the maximum vocabulary token length). We propose a novel algorithm whose tokenization complexity is strictly O(n). Our method is inspired by the Aho-Corasick algorithm. We introduce additional linkages on top of the trie built from the vocabulary, allowing smart transitions when the trie matching cannot continue. For general text, we further propose an algorithm that combines pre-tokenization (splitting the text into words) and our linear-time WordPiece method into a single pass. Experimental results show that our method is 8.2x faster than HuggingFace Tokenizers and 5.1x faster than TensorFlow Text on average for general text tokenization.
Natural Language Processing (NLP) has recently achieved great success by using huge pre-trained models with hundreds of millions of parameters. However, these models suffer from heavy model sizes and high latency such that they cannot be deployed to resource-limited mobile devices. In this paper, we propose MobileBERT for compressing and accelerating the popular BERT model. Like the original BERT, MobileBERT is task-agnostic, that is, it can be generically applied to various downstream NLP tasks via simple fine-tuning. Basically, MobileBERT is a thin version of BERT_LARGE, while equipped with bottleneck structures and a carefully designed balance between self-attentions and feed-forward networks. To train MobileBERT, we first train a specially designed teacher model, an inverted-bottleneck incorporated BERT_LARGE model. Then, we conduct knowledge transfer from this teacher to MobileBERT. Empirical studies show that MobileBERT is 4.3x smaller and 5.5x faster than BERT_BASE while achieving competitive results on well-known benchmarks. On the natural language inference tasks of GLUE, MobileBERT achieves a GLUE score of 77.7 (0.6 lower than BERT_BASE), and 62 ms latency on a Pixel 4 phone. On the SQuAD v1.1/v2.0 question answering task, MobileBERT achieves a dev F1 score of 90.0/79.2 (1.5/2.1 higher than BERT_BASE).