David Emerson
2023
A Comparative Study of Prompting Strategies for Legal Text Classification
Ali Hakimi Parizi
|
Yuyang Liu
|
Prudhvi Nokku
|
Sina Gholamian
|
David Emerson
Proceedings of the Natural Legal Language Processing Workshop 2023
In this study, we explore the performance oflarge language models (LLMs) using differ-ent prompt engineering approaches in the con-text of legal text classification. Prior researchhas demonstrated that various prompting tech-niques can improve the performance of a di-verse array of tasks done by LLMs. However,in this research, we observe that professionaldocuments, and in particular legal documents,pose unique challenges for LLMs. We experi-ment with several LLMs and various promptingtechniques, including zero/few-shot prompting,prompt ensembling, chain-of-thought, and ac-tivation fine-tuning and compare the perfor-mance on legal datasets. Although the newgeneration of LLMs and prompt optimizationtechniques have been shown to improve gener-ation and understanding of generic tasks, ourfindings suggest that such improvements maynot readily transfer to other domains. Specifi-cally, experiments indicate that not all prompt-ing approaches and models are well-suited forthe legal domain which involves complexitiessuch as long documents and domain-specificlanguage.
Search