This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Large Multimodal Models (LMM) are built across modalities and the misalignment between two modalities can result in “hallucination”, generating textual outputs that are not grounded by the multimodal information in context. To address the multimodal misalignment issue, we adapt the Reinforcement Learning from Human Feedback (RLHF) from the text domain to the vision-language alignment, where human annotators are asked to compare two responses and pinpoint the more hallucinated one, and the vision-language model is trained to maximize the simulated human rewards. We propose a new alignment algorithm called Factually Augmented RLHF that augments the reward model with additional factual information such as image captions and ground-truth multi-choice options, which alleviates the reward hacking phenomenon in RLHF and further improves the performance. We also enhance the GPT-4-generated training data (for vision instruction tuning) with previously available human-written image-text pairs to improve the general capabilities of our model. To evaluate the proposed approach in real-world scenarios, we develop a new evaluation benchmark MMHAL-BENCH with a special focus on penalizing hallucinations. As the first LMM trained with RLHF, our approach achieves remarkable improvement on the LLaVA-Bench dataset with the 96% performance level of the text-only GPT-4 (while previous best methods can only achieve the 87% level), and an improvement of 60% on MMHAL-BENCH over other baselines.
Commonsense reasoning simulates the human ability to make presumptions about our physical world, and it is an essential cornerstone in building general AI systems. We proposea new commonsense reasoning dataset based on human’s Interactive Fiction (IF) gameplaywalkthroughs as human players demonstrate plentiful and diverse commonsense reasoning. The new dataset provides a natural mixture of various reasoning types and requires multi-hopreasoning. Moreover, the IF game-based construction procedure requires much less humaninterventions than previous ones. Different from existing benchmarks, our dataset focuseson the assessment of functional commonsense knowledge rules rather than factual knowledge. Hence, in order to achieve higher performance on our tasks, models need to effectively uti-lize such functional knowledge to infer the outcomes of actions, rather than relying solely onmemorizing facts. Experiments show that the introduced dataset is challenging to previousmachine reading models as well as the new large language models with a significant 20%performance gap compared to human experts.
The Universal Transformer (UT) is a variant of the Transformer that shares parameters across its layers and is Turing-complete under certain assumptions. Empirical evidence also shows that UTs have better compositional generalization than Vanilla Transformers (VTs) in formal language tasks. The parameter-sharing also affords it better parameter efficiency than VTs. Despite its many advantages, most state-of-the-art NLP systems use VTs as their backbone model instead of UTs. This is mainly because scaling UT parameters is more compute and memory intensive than scaling up a VT. This paper proposes the Sparse Universal Transformer (SUT), which leverages Sparse Mixture of Experts (SMoE) to reduce UT’s computation complexity while retaining its parameter efficiency and generalization ability. Experiments show that SUT combines the best of both worlds, achieving strong generalization results on formal language tasks (Logical inference and CFQ) and impressive parameter and computation efficiency on standard natural language benchmarks like WMT’14.
Text games present opportunities for natural language understanding (NLU) methods to tackle reinforcement learning (RL) challenges. However, recent work has questioned the necessity of NLU by showing random text hashes could perform decently. In this paper, we pursue a fine-grained investigation into the roles of text in the face of different RL challenges, and reconcile that semantic and non-semantic language representations could be complementary rather than contrasting. Concretely, we propose a simple scheme to extract relevant contextual information into an approximate state hash as extra input for an RNN-based text agent. Such a lightweight plug-in achieves competitive performance with state-of-the-art text agents using advanced NLU techniques such as knowledge graph and passage retrieval, suggesting non-NLU methods might suffice to tackle the challenge of partial observability. However, if we remove RNN encoders and use approximate or even ground-truth state hash alone, the model performs miserably, which confirms the importance of semantic function approximation to tackle the challenge of combinatorially large observation and action spaces. Our findings and analysis provide new insights for designing better text game task setups and agents.
Transformers are ubiquitous in Natural Language Processing (NLP) tasks, but they are difficult to be deployed on hardware due to the intensive computation. To enable low-latency inference on resource-constrained hardware platforms, we propose to design Hardware-Aware Transformers (HAT) with neural architecture search. We first construct a large design space with arbitrary encoder-decoder attention and heterogeneous layers. Then we train a SuperTransformer that covers all candidates in the design space, and efficiently produces many SubTransformers with weight sharing. Finally, we perform an evolutionary search with a hardware latency constraint to find a specialized SubTransformer dedicated to run fast on the target hardware. Extensive experiments on four machine translation tasks demonstrate that HAT can discover efficient models for different hardware (CPU, GPU, IoT device). When running WMT’14 translation task on Raspberry Pi-4, HAT can achieve 3× speedup, 3.7× smaller size over baseline Transformer; 2.7× speedup, 3.6× smaller size over Evolved Transformer with 12,041× less search cost and no performance loss. HAT is open-sourced at https://github.com/mit-han-lab/hardware-aware-transformers.
Interactive Fiction (IF) games with real human-written natural language texts provide a new natural evaluation for language understanding techniques. In contrast to previous text games with mostly synthetic texts, IF games pose language understanding challenges on the human-written textual descriptions of diverse and sophisticated game worlds and language generation challenges on the action command generation from less restricted combinatorial space. We take a novel perspective of IF game solving and re-formulate it as Multi-Passage Reading Comprehension (MPRC) tasks. Our approaches utilize the context-query attention mechanisms and the structured prediction in MPRC to efficiently generate and evaluate action outputs and apply an object-centric historical observation retrieval strategy to mitigate the partial observability of the textual observations. Extensive experiments on the recent IF benchmark (Jericho) demonstrate clear advantages of our approaches achieving high winning rates and low data requirements compared to all previous approaches.
Video captioning has attracted an increasing amount of interest, due in part to its potential for improved accessibility and information retrieval. While existing methods rely on different kinds of visual features and model architectures, they do not make full use of pertinent semantic cues. We present a unified and extensible framework to jointly leverage multiple sorts of visual features and semantic attributes. Our novel architecture builds on LSTMs with two multi-faceted attention layers. These first learn to automatically select the most salient visual features or semantic attributes, and then yield overall representations for the input and output of the sentence generation component via custom feature scaling operations. Experimental results on the challenging MSVD and MSR-VTT datasets show that our framework outperforms previous work and performs robustly even in the presence of added noise to the features and attributes.