Apoorva Upadhyaya


2023

pdf
Toxicity, Morality, and Speech Act Guided Stance Detection
Apoorva Upadhyaya | Marco Fisichella | Wolfgang Nejdl
Findings of the Association for Computational Linguistics: EMNLP 2023

In this work, we focus on the task of determining the public attitude toward various social issues discussed on social media platforms. Platforms such as Twitter, however, are often used to spread misinformation, fake news through polarizing views. Existing literature suggests that higher levels of toxicity prevalent in Twitter conversations often spread negativity and delay addressing issues. Further, the embedded moral values and speech acts specifying the intention of the tweet correlate with public opinions expressed on various topics. However, previous works, which mainly focus on stance detection, either ignore the speech act, toxic, and moral features of these tweets that can collectively help capture public opinion or lack an efficient architecture that can detect the attitudes across targets. Therefore, in our work, we focus on the main task of stance detection by exploiting the toxicity, morality, and speech act as auxiliary tasks. We propose a multitasking model TWISTED that initially extracts the valence, arousal, and dominance aspects hidden in the tweets and injects the emotional sense into the embedded text followed by an efficient attention framework to correctly detect the tweet’s stance by using the shared features of toxicity, morality, and speech acts present in the tweet. Extensive experiments conducted on 4 benchmark stance detection datasets (SemEval-2016, P-Stance, COVID19-Stance, and ClimateChange) comprising different domains demonstrate the effectiveness and generalizability of our approach.

2021

pdf
Towards Sentiment and Emotion aided Multi-modal Speech Act Classification in Twitter
Tulika Saha | Apoorva Upadhyaya | Sriparna Saha | Pushpak Bhattacharyya
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Speech Act Classification determining the communicative intent of an utterance has been investigated widely over the years as a standalone task. This holds true for discussion in any fora including social media platform such as Twitter. But the emotional state of the tweeter which has a considerable effect on the communication has not received the attention it deserves. Closely related to emotion is sentiment, and understanding of one helps understand the other. In this work, we firstly create a new multi-modal, emotion-TA (‘TA’ means tweet act, i.e., speech act in Twitter) dataset called EmoTA collected from open-source Twitter dataset. We propose a Dyadic Attention Mechanism (DAM) based multi-modal, adversarial multi-tasking framework. DAM incorporates intra-modal and inter-modal attention to fuse multiple modalities and learns generalized features across all the tasks. Experimental results indicate that the proposed framework boosts the performance of the primary task, i.e., TA classification (TAC) by benefitting from the two secondary tasks, i.e., Sentiment and Emotion Analysis compared to its uni-modal and single task TAC (tweet act classification) variants.