This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Conversations between a clinician and a patient, in natural conditions, are valuable sources of information for medical follow-up. The automatic analysis of these dialogues could help extract new language markers and speed up the clinicians’ reports. Yet, it is not clear which model is the most efficient to detect and identify the speaker turns, especially for individuals with speech disorders. Here, we proposed a split of the data that allows conducting a comparative evaluation of different diarization methods. We designed and trained end-to-end neural network architectures to directly tackle this task from the raw signal and evaluate each approach under the same metric. We also studied the effect of fine-tuning models to find the best performance. Experimental results are reported on naturalistic clinical conversations between Psychologists and Interviewees, at different stages of Huntington’s disease, displaying a large panel of speech disorders. We found out that our best end-to-end model achieved 19.5 % IER on the test set, compared to 23.6% achieved by the finetuning of the X-vector architecture. Finally, we observed that we could extract clinical markers directly from the automatic systems, highlighting the clinical relevance of our methods.
Disfluent speech has been previously addressed from two main perspectives: the clinical perspective focusing on diagnostic, and the Natural Language Processing (NLP) perspective aiming at modeling these events and detect them for downstream tasks. In addition, previous works often used different metrics depending on whether the input features are text or speech, making it difficult to compare the different contributions. Here, we introduce a new evaluation framework for disfluency detection inspired by the clinical and NLP perspective together with the theory of performance from (Clark, 1996) which distinguishes between primary and collateral tracks. We introduce a novel forced-aligned disfluency dataset from a corpus of semi-directed interviews, and present baseline results directly comparing the performance of text-based features (word and span information) and speech-based (acoustic-prosodic information). Finally, we introduce new audio features inspired by the word-based span features. We show experimentally that using these features outperformed the baselines for speech-based predictions on the present dataset.
We introduce Seshat, a new, simple and open-source software to efficiently manage annotations of speech corpora. The Seshat software allows users to easily customise and manage annotations of large audio corpora while ensuring compliance with the formatting and naming conventions of the annotated output files. In addition, it includes procedures for checking the content of annotations following specific rules that can be implemented in personalised parsers. Finally, we propose a double-annotation mode, for which Seshat computes automatically an associated inter-annotator agreement with the gamma measure taking into account the categorisation and segmentation discrepancies.