Anna Hülsing


2024

pdf
An Extensible Massively Multilingual Lexical Simplification Pipeline Dataset using the MultiLS Framework
Matthew Shardlow | Fernando Alva-Manchego | Riza Batista-Navarro | Stefan Bott | Saul Calderon Ramirez | Rémi Cardon | Thomas François | Akio Hayakawa | Andrea Horbach | Anna Hülsing | Yusuke Ide | Joseph Marvin Imperial | Adam Nohejl | Kai North | Laura Occhipinti | Nelson Peréz Rojas | Nishat Raihan | Tharindu Ranasinghe | Martin Solis Salazar | Marcos Zampieri | Horacio Saggion
Proceedings of the 3rd Workshop on Tools and Resources for People with REAding DIfficulties (READI) @ LREC-COLING 2024

We present preliminary findings on the MultiLS dataset, developed in support of the 2024 Multilingual Lexical Simplification Pipeline (MLSP) Shared Task. This dataset currently comprises of 300 instances of lexical complexity prediction and lexical simplification across 10 languages. In this paper, we (1) describe the annotation protocol in support of the contribution of future datasets and (2) present summary statistics on the existing data that we have gathered. Multilingual lexical simplification can be used to support low-ability readers to engage with otherwise difficult texts in their native, often low-resourced, languages.

pdf
Cross-Lingual Metaphor Detection for Low-Resource Languages
Anna Hülsing | Sabine Schulte Im Walde
Proceedings of the 4th Workshop on Figurative Language Processing (FigLang 2024)

Research on metaphor detection (MD) in a multilingual setup has recently gained momentum. As for many tasks, it is however unclear how the amount of data used to pretrain large language models affects the performance, and whether non-neural models might provide a reasonable alternative, especially for MD in low-resource languages. This paper compares neural and non-neural cross-lingual models for English as the source language and Russian, German and Latin as target languages. In a series of experiments we show that the neural cross-lingual adapter architecture MAD-X performs best across target languages. Zero-shot classification with mBERT achieves decent results above the majority baseline, while few-shot classification with mBERT heavily depends on shot-selection, which is inconvenient in a cross-lingual setup where no validation data for the target language exists. The non-neural model, a random forest classifier with conceptual features, is outperformed by the neural models. Overall, we recommend MAD-X for metaphor detection not only in high-resource but also in low-resource scenarios regarding the amounts of pretraining data for mBERT.

pdf
The BEA 2024 Shared Task on the Multilingual Lexical Simplification Pipeline
Matthew Shardlow | Fernando Alva-Manchego | Riza Batista-Navarro | Stefan Bott | Saul Calderon Ramirez | Rémi Cardon | Thomas François | Akio Hayakawa | Andrea Horbach | Anna Hülsing | Yusuke Ide | Joseph Marvin Imperial | Adam Nohejl | Kai North | Laura Occhipinti | Nelson Peréz Rojas | Nishat Raihan | Tharindu Ranasinghe | Martin Solis Salazar | Sanja Štajner | Marcos Zampieri | Horacio Saggion
Proceedings of the 19th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2024)

We report the findings of the 2024 Multilingual Lexical Simplification Pipeline shared task. We released a new dataset comprising 5,927 instances of lexical complexity prediction and lexical simplification on common contexts across 10 languages, split into trial (300) and test (5,627). 10 teams participated across 2 tracks and 10 languages with 233 runs evaluated across all systems. Five teams participated in all languages for the lexical complexity prediction task and 4 teams participated in all languages for the lexical simplification task. Teams employed a range of strategies, making use of open and closed source large language models for lexical simplification, as well as feature-based approaches for lexical complexity prediction. The highest scoring team on the combined multilingual data was able to obtain a Pearson’s correlation of 0.6241 and an ACC@1@Top1 of 0.3772, both demonstrating that there is still room for improvement on two difficult sub-tasks of the lexical simplification pipeline.