2024
pdf
abs
e-Health CSIRO at RRG24: Entropy-Augmented Self-Critical Sequence Training for Radiology Report Generation
Aaron Nicolson
|
Jinghui Liu
|
Jason Dowling
|
Anthony Nguyen
|
Bevan Koopman
Proceedings of the 23rd Workshop on Biomedical Natural Language Processing
The core novelty of our approach lies in the addition of entropy regularisation to self-critical sequence training. This helps maintain a higher entropy in the token distribution, preventing overfitting to common phrases and ensuring a broader exploration of the vocabulary during training, which is essential for handling the diversity of the radiology reports in the RRG24 datasets. We apply this to a multimodal language model with RadGraph as the reward. Additionally, our model incorporates several other aspects. We use token type embeddings to differentiate between findings and impression section tokens, as well as image embeddings. To handle missing sections, we employ special tokens. We also utilise an attention mask with non-causal masking for the image embeddings and a causal mask for the report token embeddings.
pdf
abs
e-Health CSIRO at “Discharge Me!” 2024: Generating Discharge Summary Sections with Fine-tuned Language Models
Jinghui Liu
|
Aaron Nicolson
|
Jason Dowling
|
Bevan Koopman
|
Anthony Nguyen
Proceedings of the 23rd Workshop on Biomedical Natural Language Processing
Clinical documentation is an important aspect of clinicians’ daily work and often demands a significant amount of time. The BioNLP 2024 Shared Task on Streamlining Discharge Documentation (Discharge Me!) aims to alleviate this documentation burden by automatically generating discharge summary sections, including brief hospital course and discharge instruction, which are often time-consuming to synthesize and write manually. We approach the generation task by fine-tuning multiple open-sourced language models (LMs), including both decoder-only and encoder-decoder LMs, with various configurations on input context. We also examine different setups for decoding algorithms, model ensembling or merging, and model specialization. Our results show that conditioning on the content of discharge summary prior to the target sections is effective for the generation task. Furthermore, we find that smaller encoder-decoder LMs can work as well or even slightly better than larger decoder-based LMs fine-tuned through LoRA. The model checkpoints from our team (aehrc) are openly available.
2023
pdf
abs
e-Health CSIRO at RadSum23: Adapting a Chest X-Ray Report Generator to Multimodal Radiology Report Summarisation
Aaron Nicolson
|
Jason Dowling
|
Bevan Koopman
The 22nd Workshop on Biomedical Natural Language Processing and BioNLP Shared Tasks
We describe the participation of team e-Health CSIRO in the BioNLP RadSum task of 2023. This task aims to develop automatic summarisation methods for radiology. The subtask that we participated in was multimodal; the impression section of a report was to be summarised from a given findings section and set of Chest X-rays (CXRs) of a subject’s study. For our method, we adapted an encoder-to-decoder model for CXR report generation to the subtask. e-Health CSIRO placed seventh amongst the participating teams with a RadGraph ER F1 score of 23.9.