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B Collected references

B.1 Grammatical Error Correction
52 sentences with a maximum length of 15 were collected from the NUCLE test corpus (Dahlmeier
et al., 2013). For each of the 52 source sentences, we elicited 50 corrections from Amazon Mechanical
Turk workers. Workers were native speakers (located in the US) having at least 1000 approved HITs and
98% acceptance rate. Sentences with less than 6 words were discarded, as they were mostly a result of
sentence segmentation errors. 4 sentences required no correction according to almost half the workers
and were hence discarded. Common methods based on agreement such as Fleiss’s kappa or test questions
as the problem we deal with is exactly the low agreement of valid corrections. 4 workers were rejected
due to suspicious answers. such were workers that most or all of their work changed nothing except
non-alphanumeric characters and were the only ones to keep several source sentences unchanged.

Figure 1: Template for a grammatical error correction annotation task



origin Other relatives may have the same possibilities to have such kind of disease .
1 It is possible other relatives may have the same kind of disease .
2 It is possible that other relatives may have the same kind of disease .
3 It’s also possible for other relatives to have the same kind of disease.
4 Other relatives may also be predisposed to the same kind of diseases.
5 Other relatives may be at risk to have the same disease.
6 Other relatives may have be prone to having such diseases.
7 Other relatives may have similar possibilities to have the same disease.
8 Other relatives may have the possibility of having the same kind of disease.
9 Other relatives may have the possibility to have the same such disease .
10 Other relatives may have the same chance of contracting the same kind of disease.
11 Other relatives may have the same chance of having that kind of disease.
12 Other relatives may have the same chance of suffering such diseases.
13 Other relatives may have the same chances of having the same kind of disease.
14 Other relatives may have the same chance to have the same disease.
15 Other relatives may have the same likelihood of having such a disease.
16 Other relatives may have the same possibilities of having such a disease .
17 Other relatives may have the same possibilities of having such a disease .
18 Other relatives may have the same possibilities of having such a disease.
19 Other relatives may have the same possibilities of having that kind of disease.
20 Other relatives may have the same possibilities of having the same kind of disease.
21 Other relatives may have the same possibilities to develop such a disease.
22 Other relatives may have the same possibilities to have such a disease .
23 Other relatives may have the same possibilities to have such a kind of disease.
24 Other relatives may have the same possibilities to have such a kind of disease.
25 Other relatives may have the same possibilities to have such kinds of diseases.
26 Other relatives may have the same possibilities to have the same kind of disease .
27 Other relatives may have the same possibilities to have this kind of disease .
28 Other relatives may have the same possibilities to have this kind of disease.
29 Other relatives may have the same possibility of developing the same kind of disease.
30 Other relatives may have the same possibility of having said disease.
31 Other relatives may have the same possibility of having the disease.
32 Other relatives may have the same possibility of having this kind of disease .
33 Other relatives may have the same possibility to have such a kind of disease .
34 Other relatives may have the same possibility to have such kind of a disease .
35 Other relatives may have the same possibility to have such kind of disease .
36 Other relatives may have the same possibility to have such kinds of disease .
37 Other relatives may have the same possibility to have such kinds of diseases.
38 Other relatives may have the same possibility to have the same kind of disease.
39 Other relatives may have the same probability of having this disease .
40 Other relatives may have the same probability to have the same kind of disease.
41 Other relatives may have the same risk for developing such a disease.
42 Other relatives may have the same risk of having such a disease.
43 Other relatives may have the same risk of having the disease.
44 Other relatives may have the same strong possibility to have such kinds of disease.
45 Other relatives may possibly also have the same disease .
46 Other relatives may possibly have the same risk of having that kind of disease.
47 Other relatives may possibly have the same such kind of disease .
48 Relatives may also be more prone to similar diseases.
49 Relatives may have the same possibilities to have such kind of disease .
50 Those who are related may have the same chances of acquiring certain diseases.

Table 1: An example of one of the learner language sentences with the highest number of different corrections. The origin
sentence is on top.



C Validity

Figure 2: The mean frequency (y-axis) in which a correction that was produced a given number of times (x-axis), was judged
to be valid.

D Accuracy - Poisson Binomial Distribution

The analytic tools we have developed support the computation of the entire distribution of the accuracy,
and not only its expected values. From the Equation

Acc (C;X,Y ) =
1

N

N∑
i=1

1C(xi)∈Yi
. (1)

we see that Accuracy has a Poisson Binominal distribution (i.e., it is a sum of independent Bernoulli
variables with different success probabilities), whose success probabilities are Py,Y∼Di(y ∈ Y ),
which can be computed, as before, using our estimate for Di. Estimating the density function al-
lows for the straightforward definition of significance tests for the measure, and can be performed ef-
ficiently (Hong, 2013). An implementation of this and other methods for efficiently computing and
approximating Poisson Binomial Distributions and the estimated density functions can be found in
https://github.com/borgr/PoissonBinomial.

E Type conservatism and prevalence

https://github.com/borgr/PoissonBinomial


TYPE CHANGE

CONTR 0.971
NOUN:NUM 0.955
ORTH 0.893
ADJ:FORM 0.810
NOUN:INFL 0.713
DET 0.672
VERB:SVA 0.643
MORPH 0.615
VERB:FORM 0.538
SPELL 0.537
VERB:INFL 0.500
ADJ 0.460
CONJ 0.430
ADV 0.416
PREP 0.334
WO 0.315
NOUN:POSS 0.290
VERB:TENSE 0.289
NOUN 0.282
PART 0.268
PRON 0.239
PUNCT 0.201
OTHER 0.174
VERB 0.151

Table 2: Number of mean corrections of systems divided by the number of corrections by references on NUCLE
dataset(Dahlmeier and Ng, 2012). Data is based on Bryant et al. (2017).



F SARI with Multiple references

Most RBMs define their multi-reference score to be the maximum score the output attains against any
single one reference. SARI takes a different approach and combines multiple references to yield its
score, possibly in order to compensate for the necessarily limited coverage of the available references.
This yields non-monotonic behavior of SARI with respect to increasing the number of references, which
makes the biases incurred by low coverage less predictable, but not less significant. For instance, a
set of diverse set of references would span a large space of possible combinations, making SARI more
permissive. A set of references of the same size, which only differ little from one another would yield a
more conservative SARI score.

SARI is defined as the average of 3 scores, based on how well the system output kept the words it
should keep, deleted the words it should delete, and added the words it should add (all with respect to
the reference). Each of these scores behaves differently when increasing the number of references. For
a perfect recall for addition can only be obtained if all additions suggested by any reference are added.
For a perfect precision for addition all additions should be found in at least one reference, acting similar
to max operation. For a perfect precision on keeping all the references should keep all agree on keeping
everything the system kept, and as we showed reference don’t tend to agree on it. For a perfect recall
the system should everything that at least one of the references chose to keep. Note, that the two terms
together mean that for a perfect keep score a necessary condition is that all references should agree on
what to keep. A perfect precision of deletion acts similarly to the one over keeping, but being precision
oriented SARI ignores the deletion recall. Thus, a perfect deletion would be one to delete only words,
and at least one, that all references agree on.

G Reference Crowdsourcing for Simplification

In order to perform our simplification experiments, we collected additional references for sentences
from the corpus presented in Xu et al. (2016), using Amazon Mechanical Turk with similar annotation
guidelines to those used by Xu et al. Overall we collect 50 references for 45, and 100 and 150 references
for two more sentences. The latter two have 70 and 126 references that occur only once and none
reoccurring more than 6 times, supporting the claim that the size of the space of valid references for TS
is huge. Standard worker rejection techniques were used, but no worker had to be rejected.

Figure 3: Template for a simplification annotation task

G.1 Simplification reranking



Figure 4: Reranking results with Nisioi et al. (2017) and MAX-SARI

Figure 5: Reranking results with Moses and SARI



Figure 6: Reranking results with Nisioi et al. (2017) and SARI

Figure 7: Reranking results with Moses and MAX-SARI
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