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A Vocabulary Prediction Model

Residual block In Section 3.2, we used a resid-
ual block r(X) = Res(v(X)) ∈ Rdv inspired
by He et al. (2016) to transform the input vector
v(X) ∈ Rdv :

r1 = BNr1(v(X)), r2 = tanh(r1),

r3 = Wr3r2 + br3 , r4 = BNr4(r3),

r5 = tanh(r4), r6 = Wr6r5 + br6 ,

r(X) = r6 + v(X),

(13)

where BNr1(·) and BNr4(·) correspond to batch
normalization (Ioffe and Szegedy, 2015), Wr3 ∈
Rdv×dv and Wr6 ∈ Rdv×dv are weight matrices,
and br3 ∈ Rdv and br6 ∈ Rdv are bias vectors.
We apply dropout (Hinton et al., 2012) to r5 with
a dropout rate of 0.4.

Label smoothing In Section 3.2, we applied la-
bel smoothing (Szegedy et al., 2016) to the loss
function in Equation (10). More concretely, we
modify the gold label ti for the i-th target word as
follows:

ti ← (1.0− ε)ti + εp(i), (14)

where ε is a hyperparameter, and p(i) is a prior
probability that the i-th word appears in a target
sentence. p(i) is computed for each dataset:

p(i) =

∑|T |
j=1 t

j
i

|T |
, (15)

where |T | is the size of the training dataset, and
tji is the gold label for the i-th target word in the
j-th training example. Therefore, p(i) roughly re-
flects the unigram frequency. We have empirically
found that the recommended value ε = 0.1 con-
sistently improves the recall of the predictor.

∗ Work was done while the first author was working at
the University of Tokyo.

B Detailed Experimental Settings

Word segmentation The sentences in the En-
Vi, MS COCO, and Flickr8K datasets were pre-
tokenized. We used the Kytea toolkit for
Japanese and the Stanford Core NLP toolkit
for Chinese. In the other cases, we used the
Moses word tokenizer. We lowercased all the En-
glish sentences. The En-Ja (2M, SW) dataset was
obtained by the SentencePiece toolkit so that
the vocabulary size becomes around 32,000.

Vocabulary construction We built the target
language vocabularies with words appearing at
least five times for the En-De dataset, seven times
for the En-Ja (2M) dataset, three times for the Ch-
Ja dataset, and twice for the other datasets.

Optimization We initialized all the weight and
embedding matrices with uniform random values
in [−0.1,+0.1], and all the bias vectors with ze-
ros, except for the LSTM forget-gate biases which
were initialized with ones (Jozefowicz et al.,
2015). For all the models, we used gradient-norm
clipping (Pascanu et al., 2013) with a clipping
value of 1.0. We applied dropout to Equation (3),
(4), and (5) with a dropout rate of 0.2, and we fur-
ther used dropout in the vertical connections of the
two-layer LSTMs (Zaremba et al., 2014) for the
En-Ja (2M) and (2M, SW) datasets. As regulariza-
tion, we also used weight decay with a coefficient
of 10−6. When training the vocabulary predictor
and the sentence generation models, we checked
the corresponding evaluation scores at every half
epoch, and halved the learning rate if the evalua-
tion scores were not improved. We stabilized the
training of the sentence generation models by not
decreasing the learning rate in the first six epochs.
These training settings were tuned for the En-Ja
(100K) dataset, but we empirically found that the
same settings lead to the consistent results for all



CPU GPU
Data size |V | Model size Small softmax Full softmax Small softmax Full softmax
100K 23,536 1-L, 256-D 54.4 113.8 71.9 78.4
2M 70,668 2-L, 512-D 156.2 503.2 80.5 105.7
2M, SW 37,905 2-L, 512-D 161.0 369.2 84.8 99.2

Table 6: Average time [milliseconds] to obtain a translation for each sentence in the En-Ja development split.

the datasets.

Baseline Estimator We used the Adam opti-
mizer with a learning rate of 10−3 and the other
default settings, to optimize the baseline estimator
in Section 2.2. We have found that our results are
not sensitive to the training settings of the baseline
estimator.

Beam search For the results in Table 3 and 4,
we tried two beam search methods in Hashimoto
and Tsuruoka (2017) and Oda et al. (2017), and
selected better scores for each setting. In gen-
eral, these length normalization methods lead to
the best BLEU scores with a beam size of 10 to
20.

C Test Time Efficiency

By the fact that our method works efficiently with
reinforcement learning, we expect that our method
also works well at test time. Table 6 shows the av-
erage decoding time [milliseconds] to generate a
Japanese sentence given an English sentence for
the En-Ja development split. For reference, the
vocabulary size and the model size are also shown
for each setting. We note that the decoding time of
our method includes the time for constructing an
input-specific vocabulary for each source input.

We can see that our method runs faster than
“Full softmax”; in particular, the speedup is sig-
nificant on CPUs, and the decoding time by our
method is less sensitive to changing |V | than that
of “Full softmax”. This is because our method
handles the full vocabulary only once for each
source input, whereas “Full softmax” needs to
handle the full vocabulary every time the model
predicts a target word.
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