SubmissionNumber#=%=#101 FinalPaperTitle#=%=#UMUTeam at SemEval-2024 Task 6: Leveraging Zero-Shot Learning for Detecting Hallucinations and Related Observable Overgeneration Mistakes ShortPaperTitle#=%=# NumberOfPages#=%=#7 CopyrightSigned#=%=#José Antonio García Díaz JobTitle#==# Organization#==#Universidad de Murcia Abstract#==#In these working notes we describe the UMUTeam's participation in SemEval-2024 shared task 6, which aims at detecting grammatically correct output of Natural Language Generation with incorrect semantic information in two different setups: model-aware and model-agnostic tracks. The task is consists of three subtasks with different model setups. Our approach is based on exploiting the zero-shot classification capability of the Large Language Models LLaMa-2, Tulu and Mistral, through prompt engineering. Our system ranked eighteenth in the model-aware setup with an accuracy of 78.4% and 29th in the model-agnostic setup with an accuracy of 76.9333%. Author{1}{Firstname}#=%=#ronghao Author{1}{Lastname}#=%=#pan Author{1}{Username}#=%=#ronghaopan Author{1}{Email}#=%=#ronghao.pan@um.es Author{1}{Affiliation}#=%=#Universidad de Murcia Author{2}{Firstname}#=%=#José Antonio Author{2}{Lastname}#=%=#García-Díaz Author{2}{Username}#=%=#joseagd Author{2}{Email}#=%=#joseantonio.garcia8@um.es Author{2}{Affiliation}#=%=#Universidad de Murcia Author{3}{Firstname}#=%=#Tomás Author{3}{Lastname}#=%=#Bernal-Beltrán Author{3}{Email}#=%=#tomas.bernalb@um.es Author{3}{Affiliation}#=%=#Universidad de Murcia Author{4}{Firstname}#=%=#Rafael Author{4}{Lastname}#=%=#Valencia-García Author{4}{Username}#=%=#valencia Author{4}{Email}#=%=#valencia@um.es Author{4}{Affiliation}#=%=#Universidad de Murcia ========== èéáğö