

CASIA SMT System for IWSLT'09

Maoxi Li, Jiajun Zhang, Yu Zhou, and Chengqing Zong

Institute of Automation Chinese Academy of Sciences (CASIA)

Introduction

1. In IWSLT 2009 Evaluation Campaign, the tasks that we participated in include:

●Challenge translation tasks:
 ✓Chinese-to-English: CT_CE (CRR and ASR)
 ✓English-to-Chinese: CT_EC (CRR and ASR)

●BTEC translation tasks: ✓Chinese-to-English: BTEC_CE

System Architecture

--Prepare the data 1

1 An important difference

Training corpus are limited to the released corpus for each translation task.

2 Chinese word segmentation

- ORI: Original Chinese word segmentation
- ICT: the free software toolkit ICTCLAS3.0

(http://www.nlp.org.cn)

Approaches	ORI	ICT	ORI+ICT
BLEU	35.31	36.24	36.63

Table1. The performances with different Chinese wordsegmentation approaches

--Prepare the data 2

3. English word Lowercased and tokenized

• A word in different positions of a sentence may have different morphology.

 \bullet To avoid data sparse, we use the lowercased and tokenized scripts of the open source toolkit Moses to do this job.

--Prepare the data 3

- 4. Named Entities process
 - A hybrid named entity recognizer to identify Chinese NEs.
 - Person names and location names are translated word by word.
 - Organization names are translated by a structurebased translation model.
 - A rule-based approach to translate the temporal and numerical NEs.

--Decoding module 1, three original SMT decoders

•Moses

●Joshua

•MEBTG:

 \checkmark An in-home maximum entropy-based reordering model decoder.

 \checkmark The prediction of relative orders of any two adjacent blocks is considered as a problem of classification.

✓ A MaxEnt classifier is trained according to the training data.

 \checkmark A CKY algorithm is exploited to decode the test set.

 \checkmark We limits the phrase table within 40 and the partial hypotheses within 200.

--Decoding module 2, three deformed SMT decoders

• For Chinese to English translation, a preprocessing module, namely **Bandore**, reorders the Chinese sentences before decoding.

 \checkmark An SVM is used to classify Chinese sentences into three types exploiting all the words occurring in the sentence as features.

 \checkmark Corresponding reordering model is developed for specific sentence types.

 \checkmark Reordering the Chinese sentences of training set and test set.

 \checkmark Pass the reordered sentences into the original SMT decoders.

• We called them: Moses-Reorder, Joshua-Reorder and MEBTG-Reorder.

中国科学院自动化研究所 INSTITUTE OF AUTOMATION CHINESE ACADEMY OF SCIENCES

--Decoding module 3, SMT decoders setting

1 Decoder version selecting:

✓ Joshua 1.1 – the only version at that time.

✓ Moses 2009-04-13.

Tasks	Version 2009-04-13	Version 2008-07-11
CT_CE	35.64	35.37
CT_EC	33.70	33.53

Table 2. The performance on the Challenge CRR tasks with different Moses version

2 Decoder option: closest or shorest?

Tasks	closest	shortest
CT_CE	36.56	35.64

Table 3. The performance on thedevelopment set with different Mosestuning option

Tasks	closest	shortest	
CT_CE	38.00	36.58	
CT_EC	31.96	31.03	
BTEC	47.05	45.66	

Table 4. The performance on thedevelopment set with different Joshuatuning option

--Combining module, a word-level system combination approach

• Our approach is similar to A.-V. I. Rosti etc. presented in ACL 2007.

• We improve the system combination performance by substituting a word reordering alignment (WRA) for alignment produced by TER.

• The 10-Best lists are used for system combination.

--Re-scoring Module

 \bullet The re-scoring method that we used this year is the same as last year.

• We merge the 100-Best hypotheses produced by the combining module and all the original 10-Best hypotheses generated by each single decoder.

 \checkmark Note that the 100-Best hypotheses produced by the combining module might include some original hypotheses, so we delete the repeated ones.

11

--Post-processing

• For Chinese to English translation tasks:

 \checkmark Re-case: train a re-caser with Moses and re-case the outputs.

 \checkmark De-tokenize: done by the de-tokenizer scripts of Moses package.

✓ Tokenize the final submitted translation with the official tool: "ppEnglish.case+punc.pl" script.

• For English to Chinese translation task, evaluation by Chinese Character.

✓ Transform segmentation into characters by the official tool: "splitUTF8characters.pl" script.

中国科学院自动化研究所 INSTITUTE OF AUTOMATION CHINESE ACADEMY OF SCIENCES

--For CT-CE ASR 1, replace Chinese character with Chinese Pinyin for CT'CE ASR task

The mistakes made by ASR often focused on:
 ✓ Homophone Chinese character. Such as "玲(ling2)" or
 "铃(ling2)"

✓ Different Chinese character pronunciation tone. Such as "直(zhi2)" or "智(zhi4)" or "知(zhi1)".

• The supplied corpus is very small, this often lead to:

- \checkmark A lot of OOV words emerge.
- \checkmark The data sparse is very severe.

--For CT-CE ASR 2

• Add Chinese Pinyin for Chinese character in the training data and the test data.

我的名字是铃木直子
wo3 de5 ming2 zi4 shi4 ling2 mu4 zhi2 zi5我的名字是铃木智子
wo3 de5 ming2 zi4 shi4 ling2 mu4 zhi4 zi5我的名字是铃木知子

wo3 de5 ming2 zi4 shi4 ling2 mu4 zhi1 zi5

我的名字是玲木智子 wo3 de5 ming2 zi4 shi4 ling2 mu4 zhi4 zi5

• Use Chinese Pinyin to train the model.

中国科学院自动化研究所 INSTITUTE OF AUTOMATION CHINESE ACADEMY OF SCIENCES

dev

■ ASR

--For CT-CE ASR 3, performance

ASR-Pinyin

on the development set

CRR

CRR-Pinyin

CT-CE-ASR	DEV	
ASR	33.48	
ASR-Pinyin	36.43	↑ 2.95

CT-CE-CRR	DEV	
CRR	39.24	
CRR-Pinyin	40.52	↑ 1.28

Table 5. The translation performance of substituting Chinese Pinyin for Chinese character on the DEV9 for CT-CE task

中国科学院自动化研究所 INSTITUTE OF AUTOMATION CHINESE ACADEMY OF SCIENCES 15

--For CT-CE ASR 4, performance on the test set

Table 6. The translation performance of substituting Chinese Pinyin for Chinese character on the test set for CT-

CE task

-- Corpus statistics 1

• When tuning the parameter:

 \checkmark We merge all individual development sets given a translation task.

 \checkmark We use the same pre-processing approach to deal with the source sentences and the reference translations.

• When decoding the test set:

 \checkmark We add the development sets to the training corpus to re-train the models.

Corpus statistic for BTEC CE task -- Corpus statistics 2

corpus	Size	
Train corpus	19,972 sentence pairs	
Development set	2,508 sentence with 16 references	
Test set	469 sentence	

Corpus statistic for CT-CE tasks

corpus	Size		
Train corpus	30,033 sentence pairs		
Development set	4,447 sentence with 16 references		
Test set	405 sentence		

Corpus statistic for CT-EC tasks

corpus	Size	
Train corpus	30,033 sentence pairs	
Development set	1,465 sentence with 7 references	
Test set	393 sentence	

中国科学院自动化研究所 INSTITUTE OF AUTOMATION CHINESE ACADEMY OF SCIENCES

-- Word aligning 1, combine different word alignments

- We combine the word alignments produced by GIZA++ and BerkeleyAligner.
 - ✓ We use GIZA++ and BerkeleyAligner to generate different word alignment files.
 - \checkmark We merge the two files into a big word alignment file by concatenating one alignment file to the other.
 - \checkmark The big word alignment file is exploited by the decoders to generate the translation models.
- Improvement with combining word alignments

Challenge CT_CE CRR	Moses	Joshua
Baseline (GIZA++)	36.24	36.83
Combining word alignment	38.09	39.24

-- Word aligning 2, a two-step word alignment approach

• In the first step:

✓ We use GIZA++ to produce word alignment and phrase table;

 \checkmark We set a threshold value, such as 0.5, to filter the phrase table, and extract some phrase tables.

• In the second step:

 \checkmark We add the reliable bilingual phrase tables into the training data and re-train the model.

Moses decoder	BLEU
Baseline	36.24
Two-step word alignment	36.83
Combining word alignment+	38.26
two-step word alignment	30.20

--Performance 1

• For each task, we submit three system running results:

 \checkmark Re-score result (primary).

✓ System combination result (contrastive 1).
✓ The results of the best individual system on the development set (contrastive 2).

• The performance on the development sets is case-insensitive, while on the test set is case-sensitive, which is released by the official.

--Performance 2

dev tst

The translation performance on the development set and the test set for BTEC CE task

--Performance 3

dev tst

The translation performance on the development set and the test set for CT-CE CRR task

--Performance 4

best individual

- combining module
- rescoring module

	DEV		TST	
Moses	31.80		39.10	
SysComb	32.28	↑ 0.48	40.03	↑ 0.93
Re-score	34.06	↑ 2.26	43.04	↑ 3.94

The translation performance on the development set and the test set for CT-EC CRR task

Conclusion 1

- The combination module and rescoring module are effective, \uparrow 3~6 Bleu points.
- Replace Chinese character with Chinese Pinyin are effective for CT-CE ASR, \uparrow 3 Bleu points.
- Combine different word alignments are effective, \uparrow 2 Bleu points.
- The two-step word alignment are effective, $\uparrow 0.6$ Bleu points.
- Combine different Chinese word character improve the system performance,
 [↑] 1 Bleu points.
 Processing NE to the correct formats improves

the translation quality.

Thanks for your attention!

Any questions?

