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Abstract

This paper! introduces a semantical storage approach for representing nominal quantifi-
cation in situation semantics. Quantificational determiners are treated as denoting binary
relations, and their domains and ranges are defined. The linguistic meaning of an expression
¢ is given as a pair of its quantificational storage and basis. The storage contains the mean-
ings of quantified NPs occurring in ¢, while the basis represents the semantical structure
of the result of the substitution of those NPs with parameters. Scope ambiguity is avail-
able when more than one quantifier is in the storage. A generalized quantificational rule
moves some of the quantifiers out of the storage into the basis. There is a restriction that
prohibites relevant free parameters from being left out of the binding scope. The storage is
empty when there are no quantified NPs occurring in ¢, or when there is enough linguistic
or extra-linguistic information for resolving scope ambiguities.

1 Some Situation Theoretical Notations

A complete guide on the existing literature on situation theory and related topics is given by
[Seligman and Moss 1997]. Quantification and anaphora in situation semantics are considered
in great detail in [Gawron and Peters 1990]. The present approach differs from the later one in
using the semantical storage and the lambda abstraction tools of situation theory to cope with
the quantification in a computational mode. For another approach to compositional situation
semantics that copes with quantification scope problems as well as with embedded beliefs, see
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1999. The idea of using a situational Cooper’s storage originated during my research at Univ. of Oslo, Norway,
1989-90, where I was working in the extremely inspirational environment of the computational semantics group
lead by Jens Erik Fenstad. I would like to thank Jon Barwise, Jens Erik Fenstad, Robin Cooper, Gregers Koch,
and Larry Moss for their encouragement, attention and help. I am specially grateful to an anonymous referee who
through strong criticism, encouragement, comments, and patience, made it possible for this work to be completed.
From January till May 15, 2000, I am visiting: Linguistics - University of Minnesota, 190 Klaeber Court, 320-16th
Avenue S.E., Minneapolis, MN 55455
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[7]. For a detailed discussion of the linguistic arguments and background of an approach toward
quantificational scope which is very close to the one presented in this paper, see [9], [10], [11]
and [12]. It can be very well formalized by using the relational approach for semantics of
quantitative determiners as proposed here. I shall assume some familiarity with situation theory.
The following notations are used throughout the paper:

o A\O(E) is the result of the abstraction over the parameter £ in the situation theoretical
object ©(&).

e \(O(&) is called a type in the special case of abstraction where ©(€) is a proposition. To
distinguish it from the general abstraction, I shall adopt the notation [£/©(€)] traditionally
used in situation theory. The result of the application [£/©()](«) is the proposition O(«)
obtained by the appropriate substitution of « for £ in ©(&).

e The proposition that an object « is of type o is denoted by (¢ : «). In the case when
o= [£/0O(&)] and ©(&) is a proposition, the new proposition ([£/©(&)] : ) is true iff the
proposition O(«) is true.

2 Quantificational Structures in Situation Semantics

The natural language quantification expressed by a simple sentence like EVERY STUDENT WALKS
can be depicted by the following schemata:

(1) NP /Quantifier
Determiner Noun/QDomain VP/QRange
every student walks
a student is reading a book
three men are talking

There are three different, but connected ways the scheme (1) to be interpreted. First,
QDomain of the quantification is the set of the objects having the property denoted by the
noun of the quantified NP, while QRange of the quantification is the set of objects satisfying the
property denoted by the VP of the sentence. Then:

(2a) A quantitative Determiner denotes a quantitative relation between two sets, QDomain? and
QRange, i.e. a particular Determiner specifies a quantity of objects from the QDomain that
are also in QRange.

For example, the quantity expressed by the Determiner EVERY is all available objects from
the QDomain. The suggestion in this work, as well as in [Farkas 1997a, b, c], is that (2a) is
respected by all quantitative determiners like EVERY, A, SOME, FEW, MANY, MOST, ONE, TWO,

2Sometimes what is called here QDomain is called Restrictor.
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THREE, .... By this, the concept of a quantificational scope covers two separate semantical
notions — the domain and the range of the particular quantification. There are two other ways
we can interpret the quantification expressed in (1):

(2b) The QRange of a Determiner is the predicate expressed by the VP of the sentence and it
is asserted for the specified by the Determiner quantity of representatives of the QDomain
denoted by the noun (distributively or collectively).

(2c) The Quantifier expressed by a NP denotes a set of properties (i.e. its characteristic func-
tion). By a sentence [[a]np[B]vp]s, the property denoted by the VP 3 is claimed to be in
the set of the properties denoted by the NP «.

To unify the translations of the quantified NPs with those that are simple individual terms,
Montague, see [8], chose the interpretation (2cj and went to the most significant generalization
for a unified representation of the NPs as characteristic functions of sets of properties:

(1.1)

Determiner QDomain QRange
(i) every [STUDENT] [waLKs]
(i) (AQAPYx(Q{x} — P{x}) (" student)) (= walk)
(iii) Ve (student(x) — walks(x))
—~—
Quanti fier Scope

In the following sections I shall introduce a situation semantics for some quantificational
noun expressions. It is associated with an interpretation function F defined for some lexical
items and giving their semantical counterparts: F(STUDENT)= student, F (WALK)= walk,.. ..
In situation semantics, the determiners can be treated as denoting primitive relations between
types of individuals, see [1], [3], [6] and [7]. For example, let every, a, some, most, one, two, ...
be the primitive relations that are the values of the interpretation function F for the quantitative
determiners EVERY, A, SOME, MOST, ONE, TWO, ..., respectively. Each of the quantificational
relations comes with two argument roles that can be filled by types of individuals. These two
argument roles shall be denoted by QDomain and Qrange. Thus in situation semantics, the
propositional content of the linguistic meaning of the quantificational sentence EVERY STUDENT
WALKS is expressed by the proposition:

(s EX every, [z/(si EX student, z,l;;1>)],
ly/(s; E< walk,y,l;;1>)];1>).

The situation s is supporting the quantificational information, while s; is where walking takes
place. The situation s; in which the noun [STUDENT]y is evaluated is called the resource situation
of the NP. It might be that some of these three situations are the same, but they may be also
different. The above proposition is true just in case every individual who is a student in the

situation s; is also an walker in the situation s;. The quantificational scheme (1) becomes:
(1.2)
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Quantifier

QRel @Domain @Range
(s EX every, [z/(si E<K student, z,l;;1 )], [y/(s; EL walk,y,lj;1>)];1>)
(s EX at least two, [z/(s; EK student, z,l;;1>)], [y/(s; EK walk,y,1;;1>)];1>)
(s EK most, [z/(si EK student, z,l;;1 )], [y/(s; B walk,y,l;;1>)];1>)
(s EX half of, [z/(si EX student,z,l;;1>)], [y/(s; B walk,y,l;;1>)];1>)

S
8

If we compare (1.1) and (1.2) we can see similarities in the corresponding quantificational
patterns and their QDomain and QRange. In the same time they exhibit several important
differences with respect to the syntax and semantics of the quantification in natural languages.
The most significant difference is with respect to the level of the analysis. Lines (ii) and (iii)
in (1.1) are syntactical representatives of the corresponding natural language sentence into IL,
aiming to represent the corresponding semantics of the quantification. Line (1.1) (i) represents
informally the semantics of a corresponding relational treatment of the determiner EVERY. There
are strong intuitions about the meanings [wWALKs] and [STUDENT] that they carry implicit
information about situations where walking and being a student take place, and that those two
situations might be different. Both of (ii) and (iii) lack to represent this important semantical
information expressed by an utterance of the sentence EVERY STUDENT WALKS. While the
situational @Domain and QRange types in (1.2) can be evaluated in different resource situations
s; and s;, and either of them might be different from the quantificational situation s. Another
difference between (1.1) and (1.2) is that there is no additional variable z attached to the
determiner relation every unlike the extra variable z in the quantifier ¥x. The relevant binding
in (1.2) is achieved by the argument roles of @Domain and QRange types. The quantifier Vx,
together with the implication sign “—”, in the f.o.l., and in higher order IL, is introduced
to express syntactically a purely semantical connection between the domain and the range of
the quantification. Hence, even if there were no expressions involving quantificational scope
ambiguities, the situation semantics would still have the advantages of being a theory bringing in
finely grained and partial structural representations of the semantical objects as briefly pointed
above. Another significant advantage is the possibility for introducing a context dependent
semantical storage for computational dealing with the scope ambiguities at the semantical level.
The translations into IL, like that in (1.1), for sentences with more than one quantifiers, can be
obtained only for already in advance disambiguated English sentences by using extra-syntactical
rules. For example, the sentence [EVERY LOGICIAN]; MET [A PHILOSOPHER]; would have to be
first translated into one of the two of the following forinulas:

Jy(philosopher(y) A Vx(logician(x) — meet(x,y)));

Vx(logician(x) — Jy(philosopher(y) A meet(x,y))).

The quantitative meaning of a determiner like EVERY, A, SOME, ONE, TWO, ... has two
sides, invariant and varying, that are not in one-to-one correspondence to the surface syntax
of the quantitative expressions. The invariant side of the lexical meanings of the quantitative
determiners is that they denote two argument primitive quantificational relations between types
of individuals. The varying part of the lexical meaning of a quantitative determiner is the partic-
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ular quantity it expresses: every, some, a, one, two, at least two, most, . ... For each determiner
5, the relation F(§) it denotes is satisfied by two types, Ty and Ty, filling correspondingly the
QDomain and the QRange roles, just in case that F(4) quantity of objects of type T are also
of type T,. The quantity itself, F(4), i.e. all, one, at least one, no, two, ... is what varies from
one determiner to another. The particular quantities can be expressed in situation semantics
by formulating appropriate meaning constraints in the terms of the notion of an extension of
a type. The last notion and the constraints for A and EVERY shall be formulated bellow (see
[2]). For a simple sentence with only one quantitative NP which is the subject of the sentence,
the relational meaning of the determiner closely corresponds to its syntactical role in the sen-
tence: [[[§]pet[@]n]np[Blvp]ls. The two types Ty and Ty filling, correspondingly, the QDomain
and the QRange roles of F(4), are the meanings of o and 3, respectively. For more complex
sentences the correspondence between the syntax and the main quantificational predication is
not so straightforward.

Meaning Constraints for some Determiners

Let T = [z/(s = o(z))], where s is a situation parameter or a particular situation, and o(z)
is a parametric infon with z among its parameters. Let ¢ be an assignment function for the
parameters of T'. The eztension of the type T' with respect to the assignment c is denoted by
E(T, c) and is defined to be as follows:

E(T,c) = {c'(z)/ the proposition (c(s)  ¢/(o(x))) is true, where ¢’ is
an assignment different from ¢ only possibly for z}.

Here ¢/(o(z)) is the infon obtained from the infon o(z) after applying the substitution of the
parameters occurring in o(z) defined by the assignment ¢’. The meaning constraiuts for the
determiners a and every are as follows:

C,) The proposition (s, E< a,T,T2;1>>) is true for a given assignment c of its parameters
q g
iff:

(a) c(sy) EX a,¢(Th),c(T2);1 >, i.e. the situation c(s,) supports the quantificational
infon, and

(b) if the situation ¢(s,) is informative, then &(Ty,c) NE(T2, ¢) # 0.

(Cevery) The proposition (s, =< every,Ti,Tp;1 >) is true for a given assignment c¢ of its
parameters iff:

(a) c(sy) EX every,c(T1),c(T3); 1>, i.e. thesituation c(s,) supports the quantificational
infon, and

(b) if the situation c(s,) is informative, then £(Ty,c) C (T3, ¢).
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In the above statements the notion of an informative situation® is used in an intuitive way:
a situation is informative just in case that the infons supported by it represent actual properties
and relations between the objects. This condition for informativeness of ¢(s,) is needed because it
might happen, for some reasons, that a situation c(s,) supports a quantificational infon without
the two types to be really in the specified quantificational relation. For example, ¢(s;) might be
a visual (or believe) situation which does not represent actual states of affairs. Generally, the
propositional content of a quantification contributed by a determiner § is:

(3.1) (s E F(6), QDomain :Ty, QRange :T5;1>), where T and T, are types of individuals.

The meaning constraint for a determiner F () is:

(3.2) For a given parameter assignment c defined by a particular context of use, the proposition
(3.1) is true iff:

(a) c(s) E< F(8), QDomain :c(Ty), QRange :c(T2);1 >, and
(b) if the situation ¢(s) is informative, then the specified by F () quantity of objects of
type ¢(T}) are also of type ¢(T?).

The primitive quantitative relation F(é) and the meaning constraint associated with a de-
terminer § have to be given by the lexicon of the situational grammar. The particular quantity
denoted by some of the determiners, such as most, is highly context dependent. For such deter-
miners, the constraints will be underspecified to one or other extend. The grammar rules have
to give the compositional power of the primitive relation F(4), which is:

(4) ATy [T,/ (s =< F(8),T1,T2; 1 >)], where Ty and T, are parameters for types of individ-
uals.

The grammar rules? should assign, in a compositional way, the following basic type meaning
of a noun phrase [[§]pet[a]n]Np:

(5) [T2/ (s E< F(8),[a/p(, 55, 1;)], Toi 1 )], where

the type [z/p(z,s;,1;)] is the meaning of the noun «.

For example, the type meaning o of the noun phrase A STUDENT is:

(6) o =[T/(s EK a,[z/(s; EX student,z,l;;1>)],T;1>)].

3 Linguistic Meaning and Quantification

The meanings can be parameterized not only in the trivial sense that they have individual
parameters as constituents. They can have opened and unresolved semantical structures as
in the cases of quantificational scope ambiguity: EVERY STUDENT IS WATCHING A MOVIE.
There are two plausible interpretations. De re interpretation in which there is a specific movie

3 A formalization of this notion is proposed in [Loukanova and Cooper 1999].
4See [7], [14].
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and all students in the described situation are watching it. In de dicto interpretation every
student is watching their own movie. In absence of enough contextual information, the scope
alternatives are open. Which one would be the case would be up to the speaker’s references.
Here I shall follow a semantical approach toward scope resolving as dependent on the context.
For a similar situational approach and more argumentation, see [Gawron and Peters, 1990].
The present situational framework though uses a semantical storage to represent all unresolved
quantificational options. For simplifying the representation, in what follows, I shall index the
NPs. The indices are pairwise different when the NPs are not anaphoric, while the anaphoric
NPs have to be co-indexed, as in JOHN; MET A PHILOSOPHER WHO LIKED HIM;. In situation
semantics considered in the present paper, the linguistic meaning [a] of an expression « is
defined to be a pair of two semantical objects: [a] = (M(a),B(a)), where M(«a) is called
quantificational storage of v, and B(a) — basis® of a. The storage M (a) collects the semantical
representations of quantificational noun phrases occurring in «. For example, in case that
the quantificational binding has not yet taken place, the storage and the basis of the simple
quantificational sentence @ = EVERY STUDENT WALKS are:

M(a) = {(o,z,)}, where

o =[T/(sq, EX every,[z/(s1 EK student,z,l1;1>)],T;1>)], and

B(a) = (s E< walk, z1,1;1>).
The type o is the situational meaning of the NP EVERY STUDENT, i.e. an abstraction over
QQRange of the determiner relation every, where the QDomain role has been filled up by the type
meaning of the noun. Thus the storage contains the pair (o, z;) which consists of the semantical
representation of the quantified NP and a parametric representative x; of QQRange of every.
The basis, B(«), is the propositional content of the QQRange. It represents “the skeleton” of the
semantical structure of the sentence, i.e. its basic predication applied to one of the indeterminate
representatives of the quantifier. The sentence « contains only one quantified NP and there is
only one possibility for getting a particular interpretation with respect to quantificational scope:
the type o has to be applied to the type [z1/(s < walk, z,l;1 >)] obtained by abstraction
over the parameter z; in B(«). The new storage and the new basis of « are:

M'(a) =0,
B'(a) = (84, EX every, [x/(s1 EX student, z,l;;1>)],
[0/ (s b= walk, 21,111 )] 15).

The simplest steps of the quantificational process for a sentence o with a storage M («) and
a basis B(a) can be stated in the following way. Let (o, z;) € M(a), where:
o = [T/(s =< F(8), [2/p(, 53,1;)), T; 1)), then:

1. Take the quantificational type pair (o, ;) out of the storage. The result is the new storage:

M'(e) = M(a) - {(0,2:)}.

*The objects M(a) and B(a) can be generated in a compositional way by the rules of a situational grammar
as in [14].
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2. The new basis is: B'(«) = (0 : [z;/B(«)]). After the relevant substitutions, the result is
filling up the QRange role of F (&) with the type [z;/B(«)], and the new basis is:

B'(a) = (s EK Fla),[z/p(z,s;, )], [zi/B(a)];1>).

Let us consider a sentence with two quantified NPs:

v = [EVERY LOGICIAN]; MET [A PHILOSOPHER];.

Out of any context, the storage and the basis are:

M(7) = {<0-17 Z'1>, <U2a x?)}v where

01 = [T/ (59, [=< every, [/ (s1 =< logician, @, 11; 1 )], T3 1)),

oy = [T/(sq, EX a,[z/(s2 EX philosopher, x,ly;1>)],T;1>)], and

B(y) = (s EK meet,zy,x9;1q>>).

There are two different possible ways to get the storage emptied and, by this, the quantifi-
cational ambiguity solved in one or other way:

Casel: B'(y) = (07 : [12/ (01 : [21/B()))

First, the quantificational type o; is applied to the individual type [z1/B(v)]. The basis
B(v) becomes the predicate content of the type that fills QRange role of every. Then the
quantificational type o5 is applied to the abstraction over z, in the latter obtained predication.
By this the predicate content of the QRange of a gets filled up, and the final result is:

B'(y) =
(02 2 [22/ (84, EX every, [z/(s1 EX logician, z,11;1>)],
[.’L’l/(Sd |:<< meet, 1, T, ld; 1 >>)]7 1 >>)]) =

(84, E< @, [2/(s2 EK philosopher, x,l2;1 >)],
[22/(54, EX every, [z/(s1 EK logician, z,l1;1>)],
[21/(sq E< meet, z1,x2,1a;1>)];1>)];
1>).

Case2: B'(y) = (01 : [21/(02 : [z2/B(v)])]) =

(59, =< every, [a/(s1 =< logician,, 1 13)],
[1/(sq, EX a, [¢/(s2 EX philosopher, z,l2;1 >,
[z2/ (84 =K meet, z1, 22,131 >)]; 1 >)];
1>).

For each quantified NP 3; occurring in o, M(a) may contain a pair (0, z;), where o is the
meaning of §3;, i.e. o is a type such as in (5) and (6). The basis B(«) is the propositional content
of the eventual filler of the QRange role of the quantificational relation F(4) in 0. The parameter
z; is a constituent of B(a), interpreted as a fixed indeterminate representative of the selected
quantity of individuals from the domain, which are also in the range. An abstraction over z;
in B(a) will give the type that will fill up the QRange role of F(§). By this, the basis, B(a),
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represents the predicative structure of o, where some of the argument roles of the constituent
relations are filled up by parameters z;. If (o, z;) € M(«a), then at a later stage of analysis of a
larger expression, or in getting a particular scope interpretation in a context of use, the type o will
be quantified into the basis, and by this will bind the parameter z; occurring in it. When there is
not enough information for resolving some quantificational ambiguity, o may be left in storage.
Generally, the storage M (a) of an expression a is a set: M(a) = {(o1,2;,),..., (0k, Z;,)}, where
k > 0, and iy,...,1; are pairwise different natural numbers that are indices of NPs occurring
in o; 01,...,0% are the type meanings of the corresponding NPs. Formally, each number 7;,
j =1,...,k is the index of the argument role [z; ] of the type that has to fill up the QRange
role of the quantitative relation in ¢;. The quantificational process permits more than one
“insertion“ at a time. Let a be a sentence with a linguistic meaning [o] = (M(a), B(a)),
such that {(o1,,),..., {0k, 2;,), } C M(a), where k > 0 and the indices 7y,..., 4} are pairwise
different. Then

Quantification Rule

1. M'(a) = M(a) — {(o1,24,),- .., {0k @i}, and
2. B'(a) = (01:[ziy/ ... (ok : [2:,/B()]) .. ]).

Which of the quantifiers are taken out of the storage and moved into the basis, and the order
of the quantification is dependent on the linguistic and contextual information available. The
order of the quantification, though, must respect the following restriction which prevents leaving
relevant parameters to occur freely without being abstracted over:

Quantificational Restriction

(i) In the quantifier order: (o1, 2y,), ..., (0k, Z;,), there must be no m,n € {1,...,k} such
that m < n and z;, is a free parameter in oy,;

(ii) z;,...,z;, are not free parameters of the type meanings left in the new storage M'(a).

When the linguistic meaning of an expression « is such that M(a) # 0, the pair [o] =
(M(a), B(a)) can be subject to further semantical computations. When the storage M(«)
contains more than one quantifier, this could be because there is not enough linguistic or extra-
linguistic information for resolving the available ambiguity caused by the occurrence of more
than one NP in a. In this way the domains and the ranges of the quantifications involved
are generally context dependent on the speakers references. There are also cases when the
quantificational order is governed by linguistic restrictions and generalizations as it is pointed
in [10].
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