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Abstract

Ontology alignment is the task of identi-
fying semantically equivalent entities from
two given ontologies. Different ontologies
have different representations of the same
entity, resulting in a need to de-duplicate
entities when merging ontologies. We pro-
pose a method for enriching entities in an
ontology with external definition and con-
text information, and use this additional
information for ontology alignment. We
develop a neural architecture capable of
encoding the additional information when
available, and show that the addition of
external data results in an F1-score of
0.69 on the Ontology Alignment Evalua-
tion Initiative (OAEI) largebio SNOMED-
NCI subtask, comparable with the entity-
level matchers in a SOTA system.

1 Introduction

Ontologies are used to ground lexical items in var-
ious NLP tasks including entity linking, question
answering, semantic parsing and information re-
trieval.1 In biomedicine, an abundance of on-
tologies (e.g., MeSH, Gene Ontology) has been
developed for different purposes. Each ontology
describes a large number of concepts in health-
care, public health or biology, enabling the use of
ontology-based NLP methods in biomedical appli-
cations. However, since these ontologies are typ-
ically curated independently by different groups,
many important concepts are represented inconsis-
tently across ontologies (e.g., “Myoclonic Epilep-
sies, Progressive” in MeSH is a broader concept

1Ontological resources include ontologies, knowledgebases,
terminologies, and controlled vocabularies. In the rest of this
paper, we refer to all of these with the term ‘ontology’ for
consistency.

that includes “Dentatorubral-pallidoluysian atro-
phy” from OMIM).

This poses a challenge for bioNLP applica-
tions where multiple ontologies are needed for
grounding, but each concept must be repre-
sented by only one entity. For instance, in
www.semanticscholar.org, scientific pub-
lications related to carpal tunnel syndrome are
linked to one of multiple entities derived from
UMLS terminologies representing the same con-
cept,2 making it hard to find all relevant papers on
this topic. To address this challenge, we need to
automatically map semantically equivalent entities
from one ontology to another. This task is referred
to as ontology alignment or ontology matching.

Several methods have been applied to ontol-
ogy alignment, including rule-based and statisti-
cal matchers. Existing matchers rely on entity fea-
tures such as names, synonyms, as well as rela-
tionships to other entities (Shvaiko and Euzenat,
2013; Otero-Cerdeira et al., 2015). However, it
is unclear how to leverage the natural language
text associated with entities to improve predic-
tions. We address this limitation by incorporating
two types of natural language information (defini-
tions and textual contexts) in a supervised learning
framework for ontology alignment. Since the def-
inition and textual contexts of an entity often pro-
vide complementary information about the entity’s
meaning, we hypothesize that incorporating them
will improve model predictions. We also discuss
how to automatically derive labeled data for train-
ing the model by leveraging existing resources. In
particular, we make the following contributions:

• We propose a novel neural architecture for on-
tology alignment and show how to effectively

2See https://www.semanticscholar.org/
topic/Carpal-tunnel-syndrome/248228 and
https://www.semanticscholar.org/topic/
Carpal-Tunnel-Syndrome/3076

www.semanticscholar.org
https://www.semanticscholar.org/topic/Carpal-tunnel-syndrome/248228
https://www.semanticscholar.org/topic/Carpal-tunnel-syndrome/248228
https://www.semanticscholar.org/topic/Carpal-Tunnel-Syndrome/3076
https://www.semanticscholar.org/topic/Carpal-Tunnel-Syndrome/3076
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Figure 1: OntoEmma consists of three modules: a) candidate selection (see §2.2 for details), b) feature
generation (see §2.2 for details), and c) prediction (see §2.3 for deatils). OntoEmma accepts two ontolo-
gies (a source and a target) as inputs, and outputs a list of alignments between their entities. When using
a neural network, the feature generation and prediction model are combined together in the network.

integrate natural language inputs such as defini-
tions and contexts in this architecture (see §2 for
details).3

• We use the UMLS Metathesaurus to extract
large amounts of labeled data for supervised
training of ontology alignment models (see
§3.1). We release our data set to help future re-
search in ontology alignment.3

• We use external resources such as Wikipedia
and scientific articles to find entity definitions
and contexts (see §3.2 for details).

2 OntoEmma

In this section, we describe OntoEmma, our pro-
posed method for ontology matching, which con-
sists of three stages: candidate selection, fea-
ture generation and prediction (see Fig. 1 for an
overview).

2.1 Problem definition and notation

We start by defining the ontology matching prob-
lem: Given a source ontology Os and a target
ontology Ot, each consisting of a set of entities,
find all semantically equivalent entity pairs, i.e.,
{(es, et) ∈ Os×Ot : es ≡ et}, where≡ indicates
semantic equivalence. For consistency, we prepro-
cess entities from different ontologies to have the
same set of attributes: a canonical name (ename),
a list of aliases (ealiases), a textual definition (edef),

3Implementation and data available at https://www.
github.com/allenai/ontoemma/

and a list of usage contexts (econtexts).4

2.2 Candidate selection and feature
generation

Many ontologies are large, which makes it compu-
tationally expensive to consider all possible pairs
of source and target entities for alignment. For
example, the number of all possible entity pairs
in our training ontologies is on the order of 1011.
In order to reduce the number of candidates, we
use an inexpensive low-precision, high-recall can-
didate selection method using the inverse docu-
ment frequency (idf ) of word tokens appearing in
entity names and definitions. For each source en-
tity, we first retrieve all target entities that share
a token with the source entity. Given the set of
shared word tokens ws+t between a source and
target entity, we sum the idf of each token over
the set, yielding idftotal =

∑
iεws+t

idf(i). To-
kens with higher idf values appear less frequently
overall in the ontology and presumably contribute
more to the meaning of a specific entity. We com-
pute the idf sum for each target entity and output
the K = 50 target entities with the highest value
for each source entity, yielding |Os|×K candidate
pairs.

For each candidate pair (es, et), we precompute
a set of 32 features commonly used in the ontology
matching literature including the token Jaccard
distance, stemmed token Jaccard distance, char-
acter n-gram Jaccard distance, root word equiv-
alence, and other boolean and probability values
4Some of these attributes may be missing or have low cover-
age. See §3.2 for coverage details.

https://www.github.com/allenai/ontoemma/
https://www.github.com/allenai/ontoemma/
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Figure 2: Siamese network architecture for computing entity embeddings for each source and target
entity in a candidate entity pair.

over the entity name, aliases, and definition.5

2.3 Prediction

Given a candidate pair (es, et) and the precom-
puted features f(es, et), we train a model to pre-
dict the probability that the two entities are seman-
tically equivalent. Figure 2 illustrates the architec-
ture of our neural model for estimating this proba-
bility which resembles a siamese network (Brom-
ley et al., 1993). At a high level, we first encode
each of the source and target entities, then concate-
nate their representations and feed it into a multi-
layer perceptron ending with a sigmoid function
for estimating the probability of a match. Next,
we describe this architecture in more detail.

Entity embedding. As shown in Fig. 2 (left),
we encode the attributes of each entity as follows:

• A canonical name ename is a sequence of tokens,
each encoded using pretrained word2vec em-
beddings concatenated with a character-level
convolutional neural network (CNN). The to-
ken vectors feed into a bi-directional long short-
term memory network (LSTM) and the hidden
layers at both ends of the bi-directional LSTM

5Even though neural models may obviate the need for feature
engineering, feeding highly discriminative features into the
neural model improves the inductive bias of the model and
reduces the amount of labeled data needed for training.

are concatenated and used as the name vector
vname.

• Each alias in ealiases is independently embed-
ded using the same encoder used for canonical
names (with shared parameters), yielding a set
of alias vectors valias−i for i = 1, . . . , |ealiases|.
• An entity definition edef is a sequence of tokens,

each encoded using pretrained embeddings then
fed into a bi-directional LSTM. The definition
vector vdef is the concatenation of the final hid-
den states in the forward and backward LSTMs.

• Each context in econtexts is independently em-
bedded using the same encoder used for defi-
nitions (with shared parameters), then averaged
yielding the context vector vcontexts.

The name, alias, definition, and context vec-
tors are appended together to create the entity
embedding, e.g., the source entity embedding es

is: vs = [vsname;v
s
alias−i∗ ;v

s
def;v

s
contexts]. In or-

der to find representative aliases for a given pair
of entities, we pick the source and target aliases
with the smallest Euclidean distance, i.e., i∗, j∗ =
argmini,j ‖vsalias−i − vtalias−j‖2

Siamese network. After the source and target
entity embeddings are computed, they are fed into
two subnetworks with shared parameters followed
by a parameterized function for estimating similar-
ity. Each subnetwork is a two layer feedforward
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network with ReLU non-linearities and dropout
(Srivastava et al., 2014). The outputs of the two
subnetworks are then concatenated together with
the engineered features and fed into another feed-
forward network with a ReLU layer followed by a
sigmoid output layer. We train the model to mini-
mize the binary cross entropy loss for gold labels.

To summarize, the network estimates the proba-
bility of equivalence between es and et as follows:

hs = RELU(RELU(vs; θ1); θ2)

ht = RELU(RELU(vt; θ1); θ2)

P (es ≡ et) = SIGMOID(RELU([hs;ht]; θ3); θ4)

3 Deriving and enriching labeled data

In this section, we discuss how to derive a large
amount of labeled data for training, and how to
augment entity attributes with definitions and con-
texts from external resources.

3.1 Deriving training data from UMLS
The Unified Medical Language System (UMLS)
Metathesaurus, which integrates more than 150
source ontologies, illustrates the breadth of cover-
age of biomedical ontologies (Bodenreider, 2004).
Also exemplified by the UMLS Metathesaurus is
the high degree of overlap between the content of
some of these ontological resources, whose terms
have been (semi-)manually aligned. Significant
time and effort has gone into cross-referencing se-
mantically equivalent entities across the ontolo-
gies, and new terms and alignments continue to
be added as the field develops. These manual
alignments are high quality, but considered to
be incomplete (Morrey et al., 2011; Mougin and
Grabar, 2014).

To enable supervised learning for our mod-
els, training data was derived from the UMLS
Metathesaurus. By exposing our models to labeled
data from the diverse subdomains covered in the
UMLS Metathesaurus, we hope to learn a variety
of patterns indicating equivalence between a pair
of entities which can generalize to new ontologies
not included in the training data.

We identified the following set of ontologies
within UMLS to use as the source of our labeled
data, such that they cover a variety of domains
without overlapping with the test ontologies used
for evaluation in the OAEI: Current Procedural
Terminology (CPT), Gene Ontology (GO), Hugo
Nomenclature (HGNC), Human Phenotype Ontol-
ogy (HPO), Medical Subject Headings (MeSH),

Online Mendelian Inheritance in Man (OMIM),
and RxNorm.

Our labeled data take the form (es, et, l ∈
{0, 1}), where l = 1 indicates positive examples
where es ≡ et. For each pair of ontologies, we
first derive all the positive mappings from UMLS.
We retain the positive mappings for which there
are no name equivalences. Then, for each posi-
tive example (es, et+, 1), we sample negative map-
pings (es, et−, 0) from the other entities in the tar-
get ontology. One “easy” negative and one “hard”
negative are selected for each positive alignment,
where easy negatives consist of entities with lit-
tle overlap in lexical features while hard negatives
have high overlap. Easy negatives are obtained by
randomly sampling entities from the target ontol-
ogy, for each source entity. Hard negatives are ob-
tained using the same candidate selection method
described in §2. In both easy and hard examples,
we exclude all target entities which appear in a
positive example.6

Over all seven ontologies, 50,523 positive align-
ments were extracted from UMLS. Figure 3 re-
ports the number of positive alignments extracted
from each ontology pair. For these positives,
98,948 hard and easy negatives alignments were
selected. These positive and negative labeled ex-
amples were pooled and randomly split into a 64%
training set, a 16% development set, and a 20%
test set.

Figure 3: Number of positive alignments ex-
tracted from each pair of ontologies from UMLS.

3.2 Deriving definitions and mention contexts
Many ontologies do not provide entity definitions
(Table 1). In fact, only a few (GO, HPO, MeSH)
of the ontologies we included have any definitions
at all.
6Although the negative examples we collect may be noisy due
to the incompleteness of manual alignments in UMLS, this
noise is also present in widely adopted evaluation of knowl-
edge base completion problems and relation extraction with
distant supervision (e.g., Li et al., 2016; Mintz et al., 2009).
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Table 1: Entities with definitions and contexts for
each of the training ontologies.

Ont. # of entities % w/ def. % w/ con.
CPT 13,786 0.0 97.9
GO 44,684 100.0 30.5

HGNC 39,816 0.0 0.8
HPO 11,939 72.5 17.9

MeSH 268,162 10.5 35.1
OMIM 98,515 0.0 2.8

RxNorm 205,858 0.0 5.1
Total 682,760 11.9 20.1

We can turn to external sources of entity def-
initions in such cases. Many biomedical and
healthcare concepts are represented in Wikipedia,
a general purpose crowd-sourced encyclopedia.
The Wikipedia API can be used to search for
and extract article content. The first paragraph
in each Wikipedia article offers a description of
the concept, and can be used as a substitute
for a definition. For each entity in the labeled
dataset described in the previous section, we query
Wikipedia using the entity’s canonical name. The
first sentence from the top Wikipedia article match
is extracted and used to populate the attribute
edef when undefined in the ontology. For exam-
ple, a query for OMIM:125370, “Dentatorubral-
pallidoluysian atrophy,” yields the following sum-
mary sentence from Wikipedia: “Dentatorubral-
pallidoluysian atrophy (DRPLA) is an autosomal
dominant spinocerebellar degeneration caused by
an expansion of a CAG repeat encoding a polyg-
lutamine tract in the atrophin-1 protein.” Based
on a human-annotated sample, the accuracy of our
externally-derived definitions is 75.5%, based on a
random sample of 200 definitions and two annota-
tors with Cohen’s kappa coefficient of κ = 0.88.7

Usage contexts are derived from scientific pa-
pers in Medline, leveraging entity annotations
available via the Semantic Scholar project (Am-
mar et al., 2018). In order to obtain the an-
notations, an entity linking model was used to
find mentions of UMLS entities in the abstracts
of Medline papers. The sentences in which a
UMLS entity were mentioned are added to the
econtexts attribute of that entity. For UMLS en-
tity C0751781, “Dentatorubral-Pallidoluysian At-

7Annotations are available at https://github.com/
allenai/ontoemma#human-annotations

rophy,” an example context: “Dentatorubral-
pallidoluysian atrophy (DRPLA) is an autoso-
mal dominant neurodegenerative disease clini-
cally characterized by the presence of cerebellar
ataxia in combination with variable neurological
symptoms,” is extracted from Yoon et al (2012)
(Yoon et al., 2012). This context sentence was
scored highly by the linking model, and provides
additional information about this entity, for exam-
ple, its acronym (DRPLA), the type of disease (au-
tosomal dominant neurodegenerative), and some
of its symptoms (cerebellar ataxia). Because there
are often numerous linked contexts for each en-
tity, we sample up to 20 contexts per entity when
available. The number of entities with context in
our labeled data is given in Table 1. The accuracy
of usage contexts extracted using this approach is
92.5%, based on human evaluation of 200 contexts
with Cohen’s kappa coefficient of κ = 1.7

4 Experiments

In this section, we experiment with several vari-
ants of OntoEmma: In the first variant (Onto-
Emma:NN), we only encode native attributes ob-
tained from the source and target ontologies:
canonical name, aliases, and native definitions.
In the second variant (OntoEmma:NN+f), we
also add the manually engineered features as de-
scribed in §2.2. In the third variant (Onto-
Emma:NN+f+w), we incorporate external defini-
tions from Wikipedia, as discussed in §3.2. In the
fourth variant (OntoEmma:NN+f+w+c), we also
encode the usage contexts we derived from Med-
line, also discussed in §3.2.

Data. We use the training section of the UMLS-
derived labeled data to train the model and use the
development section to tune the model hyperpa-
rameters. For evaluation, we use the test portion of
our UMLS-derived data as well as the OAEI large-
bio subtrack SNOMED-NCI task, the largest task
in OAEI largebio. The UMLS test set includes
29,859 positive and negative mappings. The OAEI
reference alignments included 17,210 equivalent
mappings and 1,623 uncertain mappings between
the SNOMED and NCI ontologies.

Baselines. Our main baseline is a logistic
regression model (OntoEmma:LR) using the same
engineered features described in §2.2. To illustrate
how our proposed method performs compared to
previous work on ontology matching, we compare

https://github.com/allenai/ontoemma#human-annotations
https://github.com/allenai/ontoemma#human-annotations
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Table 2: Model performance on UMLS test dataset

Model Prec. Recall F1
OntoEmma:LR 0.98 0.92 0.95
OntoEmma:NN 0.87 0.85 0.86
OntoEmma:NN+f 0.93 0.96 0.95
OntoEmma:NN+f+w 0.93 0.97 0.95
OntoEmma:NN+f+w+c 0.94 0.97 0.96

Table 3: Model performance on OAEI largebio
SNOMED-NCI task
Model Prec. Recall F1
AML:entity 0.81 0.62 0.70
OntoEmma:LR 0.75 0.56 0.65
OntoEmma:NN+f+w+c 0.80 0.61 0.69

to AgreementMakerLight (AML) which has con-
sistently been a top performer in the OAEI sub-
tasks related to biomedicine (Faria et al., 2013).
For a fair comparison to OntoEmma, we only use
the entity-level matchers in AML; i.e., relation and
structural matchers in AML are turned off.8

Implementation and configuration details.
We provide an open source, modular, Python
implementation of OntoEmma where different
candidate selectors, feature generators, and
prediction modules can be swapped in and out
with ease.3 We implement the neural model
using PyTorch and AllenNLP9 libraries, and
implement the logistic regression model using
scikit-learn. Our 100-dimensional pre-
trained embeddings are learned using the default
settings of word2vec based on the Medline
corpus. The character-level CNN encoder uses
50 filters of size 4 and 5, and outputs a token
embedding of size 100 with dropout probability
of 0.2. The LSTMs have output size 100, and
have dropout probability of 0.2.

Results. The performance of the models is re-
ported in terms of precision, recall and F1 score
on the held-out UMLS test set and the OAEI large-
bio SNOMED-NCI task in Tables 2 and 3, respec-
tively.

Table 2 illustrates how different variants of
OntoEmma perform on the held-out UMLS test
8The performance of the full AML system on the SNOMED-
NCI subtask for OAEI 2017 is: precision: 0.90, recall: 0.67,
F1: 0.77.

9https://allennlp.org/

set. We note that the bare-bones neural network
model (OntoEmma:NN) does not match the per-
formance of the baseline logistic regression model
(OntoEmma:LR), suggesting that the representa-
tions learned by the neural network are not suffi-
cient. Indeed, adding the engineered features to
the neural model in (OntoEmma:NN+f) provides
substantial improvements, matching the F1 score
of the baseline model. Adding definitions and
usage context in (OntoEmma:NN+f+w+c) further
improves the F1 score by one absolute point, out-
performing the logistic regression model.

While the UMLS-based test set in Table 2 rep-
resents the realistic scenario of aligning new enti-
ties in partially-aligned ontologies, we also wanted
to evaluate the performance of our method on the
more challenging scenario where no labeled data
is available in the source and target ontologies.
This is more challenging because the patterns
learned from ontologies used in training may not
transfer to the test ontologies. Table 3 illustrates
how our method performs in this scenario using
SNOMED-NCI as test ontologies. For matching
of the SNOMED and NCI ontologies, we enriched
the entities first using Wikipedia queries. At test
time, we also identified and aligned pairs of en-
tities with exact string matches, using the Onto-
Emma matcher only for those entities without an
exact string match. Unsurprisingly, the perfor-
mance of OntoEmma on unseen ontologies (in
Table 3) is much lower than its performance on
seen ontologies (in Table 2). With unseen on-
tologies, we gain a large F1 improvement of 4
absolute points by using the fully-featured neu-
ral model (OntoEmma:NN+f+w+c) instead of the
logistic regression variant (OntoEmma:LR), sug-
gesting that the neural model may transfer better
to different domains. We note, however, that the
OntoEmma:NN+f+w+c matcher performs slightly
worse than the AML entity matcher. This is to be
expected since AML incorporates many matchers
which we did not implement in our model, e.g., us-
ing background knowledge, acronyms, and other
features.

5 Discussion

Through building and training a logistic regres-
sion model and several neural network models,
we evaluated the possibility of training a super-
vised machine learning model for ontology align-
ment based on existing alignment data, and evalu-

https://allennlp.org/
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ated the efficacy of including definitions and usage
context to improve entity matching. For the first
question, we saw some success with both the lo-
gistic regression and neural network models. The
logistic regression model performed better than
the simple neural network model without engi-
neered features. Hand-engineered features encode
human knowledge, and are less noisy than features
trained from a neural network. The NN model re-
quired more training data to learn the same sparse
information encoded by pre-defined features.

To bolster performance, hand-engineered fea-
tures and extensive querying of third-party re-
sources were used to increase knowledge about
each entity. Definitions and usage contexts had
rarely been used by previous ontology matchers,
and we sought to exploit the value of these ad-
ditional pieces of information. Definitions espe-
cially, often offer information about an entity’s re-
lations and attributes, which may not be explic-
itly defined in the ontology. The ontologies used
for training contained inconsistent information –
some had definitions for all entities, some none;
some were well-represented in our context link-
ing model, some were not. To take advantage of
such information, therefore, we had to turn to ex-
ternal sources of definitions and contexts, which
are understandably more noisy than information
provided in the ontology itself.

Using Wikipedia and the Medline corpus, we
derived definitions and contexts for many of the
entities in the UMLS training corpus. Adding def-
initions improved the performance of our neural
network model. However, high quality definitions
native to each terminology would likely have im-
proved results further, since we could not ensure
that externally derived definitions were always rel-
evant to the entity of interest.

Limitations. Our ontology matcher did not im-
plement any structural matchers, and did not take
advantage of relationship data where it existed. In
ontologies with well-defined hierarchy or relation-
ships, the structural component provides orthogo-
nal and extremely relevant information for match-
ing. By choosing to focus on entity alignment, we
were unable to be competitive on global ontology
matching.

Of all the entities in our UMLS training, devel-
opment, and test datasets, only 11.9% of entities
had definitions from their source ontology (Table
1). Similarly, we were only able to derive con-

texts for 20.1% of the training entities from the
Semantic Scholar entity linking model (Table 1).
We were hoping for better coverage of the overall
dataset. We were, however, able to use Wikipedia
to increase the overall definition coverage of the
entities in our data set to 82.1%.

Although Wikipedia is a dense resource con-
taining curated articles on many concepts, it is by
no means exhaustive. Many of the entities in our
training and test data set did not correspond di-
rectly to entities in Wikipedia. We also could not
review each query to ensure a correct match be-
tween the Wikipedia article and the entity. The
data is therefore noisy and can introduce error in
some cases. Although the overall performance
improved upon querying Wikipedia for additional
definitions, we believe that dedicated definitions
from the source terminologies would perform bet-
ter where available.

Future work. We are exploring other ways to
derive high-quality definitions from external re-
sources, for example, by deriving definitions from
synonymous entities in other ontologies, or by
generating textual definitions using the logical
definitions given in an ontology. Similarly, we
can incorporate usage context from other sources.
For example, the Semantic MEDLINE Database
(SemMedDB) is a database of semantic relation-
ship predictions from PubMed articles (Kilicoglu
et al., 2012). The entity-relation triples in this
database can be used to retrieve PubMed article
context mapped to UMLS terms.

Continuing on, we aim to develop a more flex-
ible ontology matching system that takes into ac-
count all of the information available about an en-
tity. Flexible entity embeddings would represent
critical information for proper entity alignment,
while accounting for a variety of data types, such
as list-like and graph-like data. We would also like
to incorporate ontology structure and relations in
matching. Hierarchical structure is provided by
most biomedical terminologies, and provides es-
sential information for a matching system. One
possibility is ensembling OntoEmma with other
matcher systems that incorporate or focus on us-
ing structural features in matching.

Related work The OAEI has been driving on-
tology matching research in the biomedical do-
main since 2005. It provides evaluation data
supporting several tracks such as the anatomy,
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largebio, and more recently introduced phenotype
tracks (Faria et al., 2016). Participating matchers
implement a variety of matching techniques in-
cluding rule-based and statistical methods (Faria
et al., 2016; Gross et al., 2016; Otero-Cerdeira
et al., 2015; Shvaiko and Euzenat, 2013). Fea-
tures used by matchers can be element-level (ex-
tracted from each individual entity), or structure-
level (based on the topology of the ontology and
its relationships). Content features can be based
on terminology (i.e., names of entities), structure
(i.e., how entities are connected), annotations (i.e.,
annotations made to entities), or reasoning output.
Some features can also be derived from external
sources, such as cross-references to other ontolo-
gies, or cross-annotations in other datasets, such as
term coincidence in publications, or co-annotation
of experiments with terms from different ontolo-
gies (Husein et al., 2016).

Notable general purpose matchers that have
excelled in biomedical domain matching tasks
include AgreementMakerLight (AML), YAM++,
and LogMap. AML has consistently been a
top performer in the OAEI subtasks related to
biomedicine. It uses a combination of different
matchers, such as the lexical matcher (looking
for complete string matches between the names
of entities), mediating matcher (performing the
function of the lexical matcher through a third
background ontology), word-based string similar-
ity matcher (matching entities with minimal string
edit distances), and others. AML then combines
these various similarity scores to generate a global
alignment between the two input ontologies (Faria
et al., 2013). YAM++, another successful matcher,
implemented a decision tree learning model over
many string similarity metrics, but leaves the chal-
lenges of finding suitable training data to the user,
defaulting to information retrieval-based similar-
ity metrics for its decision-making when no train-
ing data is provided (Ngo and Bellahsene, 2016).
LogMap is a matcher specifically designed to ef-
ficiently align large ontologies, generating logi-
cal output alignments. The matcher uses high-
probability matches as anchors from which to de-
ploy its lexical and structural matchers (Jiménez-
Ruiz and Cuenca Grau, 2011).

Our system uses neural networks to learn entity
representations and features for matching. Several
published works discuss using neural networks to
learn weights over similarity metrics pre-defined

by the user or developer of the matching system
(Djeddi and Khadir, 2013; Peng, 2010; Huang
et al., 2008; Hariri et al., 2006). These systems
do not use neural networks to generate and learn
the features most appropriate for entity match-
ing. Qiu et al. (2017) proposes and tests an auto-
encoder network for unsupervised entity represen-
tation learning over a bag of words vector that
treats all descriptive elements of each entity (its
name, definitions etc.) equally. We are interested
in investigating how these various descriptive ele-
ments contribute to entity matching, how sparsity
of specific descriptive fields can be offset by deriv-
ing information from external resources, and also
whether we can use domain-specific training data
to optimize a model for the biomedical domain.

Conclusion In this paper, we propose using nat-
ural language text associated with entities to im-
prove ontology alignment. We describe a novel
neural architecture for ontology alignment which
can encode a variety of information, and derive
large amounts of labeled data for training the
model. To address the limited coverage of def-
initions and usage contexts describing entities,
we turn to external resources to supplement the
available information about entities in the test
ontologies. Our empirical results illustrate that
externally-derived definitions and contexts can ef-
fectively be used to improve the performance of
ontology matching systems.
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