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Abstract

Spatial language understanding is important
for practical applications and as a building
block for better abstract language understand-
ing. Much progress has been made through
work on understanding spatial relations and
values in images and texts as well as on giv-
ing and following navigation instructions in
restricted domains. We argue that the next
big advances in spatial language understand-
ing can be best supported by creating large-
scale datasets that focus on points and paths
based in the real world, and then extending
these to create online, persistent playscapes
that mix human and bot players, where the bot
players must learn, evolve, and survive accord-
ing to their depth of understanding of scenes,
navigation, and interactions.

1 Introduction

Language is not sealed in a textual medium dis-
connected from the world. People use language to
talk about people, places and things that exist both
in time and space. Abstract ideas are typically
conveyed through metaphors that are grounded
in embodied concepts from the domains of spa-
tial movement, forces, and manipulation (Naray-
nan, 1999). Mental simulation involving motor
and perceptual content likely plays a crucial role
in sentence comprehension (Bergen et al., 2010).
Natural language understanding thus requires the
ability to analyze complex descriptions that re-
late referents spatially and temporally and connect
them to grounded locations and times.

One of the richest domains for encountering
such language is that of providing and following
navigational instructions involving both named
and vague references and relationships in both in-
door and outdoor contexts. Spatial navigation it-
self is one of the better understood aspects of cog-
nitive function, including extensive research into

cells that encode grids, boundaries and directions
(Chersi and Burgess, 2015; Moser et al., 2017).
This indicates that work on spatial tasks in lan-
guage has the potential to lead to a virtuous cycle
between modeling of language and understanding
of the brain and cognition.

No current systems adequately support natural
language interactions for spatial tasks. Geospa-
tial mapping applications (such as Google Maps)
provide algorithmic, route-based instruction at a
global scale. However, they rely on explicitly
named roads, paths, and addresses, and they as-
sume a large database as a model of the world,
which includes mappings between names and geo
locations. Such systems give instructions but can-
not interpret them, much less interact with a hu-
man user. They also typically do poorly at provid-
ing contextual descriptions, especially for build-
ings, bridges, and other salient landmarks.

Understanding spatial references from natural
language must handle inherent spatial vagueness
and other features of the figure, and ground ob-
jects or trajectories in a coordinate system. Spatial
grounding is relative—it depends on size, shape,
and function of the figure and ground objects. Fur-
thermore, it is identified by transforming loca-
tion with respect to reference frames in language
(Levinson, 2003; Tenbrink and Kuhn, 2011) to a
ground. Languages have many options for de-
scribing the spatial relationships between different
participants and objects and these must be recon-
ciled with the ground- truth scene or map.

We argue that the next big advances in spa-
tial language understanding can be best enabled
by first creating large-scale datasets (hundreds of
thousand to millions of examples) that require spa-
tial understanding of real world points and paths,
and next, building on these to create persistent, on-
line playscapes that enable both automated agents
and people to interact in virtual and augmented re-



ality environments.
Navigation involves traversal through a series of

points, and each point can involve detailed scene
understanding needs. Navigation is also an excel-
lent link between the local (e.g., within a building)
and the global (e.g., across a continent) variants of
spatial tasks. Scene understanding—in both im-
ages and texts—is needed at both ends of this scale
and in between. We expect that such a project
provides challenges of high complexity, while also
linking in to rich, already-available resources that
connect both text and images to each other and to
key metadata, including coordinates in both space
and time.

2 Pillars and Principles

Here are some considerations as we begin a multi-
year effort to create these resources.

2.1 Data and annotation
Our goal is to create large-scale resources that en-
compass natural spatially oriented tasks that ordi-
nary people accomplish every day.

Scale To be able to work with diverse locations
(e.g., cities, theme parks, natural settings) across
the world, we need large datasets associating lan-
guage with spatially relevant points and paths—on
the scale of at least hundreds of thousands.

Multilinguality For both theoretical and prac-
tical reasons, we cannot focus on just one lan-
guage. Different languages have different spa-
tial relations, often involving the three different
frames of reference—relative, intrinsic, and abso-
lute (Levinson, 2003)—in different ways. Naviga-
tional systems supporting vague reference off the
grid are needed even more in locations where En-
glish and other majority languages are not spoken.

One way we already target multilinguality is via
community-driven crowd-sourcing (Funk et al.,
2018). In our approach, we intentionally cycle our
iterations throughout the world and we involve de-
velopers from each locale because they have in-
sights into how the local context affects how lan-
guage is used and how the task is performed.

User-driven annotation We seek to comple-
ment previous efforts that have focused on fine-
grained linguistic annotation, such as Iso-Space
(Pustejovsky, 2017). We will obtain scale through
both crowd-sourcing and gaming environments—
that is, annotations that can be derived from com-

petent language speakers (Chang et al., 2016).
This places an emphasis on task evaluations with
implicit feedback rather than prediction and evalu-
ation of labels on text and images. Spatial tasks are
natural fits for this strategy, since both evaluation
metrics and reward functions (in reinforcement
learning) can use spatial proximity to an end loca-
tion (MacMahon et al., 2006; Chen and Mooney,
2011; Vogel and Jurafsky, 2010; Artzi and Zettle-
moyer, 2013) or spatial configuration (Bisk et al.,
2018; Misra et al., 2017; Tan and Bansal, 2018).

There are trade-offs between model-driven and
user-driven corpus building. The former de-
fines inventories of spatial relations and generat-
ing assignments that will cover them. This may
omit phenomena or distinctions not covered in
the model and requires considerable expertise and
tooling—both of which increase cost and limit
scale. User-driven annotation is more exploratory
and may be limited by the preferences and tenden-
cies of contributors. We will mitigate such effects
by composing diverse crowds from various locales
(Funk et al., 2018). Ultimately, we seek to create
resources that contain language grounded in spa-
tial relations that, by construction, include extra-
linguistic factors like vantage point, shared con-
text, and other location-dependent world knowl-
edge. We also expect this setting to support
complementary non-linguistic spatial understand-
ing approaches, such as Simultaneous Localiza-
tion and Mapping (Cadena et al., 2016).

Sharing and privacy To facilitate accessibility
and reproducibility, the source material used for
building resources should be, wherever possible,
unencumbered by copyright and be acquired with
full permission from content creators. Location
information brings with it significant privacy and
ethical considerations. We will thus focus on loca-
tions in shared public spaces that avoid close con-
nections to any person who helps create the data.
We will develop our datasets using open resources
such as Wikipedia and Open Street Maps com-
bined with materials produced by (both paid and
volunteer) crowd contributors who have granted
permission in advance. Overall, our datasets and
environments will be built—from start to finish—
to be compliant with the European Union’s Gen-
eral Data Protection Regulation (Council of Euro-
pean Union, 2016).1

1https://www.eugdpr.org/

https://www.eugdpr.org/


2.2 Task considerations

We emphasize the real world as the basis for spa-
tial language understanding tasks, while allow-
ing for a spectrum of resources from digitized
real world artifacts to virtual environments to aug-
mented real world interactions.

Real world emphasis. The natural starting point
for building spatial language understanding capa-
bilities is the real world itself. For example, spo-
ken interfaces to mobile robots necessarily inte-
grate vague reference and learning a local map
through exploration (Thomason et al., 2015; Han-
heide et al., 2017; Arkin et al., 2017). Unfortu-
nately, working with physical robots brings addi-
tional challenges such as dealing with hardware
calibration and failure. Thus, many researchers
have opted instead to work with simulated envi-
ronments that enable faster iteration on modeling
and learning (Jänner et al., 2017; Hermann et al.,
2017; Bisk et al., 2018), and some support both
movement and manipulation (Yan et al., 2018).

Simulated environments, however, do not rep-
resent full real world messiness. It is thus inter-
esting to consider a middle ground: working with
high-fidelity simulations of the real world. For ex-
ample, Anderson et al. (2017) introduce a visually
grounded navigation task set in 3D simulations of
actual houses. This requires both rich scene under-
standing and difficult language interpretation. We
intend to work in this same mode, gathering dig-
itized artifacts relating to real world locations—
including databases, texts, images, and more—to
support complex and compelling tasks that can im-
pact real world applications. In particular, we ex-
pect to achieve considerable scale on navigational
tasks for walking through a campus or park.

First-person perspective. For at least some of
the tasks we envision, human and machine agents
will not have access to a God’s eye view, like that
available to mapping applications (with access to
full geographic features via databases). Instead,
such tasks must be solvable by interpreting vi-
sual and textual stimuli relevant to the locations.
This should put a greater emphasis on challenging
spatial descriptions and relationships rather than
known and named routes. Nonetheless, maps as
visual artifacts (e.g., PDFs) may be incorporated
in some cases, giving automated agents the ability
to use them as a hiker might use a paper map with-
out access to a GPS-based mapping application.

Mirowski et al. (2018) is a recent example that
takes a first-person perspective in a real world sim-
ulation, though one that does not incorporate lan-
guage. They learn a model for navigating the
Google Street View graph via reinforcement learn-
ing, where the goal location is specified via its dis-
tance to several other landmark locations and no
explicit maps are used. Two especially interest-
ing aspects of their approach are their use of cur-
riculum learning (start with nearby goals and then
tackle more distant ones) and showing successful
adaptation from one city to another. These ideas
are complementary to those that use language as
a component in learning to navigate, so it should
be possible to effectively integrate linguistic inputs
(e.g., directions and descriptions of the goal) into
the approach.

Human–machine interaction Thomason et al.
(2015) demonstrate a robot that interacts with peo-
ple and incrementally expands its language under-
standing capabilities. In this vein, we seek to cre-
ate simulated (real world) environments that sup-
port spatial language tasks in which bots and hu-
mans mix, collaborate, and compete. In such set-
tings, there is no annotation: instead, players–both
bot and human–gain points, status, and bounty
(e.g., compute credits) by accomplishing goals.

This approach opens up opportunities to transi-
tion from static tasks such as following a particu-
lar set of navigational instructions to dynamic in-
teractions such as following instructions made in
the moment and in context by another player. If
successful, this dynamism could create far greater
scale for iterating on modeling ideas—with the
evaluation measure (success in the game) as a
built-in feature. This approach not only frees us
from the need for costly, one-off annotation ef-
forts, but also creates an ecologically compelling
environment where progress is forced on and by
the bots: they must perform well to get rewards
to stay alive and maintain their status in the
playscape (such as compute credits). As impor-
tantly, this survival criterion also entails the need
to attend to representational and computational ef-
ficiency (FLOPS) on top of overall ability.

Building playscapes also plots a path from vir-
tual real world to augmented reality applications
and games that include linguistic interactions be-
tween human and bot players, and manipulation of
virtual objects that have real world locations. Cap-
turing Pokémon characters and interacting with



gyms in Pokémon Go are examples of such ma-
nipulations.

3 Tasks

Our focus on real world spatial language artifacts
provides a natural and mutually reinforcing pro-
gression from points to paths to playscapes.

Points Scene understanding—building a model
for a point in space—is the bedrock of real world
spatial language tasks. We must be able to ob-
serve and describe visible objects and the spatial
relationships between them. Before addressing
paths and navigation tasks, we can make consid-
erable progress by improving our data and mod-
eling for spatial relations in tasks like image seg-
mentation and image captioning (Hall et al., 2011;
Hürlimann and Bos, 2016), grounding referential
expressions (Kazemzadeh et al., 2014; Mao et al.,
2016; Hu et al., 2017), relative positioning of ob-
jects (Kitaev and Klein, 2017) and image geolo-
cation (Hays and Efros, 2008; Zamir et al., 2016).
We will create collaborative image identification
and description tasks that emphasize spatial rela-
tions and geographically salient landmarks.

There has also been much work on annotat-
ing and calculating spatial relations in text (Puste-
jovsky et al., 2015; Pustejovsky, 2017), resolv-
ing toponyms (Leidner, 2007; DeLozier et al.,
2015), and text geolocation (Wing and Baldridge,
2014; Rahimi et al., 2017). There are further
opportunities for building or exploiting annota-
tions on spatially focused texts—e.g., identifying
vague regions (DeLozier et al., 2016) or writing a
WikiVoyage page for a city given all available in-
formation in Wikipedia, akin to Liu et al. (2018).

Most importantly, the extensive mappings we
have between texts and images and their corre-
sponding locations motivate a focus on simula-
tions of the real world. Learning spatial relations
within massive amounts of images and texts can
serve as a pretraining step to building components
of models that solve real world navigation tasks.

Paths Understanding salient features and spa-
tial relations in images and text naturally extends
into navigation tasks that connect such points. To
avoid biases, we will create navigation challenges
through several different means, with an emphasis
on domains that require a mix of named features,
salient landmarks, and general features that neces-
sitate relational, imprecise reference.

Harvesting and extending: There are numerous,
extensive walking tours of public spaces. For ex-
ample, universities typically provide self-guided
campus tours that include text, images, and maps.
Considerable work is required to standardize the
specification and formatting of the tours, organize
the associated artifacts (such as pictures), and con-
vert the analog paths to digital ones (or create
them) so that they could be used in experiments.

Descriptions to paths: In other cases, we have
human descriptions of journeys in resources like
WikiVoyage, such as from airports to city centers
or how to get into Grand Canyon by car from dif-
ferent directions. We can have multiple people fol-
low the directions in a resource like Google Street
View to establish both ground truth and capture
variation in human performance.

Paths to descriptions: Many volunteers on
OpenStreetMaps produce GPS traces,2 and we can
elicit navigational instructions covering them.

Points to paths and descriptions: Given points,
we can generate random paths, elicit navigational
instructions for them, and then have others gener-
ate paths following instructions. This setup does
not depend on existing data and gives more con-
trol over variables such as the number of points,
length of the descriptions, and more. It can also tie
into existing point-based data, such as the Google
Landmarks,3 so that point and path models that re-
inforce each other can be explored.

This is the strategy we are beginning with: fo-
cusing on collecting navigational instructions in
city centers, resorts and college campuses for
itineraries that include three to ten points of in-
terest. Itineraries will be generated both by sam-
pling paths connecting waypoints drawn from
gazeeteers and Wikipedia and by generating travel
itineraries from real world trips (Friggstad et al.,
2018). We will collect instructions given both by
people who are physically on the ground as well
as others visiting the points virtually via Google
Street View. We expect that this effort will go
through several iterations as we discover the pain
points and better understand which approaches
work best.

Playscapes Collecting datasets with paths and
corresponding navigation instructions can pro-
vide a valuable source for learning and evalu-

2https://www.openstreetmap.org/traces
3https://research.googleblog.com/2018/

03/google-landmarks-new-dataset-and.html

https://www.openstreetmap.org/traces
https://research.googleblog.com/2018/03/google- landmarks-new-dataset-and.html
https://research.googleblog.com/2018/03/google- landmarks-new-dataset-and.html


ating models. The HCRC MapTask (Anderson
et al., 1991) is a launching-off point for creating
collaborative games where participants help each
other complete a virtual road rally. This natu-
rally extends the path-oriented efforts discussed
above, but mixes in collaboration and competi-
tion while providing motivation through in-game
rewards (e.g., status, points, and compute cred-
its). Such games could take a variety of forms:
one possibility is to provide a series of waypoints
drawn from a WikiVoyage page to one player
who then uses the page and resources like Google
Street View to write instructions. Another player
(or players) must then follow the instructions and
possibly solve additional puzzles or tasks along
the way.

It would be even more powerful to create on-
line, persistent games in which human and bot
players need to understand multi-step natural lan-
guage cues in order to find target locations and ac-
complish other in-game objectives. This moves us
from creating datasets to establishing ecologically
interesting playscapes, such as ones in which bots
must solve navigation tasks in order to gain the re-
wards needed for their survival.

Here we focus on spatial motion and relations
necessary for navigation and scene understanding.
By embedding our tasks and playscapes in digi-
tized versions of the real world, however, we pro-
vide a natural launching-off point for eventually
adding manipulation via augmented reality appli-
cations. The recently released Google Maps gam-
ing API4 can be a significant enabling technol-
ogy for creating such playscapes. A tantalizing
prospect would be to create games akin to Ingress
and Pokémon Go that furthermore involve lan-
guage. The key would be to design them to be
relevant, compelling and fun while ensuring pri-
vacy and safety.

Gamification also makes the playscape more
compelling and fun for human participants. It
gives a reason for participants to engage more with
with other players and negotiate the spatial envi-
ronment to achieve their in-game goals. We will
likely assign asymmetric capabilities for both hu-
man and machine players. That is, players will
take on different roles with different abilities—
e.g., some could be scouts who have a wider range
of (augmented) perception, while others could be

4https://developers.google.com/maps/
gaming/

manipulators who can acquire objects and solve
puzzles requiring interaction with virtual objects
at game-relevant real world locations. Machine
agents could play many different roles, such as fast
virtual scouts, helpful carriers of virtual objects,
and translators who help interactions between hu-
man players who speak different languages. Such
an environment should also provide a rich sub-
strate for exploring approaches that incorporate
pragmatic inference for giving and following in-
structions (Fried et al., 2018).

In designing such playscapes, we will avoid vi-
olent themes and combatitive gameplay. Instead,
we seek to design them in the mold of collobo-
rative board games like Forbidden Island. Play-
ers may still compete for overall higher individual
rankings with respect to status and points, but we
envision that they will do this by individually con-
tributing to collaborative group efforts.

4 Conclusion

We seek to create large-scale datasets that thread
together tasks that present challenges from points
to paths and ultimately provide the basis upon
which we create playscapes that incorporate real
world data and interactions. The annotations for
these will be in the form of language and behav-
iors rather than detailed formal linguistic represen-
tations. However, we believe it is likely that suc-
cessful models will avail themselves of structured
information around ideas like reference frames,
structural biases in planning and navigation, and
more. We also would welcome additional layers
of analysis on the data we release.

In sum, we seek to produce richly associated
data that ties text and images to locations at lo-
cal, global, and scene-level resolutions. We hope
to get feedback from the community and build col-
laborations as we begin this endeavor.
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