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Abstract

This paper describes one of Uppsala
University’s submissions to the pronoun-
focused machine translation (MT) shared
task at DiscoMT 2015. The system is
based on phrase-based statistical MT im-
plemented with the document-level de-
coder Docent. It includes a neural network
for pronoun prediction trained with latent
anaphora resolution. At translation time,
coreference information is obtained from
the Stanford CoreNLP system.

1 Introduction

One of Uppsala University’s submissions to the
pronoun-focused translation task at DiscoMT 2015
is a document-level phrase-based statistical ma-
chine translation (SMT) system integrating a neu-
ral network classifier for pronoun prediction. The
system unites various contributions to discourse-
level machine translation that we made during the
last few years: The translation system uses our
document-level decoder for phrase-based SMT, Do-
cent (Hardmeier et al., 2012; Hardmeier et al.,
2013a). The pronoun prediction network was first
described by Hardmeier et al. (2013b), and its inte-
gration into the decoder by Hardmeier (2014, Chap-
ter 9). In comparison to previous work, the size
of the parallel training corpus has been reduced to
be more consistent with the official data sets of the
shared task. However, for practical reasons, we still
use previously trained models that do not match the
constraints of the official data sets exactly. Also,
while the latent anaphora resolution approach of
Hardmeier et al. (2013b) is used for training, allow-
ing us to train our system without running anaphora
resolution over the entire training corpus, we rely
on coreference annotations generated with the Stan-
ford CoreNLP toolkit (Lee et al., 2013) at test time,
as we believe them to be more reliable.

2 MT setup

Owing to time constraints, the setup of our MT
system is different from the official baseline pro-
vided by the shared task organisers. The system
we use is a standard phrase-based SMT system
with a phrase table trained on the TED, Europarl
(v7) and News commentary (v9) corpora. The
system has 3 language models (LMs). The main
LM is a 6-gram model with modified Kneser-Ney
smoothing (Chen and Goodman, 1998), trained
with KenLM (Heafield, 2011) on the TED, News
commentary and News crawl corpora provided for
the WMT 2014 shared task (Bojar et al., 2014)
and the French Gigaword corpus, LDC2011T10.
Additionally, we include a 4-gram bilingual LM
(Niehues et al., 2011) and a 9-gram LM over Brown
clusters (Brown et al., 1992). Both of these are
trained with SRILM (Stolcke et al., 2011) using
Witten-Bell smoothing (Witten and Bell, 1991)
over a corpus consisting of TED, Europarl, News
commentary and United Nations data. Unlike the
official baseline, we do not use any lowercasing,
recasing or truecasing steps in our training proce-
dure. Instead, all our models are trained directly
on the original text in the form in which it occurs
in the corpus data. The phrase table is trained with
the Moses toolkit (Koehn et al., 2007), and the
feature weights of all the models except for the
pronoun prediction classifier are optimised towards
the BLEU score (Papineni et al., 2002) with the
MERT algorithm (Och, 2003) as implemented in
Moses.

To increase the effect of the pronoun prediction
model, our system uses pronoun placeholders for
the pronouns il, elle, ils and elles (Hardmeier, 2014,
Chapter 9). In the phrase table and the main LM,
these pronouns are substituted by four placeholders,
LCPRONOUN-SG and UCPRONOUN-SG for upper-
and lowercase il or elle and LCPRONOUN-PL and
UCPRONOUN-PL for upper- and lowercase ils and
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elles, respectively. This means that the translation
probabilities and the main LM do not offer the
system any help to select between the masculine
and the feminine forms of the pronouns. The same
is true of the Brown cluster LM, since the clustering
algorithm automatically assigned the feminine and
masculine pronouns to the same clusters. In the
bilingual LM, no substitution was made, so this LM
still contains information about pronoun choice.

At decoding time, we first run a pass of dynamic-
programming beam search decoding with Moses,
using only sentence-level models, to initialise the
state of our document-level decoder, Docent. Then
we add the pronoun prediction model and continue
decoding with Docent for 225 iterations. In Docent,
we use the simulated annealing search algorithm
with a geometric decay cooling schedule, starting
at a temperature of 1 and reducing the tempera-
ture by a decay factor of 0.99999 at each accepted
step. In addition to the change-phrase-translation,
swap-phrases and resegment operations described
by Hardmeier et al. (2012), we include a crossover
operation that generates a new state by randomly
picking complete sentences either from the current
decoder state or from the best state encountered
so far, and a restore-best operation that uncondi-
tionally jumps back to the best state encountered.
The last two operations are necessary because simu-
lated annealing accepts state changes with a certain
probability even if they decrease the score, and af-
ter a sequence of accepted changes to the worse the
decoder may get lost in unpromising regions of the
search space.

3 The Pronoun Prediction Network

We model pronoun prediction with the feed-
forward neural network classifier introduced by
Hardmeier et al. (2013b). Its overall structure is
shown in figure 1. To create input data for the
network, we first generate a set of antecedent can-
didates for a given pronoun by running the pre-
processing pipeline of the coreference resolution
system BART (Versley et al., 2008). Each train-
ing example for our network can have an arbitrary
number of antecedent candidates. Next, we prepare
three types of features. Anaphor context features
describe the source language (SL) pronoun (P) and
its immediate context consisting of three words to
its left (L1 to L3) and three words to its right (R1
to R3), encoded as one-hot vectors. Antecedent
features (A) describe an antecedent candidate. Can-

didates are represented by the TL words aligned
to the syntactic head of the source language mark-
able noun phrase as identified by the Collins head
finder (Collins, 1999), again represented as one-
hot vectors. These vectors cannot be fed into the
network directly because their number depends on
the number of antecedent candidates and on the
number of TL words aligned to the head word of
each antecedent. Instead, they are averaged to yield
a single vector per antecedent candidate. Finally,
anaphoric link vectors (T) describe the relationship
between an anaphor and a particular antecedent
candidate. These vectors are generated by the fea-
ture extraction machinery in BART and include
a standard set of features for coreference resolu-
tion (Soon et al., 2001; Uryupina, 2006) borrowed
wholesale from a working coreference system.

In the forward propagation pass, the input word
representations are mapped to a low-dimensional
representation in an embedding layer (E). In this
layer, the embedding weights for all the SL vec-
tors (the pronoun and its 6 context words) are tied,
so if two words are the same, they are mapped to
the same lower-dimensional embedding regardless
of their position relative to the pronoun. To pro-
cess the information contained in the antecedents,
the network first computes the link probability for
each antecedent candidate. The anaphoric link fea-
tures (T) are mapped to a hidden layer with lo-
gistic sigmoid units (U). The activations of the
hidden units are then mapped to a single value,
which functions as an element in an internal soft-
max layer over all antecedent candidates (V). This
softmax layer assigns a probability p1 . . . pn to each
antecedent candidate. The antecedent feature vec-
tors A are projected to lower-dimensional embed-
dings, weighted with their corresponding link prob-
abilities and summed. The weighted sum is then
concatenated with the source language embeddings
in the E layer. The embedding of the antecedent
word vectors is independent from that of the SL
features since they refer to a different vocabulary.

In the next step, the entire E layer is mapped to
another hidden layer (H), which is in turn con-
nected to a binary output layer predicting the
classes il and elle for the singular classifier and
ils and elles for the plural classifier, respectively.
The non-linearity of both hidden layers is the lo-
gistic sigmoid function. The dimensionality of the
source and target language word embeddings is 50
in our setup, resulting in a total embedding layer
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Figure 1: Neural network with latent anaphora resolution

size of 400, and the size of the last hidden layer
is set to 150. The network was regularised with
an `2 penalty that was set using grid search over a
held-out development set. The network is trained
with the RMSPROP algorithm with cross-entropy as
the training objective. The gradients are computed
using backpropagation. Note that the number of
weights in the network is the same for all training
examples even though the number of antecedent
candidates varies because all weights related to an-
tecedent word features and anaphoric link features
are shared between all antecedent candidates. The
model is trained on the entirety of the TED corpus
enriched with examples from the 109 corpus. We
reserve a random sample of 10 % of the TED part
of the training data as a validation set. Training is
run for 300 epochs, and the model used for test-
ing is the one that achieves the best classification
accuracy on the validation set.

As earlier experiments suggested that the latent
anaphora resolution method integrated in the pro-
noun prediction network, though useful for training,
may not be sufficient for good performance at test
time, we decided to use annotations created with
an external coreference resolution system when
translating the test set. Coreference links were

generated with the Stanford CoreNLP software1

(Lee et al., 2013). The output of the anaphora re-
solver is deterministic and clusters the mention in
the document into a number of coreference sets.
We transform these clusters into links by selecting,
for each anaphoric pronoun, the closest preceding
mention in the same coreference set that is realised
as a full noun phrase (rather than another pronoun),
if such a mention exists, or the closest mention in
the same set otherwise. This leaves us with (at
most) a single antecedent per pronoun, so the V
layer of the neural network is trivially reduced to a
single element with probability one, and the T and
U layers are not used at all at test time.

4 Results and Discussion

When considering the outcome of the shared task,
we first notice that the performance of our system in
terms of BLEU scores (Papineni et al., 2002), with
a score of 32.6 %, is several points below that of the
systems based on the officially provided baseline,
which range around 37 %.2 It seems likely that this
difference, which is confirmed by other automatic

1We are grateful to Liane Guillou for providing us with
ready-made CoreNLP annotations of the DiscoMT test set.

2For a presentation and discussion of the complete shared
task methodology and results, we refer the reader to the shared
task overview paper (Hardmeier et al., 2015).
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This system Baseline
Precision Rmax Fmax Fmax

ce 29/ 35 (0.829) 32/ 45 (0.711) 0.765 0.832
ça/cela 9/ 10 (0.900) 22/ 60 (0.367) 0.521 0.631
elle 3/ 9 (0.333) 3/ 20 (0.150) 0.207 0.452
elles 3/ 3 (1.000) 4/ 15 (0.267) 0.421 0.436
il 7/ 43 (0.163) 11/ 19 (0.579) 0.254 0.522
ils 45/ 54 (0.833) 45/ 48 (0.938) 0.882 0.900
on 0/ 0 (n/a) 0/ 0 (n/a) n/a n/a

Micro-average 96/154 (0.623) 96/177 (0.542) 0.580 0.699

Accuracy with OTHER: 122/210 = 0.581 (Baseline: 0.676)
Accuracy without OTHER: 96/183 = 0.525 (Baseline: 0.630)

6 bad translations (Baseline: 9)

Table 1: Manual evaluation results for the UU-HARDMEIER system

metrics, is mainly due to differences in the underly-
ing SMT baseline, and the result suggests that we
should reconsider the baseline to be used in future
experiments. At the same time, it is worth pointing
out that the SMT system described in our earlier
work (Hardmeier, 2014) used a considerably larger
phrase table than our DiscoMT system. It included,
in addition to the News commentary and the Eu-
roparl corpora, a large amount of data from the
Common crawl, United Nations and 109 corpora
from the WMT shared tasks, and we expect that
a system with the full phrase table would reach a
higher performance than the one presented here.

The results of our system in the official manual
evaluation are shown in Table 1. In the manual
evaluation, 210 instances of the English pronouns
it and they were annotated with correct pronouns
in the context of the MT output. The table displays
the class-specific evaluation metrics for each of the
pronoun types in the human evaluation, two ac-
curacy scores including and excluding the OTHER

label and the number of examples labelled BAD

TRANSLATION by the human annotators. The pri-
mary metric of the shared task evaluation is the
“Accuracy with OTHER” score, which corresponds
to the total proportion of matching examples in the
annotated sample. The “Accuracy without OTHER”
score is computed over the subset of the examples
not annotated with OTHER only. The class-specific
scores include a standard precision score in com-
bination with a modified recall score named Rmax
that accounts for the fact that every example poten-
tially has multiple correct annotations, as well as an
Fmax score defined as the harmonic mean of these
two quantities. A more detailed description of and
rationale for the scores can be found in the shared

task overview paper (Hardmeier et al., 2015). For
comparison, the table also includes the scores of
the official baseline system, which happens to be
the top-ranked system in the evaluation.

In terms of pronoun translation accuracy, our
model ends up in the middle field of the partici-
pants with rank 4 out of 7 (including the baseline).
The class-specific scores are consistently below the
baseline, in particular for the singular pronouns
il and elle. The masculine pronoun il seems to
suffer from serious overgeneration, which leads to
a very low precision score. The instances of elle
that the system generated, by contrast, are both too
few and mostly wrong. On the whole, the results
are rather disappointing, especially since our ear-
lier results with this model (Hardmeier, 2014) had
resulted in slightly positive findings. In those exper-
iments, however, we had used oracle annotations
of pronoun coreference instead of the automatic
CoreNLP annotations used here, and even in that
setting, the improvement was very modest.

The results of the shared task suggest that in both
the pronoun prediction and the pronoun-focused
translation task, it is very hard to beat the base-
line systems. In both baseline systems, the n-gram
model is the only context-sensitive source of infor-
mation for pronoun choice, and it seems that it is
surprisingly difficult to improve pronoun prediction
or translation by exploiting additional information
despite the obvious and well-known shortcomings
of the n-gram approach. Future work must show
whether this is due to the n-gram model’s extraor-
dinary capacity for making guesses about remote
context by analysing local context, as certain find-
ings suggest (Hardmeier, 2014, 137–138), or just
to the fact that our incomplete understanding of the
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problem leads us to design bad predictors that are
easily beaten by a somewhat sophisticated baseline.
By using placeholders in the phrase table and the
main LM, we explicitly disable the n-gram model
for pronoun prediction in our system. It seems
likely that this, in conjunction with the fact that
our prediction model does not appear to deliver
the performance required for improved pronoun
translation, is one of the reasons contributing to the
lower scores we achieve.
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