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Abstract

We propose an approach to parsing Con-
straint Grammars using finite-state transduc-
ers and report on a compiler that converts Con-
straint Grammar rules into transducer repre-
sentations. The resulting transducers are fur-
ther optimized by conversion to left and right
sequential transducers. Using the method,
we show that we can improve on the worst-
case asymptotic bound of Constraint Gram-
mar parsing from cubic to quadratic in the
length of input sentences.

1 Introduction

The Constraint Grammar (CG) paradigm (Karlsson,
1990) is a popular formalism for performing part-
of-speech disambiguation, surface syntactic tagging,
and certain forms of dependency analysis. A CG
is a collection of hand-written disambiguation rules
for part-of-speech or syntactic functions. The popu-
larity of CGs is explained by a few factors. They
typically achieve quite high F-measures on unre-
stricted text, especially for free word-order lan-
guages (Chanod and Tapanainen, 1995; Samuelsson
and Voutilainen, 1997). Constraint Grammars can
also be developed by linguists rather quickly, even
for languages that have only meager resources avail-
able as regards tagged or parsed corpora, although
it is hard to come by exact measures of how much
effort development requires. One drawback to using
CG, however, is that applying one to disambiguate
input text tends to be very slow: for example, the
Apertium project (Forcada et al., 2009), which of-
fers the option of using both n-gram models and CG
(by way of the vislcg3 compiler (Bick, 2000)), re-
ports that using n-gram models currently results in

ten times faster operation, although at the cost of a
loss in accuracy.

In this paper, we describe a process of compil-
ing individual CG rules into finite-state transducers
(FSTs) that perform the corresponding disambigua-
tion task on an ambiguous input sentence. Using
this approach, we can improve the worst-case run-
ning time of a CG parser to quadratic in the length
of a sentence, down from the cubic time requirement
reported earlier (Tapanainen, 1999). The method
presented here implements faithfully all the oper-
ations allowed in the CG-2 system documented in
Tapanainen (1996). The same approach can be used
for various extensions and variants of the Constraint
Grammar paradigm.

The idea of representing CG rules as FSTs has
been suggested before (Karttunen, 1998), but to
our knowledge this implementation represents the
first time the idea has been tried in practice.1 We
also show that after compiling a collection of CG
rules into their equivalent FSTs, the individual trans-
ducers can further be converted into left and right
sequential transducers which greatly improves the
speed of application of a rule.

In the following, we give a brief overview of
the CG formalism, discuss previous work and CG
parsers, provide an account of our method, and fi-
nally report on some practical experiments in com-
piling large-scale grammars into FSTs with our CG-
rule-to-transducer compiler.

2 Constraint Grammar parsers

A Constraint Grammar parser occupies the central
role of a system in the CG framework. A CG system

1However, Peltonen (2011) has recently implemented a sub-
set of CG-2 as FSTs using a different method.
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is usually intended to produce part-of-speech tag-
ging and surface syntactic tagging from unrestricted
text. Generally, the text to be processed is first tok-
enized and subjected to morphological analysis, pos-
sibly by external tools, producing an output where
words are marked with ambiguous, alternative read-
ings. This output is then passed as input to a CG
parser component. Figure 1 (left) shows an exam-
ple of intended input to a CG parser where each in-
dented line following a lemma represents an alterna-
tive morphological and surface syntactic reading of
that lemma; an entire group of alternative readings,
such as the five readings for the word people in the
figure is called a cohort. Figure 1 (right) shows the
desired output of a CG disambiguator: each cohort
has been reduced to contain only one reading.

2.1 Constraint grammar rules

A CG parser operates by removing readings, or by
selecting readings (removing the others) according
to a set of CG rules. In its standard form there
exists only these two types of rules (SELECT and
REMOVE). How the rules operate is further condi-
tioned by constraints that dictate in which environ-
ment a rule is triggered. A simple CG rule such as:

REMOVE (V) IF (NOT *-1 sub-cl-mark)
(1C (VFIN)) ;

would remove all readings that contain the tag V, if
there (a) is no subordinate clause mark anywhere to
the left (indicated by the rule scope (NOT ∗−1), and
(b) the next cohort to the right contains the tag VFIN
in all its readings (signaled by 1C (VFIN)). Such a
rule would, for instance, disambiguate the word peo-
ple in the example sentence in Figure 1, removing all
other readings except the noun reading. Rules can
also refer to the word-forms or the lemmas in their
environments. Traditionally, the word-forms are
quoted while the lemmas are enclosed in brackets
and quotation marks (as in ‘‘<counselors>’’
vs. ‘‘counselor’’ in fig. 1).

In the example above, only morphological tags
are being used, but the same formalism of con-
straints is often used to disambiguate additional,
syntactically motivated tags as well, including tags
that mark phrases and dependencies (Tapanainen,
1999; Bick, 2000). Additional features in the rule
formalism include LINK contexts, Boolean opera-

tions, and BARRIER specifications. For example, a
more complete rule such as:
"<word>" REMOVE (X) IF
(*1 A BARRIER C LINK *1 B BARRIER C);

would remove the tag X for the word-form word if
the first tag A were followed by a B somewhere to
the right, and there was no C before the B, except if
the first A-tagged reading also contained C.

It is also possible to add and modify tags to co-
horts using ADD and MAP operations, which work
exactly as the SELECT and REMOVE operations as
regards the contextual target specification.

2.2 Parser operation
Given a collection of CG rules, the job of the parser
is to apply each rule to the set of input cohorts rep-
resenting an ambiguous sentence as in Figure 1, and
remove or select readings as the rule dictates. The
formalism specifies no particular rule ordering per
se, and different implementations of the CG formal-
ism apply rules in varying orders (Bick, 2000). In
this respect, it is up to the grammar writer to design
the rules so that they operate correctly no matter in
what order they are called upon. The parser iter-
ates rule application and removes readings until no
rule can perform any further disambiguation, or un-
til each cohort contains only one reading. Naturally,
since no rule order is explicit, most parser imple-
mentations (Tapanainen, 1996; Bick, 2000) tend to
use complex techniques to predict if a certain rule
can apply at all to avoid the costly process of check-
ing each reading and its respective contexts in an in-
put sentence against a rule for possible removal or
selection.

2.3 Computational complexity
Tapanainen (1999) gives the following complexity
analysis for his CG-2 parsing system. Assume that
a sentence of length n contains maximally k differ-
ent readings of a token, and is to be disambiguated
by a grammar consisting of G rules. Then, testing
whether to keep or discard a reading with respect to a
single rule can be done in O(nk), with respect to all
rules, in O(Gnk), and with respect to all rules and
all tokens in O(n2Gk). Now, in the worst case, ap-
plying all rules to all alternative readings only results
in the discarding of a single reading. Hence, the pro-
cess must in some cases be repeated n(k− 1) times,
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"<Business>" "<Business>"
"business" <*> N NOM SG "business" <*> N NOM SG

"<people>" "<people>"
"people" N NOM SG/PL "people" N NOM SG/PL
"people" V PRES -SG3 VFIN "<can>"
"people" V IMP VFIN "can" V AUXMOD Pres VFIN
"people" V SUBJUNCTIVE VFIN "<play>"
"people" V INF "play" V INF

"<can>" "<a>"
"can" V AUXMOD Pres VFIN "a" <Indef> DET CENTRAL ART SG

"<role>"
"<play>" "role" <Count> N NOM SG

"play" N NOM SG "<as>"
"play" V PRES -SG3 VFIN "as" PREP
"play" V IMP VFIN "<counselors>"
"play" V SUBJUNCTIVE VFIN "counselor" <DER:or> <Count> N NOM PL
"play" V INF "<and>"

"<a>" "and" CC
"a" <Indef> DET CENTRAL ART SG "<teachers>"

"<role>" "teacher" <DER:er> <Count> N NOM PL
"role" <Count> N NOM SG "<.>"

"<as>" "." PUNCT Pun
"as" ADV AD-A>
"as" <**CLB> CS
"as" PREP

"<counselors>"
"counselor" <DER:or> <Count> N NOM PL

"<and>"
"and" CC

"<teachers>"
"teacher" <DER:er> <Count> N NOM PL

"<.>"
"." PUNCT Pun

Figure 1: Example input (left) and output (right) from a Constraint Grammar disambiguator.

yielding a total complexity of O(n3Gk2). As men-
tioned above there are various heuristics one can use
to avoid blindly testing rules against readings where
they cannot apply, but none that guarantee a lower
complexity.

3 Related work

Many constraint-based tagging systems can be
speeded up by appropriate use of finite-state trans-
ducers. For example, Roche and Schabes (1995)
show that a Brill tagger (Brill, 1995) can be applied
in linear time by constructing a sequential (input-
deterministic) transducer that performs the same
task as applying a set of transformation-based learn-
ing (TBL) rules that change tags according to con-
textual specifications. This method does not, how-
ever, transfer to the problem of CG implementations:
for one, TBL rules are vastly simpler in their expres-
sive power, limited only to a few simple templatic
statements of tag replacement, while the CG formal-
ism allows for an unlimited number of Boolean and

linking constraints; secondly, TBL rules target tags,
not words, while CG allows for rules to target any
mix of both; thirdly, TBL rules only replace single
tags with other single tags and do not remove tags
from sets of alternative tags.2

Additionally, Koskenniemi (1990); Koskenniemi
et al. (1992) have proposed a constraint-based
method for surface-syntactic tagging that can be di-
rectly implemented—at least in theory—as the in-
tersection of constraints encoded by finite automata.
This formalism has been called alternatively by the
name finite-state intersection grammar and paral-
lel constraint grammar, and has later been pursued

2This last circumstance is actually only a theoretical in-
equivalence: a set of CG tags could conceivably be encoded
as a single symbol, and the problem of removing tags from a
set of tags could be reduced to changing set-representing tags
into other such tags, bringing TBL closer to the CG formalism.
However, then each possible word targeted (since in CG, words
are considered tags as well) would have to be a member of this
powerset of tags, causing an exponential explosion in the tag
alphabet size.
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by Tapanainen (1997) and Yli-Jyrä (2005), among
others. While a finite-state implementation of this
formalism in theory also offers linear-time perfor-
mance, it remains unclear whether the massive con-
stants stemming from an explosion in the size of
the automata that encode intermediate results can
be avoided and a practical parsing method produced
(Yli-Jyrä, 2005).

4 Overview of method

Previous CG compilers operate by choosing a rule
and a reading and scanning the context to the left
and the right to decide if the reading should be re-
moved, possibly using additional information in the
form of bookkeeping of where and which rules can
potentially apply in a given sentence. In contrast, the
approach taken here is to construct a FST from each
rule. This transducer is designed so that it acts upon
a complete input string representing a sentence and
ambiguous cohorts. In one go, it applies the rule to
all the readings of the sentence, removing the read-
ings the rule dictates and retaining all others.

For reasons of simplicity, instead of directly op-
erating on the types of inputs given in Figure 1, we
assume that the transducer will act upon a slightly
modified, more compact string representation of an
ambiguous sentence. Here, an entire sentence is rep-
resented as a single-line string, with certain delim-
iter marks for separating cohorts and lemmas. The
changes can be illustrated in the following snippet:
the cohort

"<as>"
"as" ADV
"as" PREP

is represented as a string in the format

$0$ "<as>" #BOC# |
#0# "as" ADV |
#0# "as" PREP | #EOC#

That is, we have symbols for representing begin-
nings and endings of cohorts (#BOC#, #EOC#), and
delimiters between every reading (|). Additionally,
the symbol #X# is used to mark readings that have
been removed, and the symbol #0# readings that
are still possible. The choice of symbols is arbi-
trary; their role is only to make the data represen-
tation compact and suitable for targeting by regular
language/FSTs.

The task of each constructed rule transducer, then,
is actually only to change #0#-symbols into #X#-
symbols for those readings that should be removed
by the rule, of course making sure we never remove
the last remaining reading as per CG requirements.

For example, removal of the ADV-reading for the
word as in the above cohort would result in the out-
put string:

$0$ "<as>" #BOC# |
#X# "as" ADV |
#0# "as" PREP | #EOC#

5 Left/right sequential transducers

The output of the compilation process is a transducer
that removes readings as the corresponding rule
requires—in practice only changing #0# symbols
into #X# symbols wherever warranted. However,
if the rule contexts are complicated, this transducer
may contain many alternative paths with #0#:#0#
or #0#:#X# labels going out from the same state,
only one of which contains a path to a final state with
any input string: i.e. the transducer is not sequential.
This is because more context to the right needs to be
seen by the transducer to decide whether to retain
or remove a reading. In the case of large rules, this
may involve substantial backtracking when applying
a transducer against an input string. The time taken
to apply a rule transducer is still linear in the length
of the string, but may hide a large constant, which is
in effect the size of the transducer.

However, we a priori know that each rule trans-
ducer is functional, i.e. that each input string maps
to maximally one output string (rules are never am-
biguous in their action). Such transducers T can be
broken up by a process called bimachine factoriza-
tion into two unambiguous transducers: a left se-
quential Tl and a right sequential one Tr, such that
the effect of the original transducer is produced by
first applying the input word to Tl, and then apply-
ing Tr to the reverse of Tl’s output (Schützenberger,
1961; Reutenauer and Schützenberger, 1991; Roche,
1995; Kempe, 2001). In other words, the two sepa-
rate transducers fulfill the condition that:

T = Tl ◦ Reverse(Tr) (1)

Performing this factorization of the rule transduc-
ers then allows further efficiency gains. For instance,
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as table 1 shows, some rules with long contexts pro-
duce transducers with thousands of states. Convert-
ing these rules to the equivalent left and right se-
quential ones removes a large time constant from
the cost of applying a rule. It could be noted that
the rule transducers are also directly sequentiable
into a single sequential transducer (Schützenberger,
1977), and we could apply such a sequentialization
algorithm (Mohri, 1997) on them as well. Sequen-
tializing an FST in effect postpones ambiguous out-
put along transducer paths until the ambiguity is re-
solved, emitting zeroes during that time. Perform-
ing this type of sequentialization on rule FSTs is
in practice impossible, however. As each ambigu-
ity may last several cohorts ahead, the equivalent se-
quential transducer must “remember” arbitrary non-
outputted strings for a long time, and will be expo-
nential in size to the original one. By contrast, the
resulting left and right sequential rule FSTs are ac-
tually smaller than the original rule FSTs.

6 Construction

Since each rule can operate in complex ways, we
break down the process of compiling a rule into sev-
eral smaller transducers which are joined by com-
position (◦). This is similar to techniques used for
compiling phonological rewrite rules into FSTs (Ka-
plan and Kay, 1994; Kempe and Karttunen, 1996).
The entire construction process can be encapsulated
in the composition of a few auxiliary transducers.
Compilation of a basic rule of the format

SELECT/REMOVE (X) IF
(SCOPE#1 COND#1) ... (SCOPE#n COND#n)

can be expressed with the general construction

MarkFormTarget ◦
Constrain ◦

Cond1 ◦ . . . ◦ Condn (2)

These operate as follows:

• MarkFormTarget is a transducer that
changes #0#-symbols temporarily to #1#-
symbols (signaling pending removal) for those
cohorts that contain the target reading (if the
rule is a REMOVE rule), or for retention (if it
is a SELECT rule).

• Constrain changes #1#-symbols back into
#0# symbols whenever the last reading would
be removed.

• Conditionk changes the corresponding tem-
porary symbols into #X#-symbols whenever all
the conditions are met for removal, otherwise
changing them back to #0#-symbols.

The actual conditions expressed in the Cond
transducer are fairly straightforward to express as
Boolean combinations of regular languages since we
have explicit symbols marking the beginnings and
endings of cohorts as well as readings. Each con-
dition for a rule firing—e.g. something occurring n
cohorts (or more) to the left/right—can then be ex-
pressed in terms of the auxiliary symbols that sepa-
rate cohorts and readings.

6.1 Detailed example
Figure 2 contains a working example of the rule
compilation strategy in the form of a script in the
Xerox formalism compilable with either the xfst
(Beesley and Karttunen, 2003) or foma (Hulden,
2009) FST toolkits. The majority of the example
consists of function and transducer definitions com-
mon for compiling any CG-rule, and the last few
lines exemplify the actual compilation of the rules.
Briefly, compiling a rule with the example code, en-
tails as a preliminary the composition of the follow-
ing transducers:

• InitialFilter disallows, for efficiency
reasons, all input that is not correctly format-
ted.

• MarkFormTarget(Wordform,Target)
is a function that performs the provisional
marking of all target readings and cohorts
that could be affected by the rule, given the
wordform and the target tag.

• ConstrainS for SELECT-rules (and
ConstrainR for REMOVE-rules), is a trans-
ducer that checks that we would not remove
the last reading from any cohort, should the
rule be successful and reverts auxiliaries #1#
to #0# in this case. Also, each potentially
affected cohort which is by default headed
by $0$, is mapped ambiguously to $A$ or
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$R$. These symbols serve to denote whether a
change in that cohort is to be later accepted or
rejected, based on the rule contexts.

These three transducers are again composed with
a transducer that restricts the occurrence of the $A$-
symbol to those cohorts where the rule contexts are
in place. This is followed by the composition with
a Cleanup-transducer that restores all auxiliaries,
leaving all readings to only be marked #0# (current)
or #X# (removed), and all heads marked $0$.

The actual implementation is a stand-alone com-
piler written in C using flex and the foma API for
the transducer construction functions. It handles ad-
ditional chained LINK contexts, supports set defi-
nitions as is the case in the standard CG variants.
These additions require dynamic insertions of auxil-
iary symbols based on the number of linked contexts
and defined sets and cannot be captured in static
scripts. However, the compilation method and the
use of auxiliary symbols is identical in the example
script in figure 2. The outputs of the example script
are non-sequential transducers that model CG rules
that can later be converted to left and right sequential
ones for faster application speed.

7 Analysis

Assuming a grammar with G rules and a maximum
of k possible readings per word, applying one rule
transducer to an entire sentence of n possibly k-
way ambiguous words takes time O(nk): we ap-
ply the transducer (or the left-sequential and right-
sequential transducers) to the string representing the
sentence whose string representation length is maxi-
mally nk in linear time. Now, applying an entire set
of G rules in some order can be done in O(Gnk)
time. Making no assumptions about the structure
of the input, in the worst case one such round of
disambiguation only removes a single reading from
a single cohort. Applying the entire set of disam-
biguation rules must then be done (in the worst case)
n(k − 1) times. Hence, the total time required to be
guaranteed of disambiguation of a sentence is of the
order O(Gn2k2).

The improvement over the prior parsers that oper-
ate in O(Gn3k2) as analyzed in Tapanainen (1999)
comes precisely from the ability to compile a con-
straint rule into a FST. In that earlier analysis, it was

SC n −n ∗n ∗ − n

|T | |B| |T | |B| |T | |B| |T | |B|
1 72 44 39 37 47 32 27 31
2 214 77 77 61 74 38 33 37
3 640 143 153 109 108 44 39 43
4 1918 275 305 205 148 50 45 49
5 5752 539 609 397 194 56 51 55
6 17254 1067 1217 781 246 62 57 61
7 51760 2123 2433 1549 304 68 63 67

Table 1: Example sizes (number of states) of single rules
of varying left and right scope represented as transduc-
ers, both individually and as separate left-sequential and
right-sequential transducers. The |T | represents the size
of the single transducer, and the |B|-columns the sums of
the sizes of the LR-sequential ones.

assumed that it takes O(nk) time to resolve whether
to keep or discard some chosen alternative reading
in a cohort. That is, the underlying idea was to test
each reading for possible removal separately. The
improvement—that we can apply one rule to all the
cohorts and readings in a sentence in time O(nk)—
is due to the transducer representation of the rule ac-
tion.

Additionally, the constant G can in theory be
eliminated. Given a set of rules represented as trans-
ducers, R1 . . . Rn, these rules can be combined into
a larger transducer R by composition:

R1 ◦ . . . ◦Rn (3)

Subsequently, this transducer R can be converted
into a left and a right sequential transducer as above,
yielding O(n2k2). In practice, such a construction is
not feasible, however, because the composed trans-
ducer invariably becomes too large in any actual
grammar. The approach is still partially useful as our
practical experiments show that rules that target the
same tags can be composed without undue growth in
the composite transducer. In actual grammars, it is
often the case that a large number of different rules
operate on removal or selection of the same tag, and
in such a case, the individual rule transducers can
further be grouped and combined to a certain extent.
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###############################################################
# Auxiliary definitions # define Cleanup "#1# " -> "#0# " .o. "#2# " -> "#X# " .o.
############################################################### "$A$ "|"$R$ " -> "$0$ ";
# $0$ = heads all cohorts #
# $1$ = temporary auxiliary for marking cohort # define MarkFormTarget(WORDFORM,TARGET)
# $A$ = temporary auxiliary for marking "acceptance" of rule # "$0$ " -> "$1$ " || _ WORDFORM .o.
# $R$ = temporary auxiliary for marking "rejection" of rule # "#0# " -> "#1# " || _ TARGET ;
# #0# = marks all readings that are alive # define InvCR [[?* ["$A$ ":"$R$ "] [?|["$A$ ":"$R$ "]]*]] .o.
# #X# = marks all dead readings # "#2# "->"#1# " || "$R$ " \"#EOC# "* _ ;
# #1# = temporary auxiliary: marks readings that are about to # define CompileRule(X) X .o. ˜[X .o. InvCR].l .o. Cleanup;
# be retained # define MATCHCOHORT(X) [\"#BOC# "* "#BOC# " \"#EOC# "* DEL ALIVE
# #2# = temporary auxiliary: marks readings that are about to # \DEL* X \"#EOC# "* "#EOC# " ˜$"#BOC# "];
# be removed # define MATCHCOHORTC(X) [\"#BOC# "* "#BOC# " [[DEL DEAD \DEL*]*
# #BOC# = marks a beginning of each cohort # [DEL ALIVE \DEL* X \DEL*] [DEL DEAD \DEL*]*]+
# #EOC# = marks the end of each cohort # DEL "#EOC# " ˜$"#BOC# "];
############################################################### define ANYCOHORT [\"#BOC# "* "#BOC# "

\"#EOC# "* "#EOC# " ˜$"#BOC# "];
define DEL "| " ;
define ALIVE ["#0# "|"#1# "|"#2# "] ; #########################################################
define AUX "$0$ "|"$1$ "|"$A$ "|"$R$ "| # Actual compilation of an example rule using the above #

"#0# "|"#1# "|"#X# "|"#2# "| DEL |"#BOC# "|"#EOC# "; # auxiliary functions and definitions #
#########################################################

define InitialFilter ˜$AUX ["$0$ " ˜$AUX "#BOC# "
([DEL ["#0# "|"#X# "] ˜$AUX]+ DEL) "#EOC# "]* ; # Rule 1: SELECT (V) IF (1 (ADJ));

define Rule1Pre InitialFilter .o.
define NoMarkedReading ˜$["#1# "|"#EOC# "] "#EOC# " ; MarkFormTarget(?*, \DEL* "V " \DEL*) .o.
define NoLiveReading ˜$["#0# "|"#EOC# "] "#EOC# " ; ConstrainS .o.
define NoMarkedHead "$0$ " ˜$["#EOC# "] ; "$A$ " => _ ANYCOHORT MATCHCOHORT(\DEL* "ADJ " \DEL*);
define MarkedHead "$1$ " ˜$["#EOC# "] ; regex CompileRule(Rule1Pre);

define ConstrainS "$1$ " -> "$0$ " || _ NoMarkedReading | # Rule 2: SELECT (X) IF (*-1C (A) BARRIER (B)) (1 (C));
NoLiveReading .o. define Rule21Pre InitialFilter .o.

"#1# " -> "#0# " || NoMarkedHead _ .o. MarkFormTarget(?*,\DEL* "X " \DEL*) .o.
"#0# " -> "#1# ","#1# " -> "#0# " || MarkedHead _ .o. ConstrainS .o.
"$1$ " -> ["$A$ "|"$R$ "] .o. "$A$ " => MATCHCOHORTC(\DEL* "A " \DEL*)
"#1# " -> "#2# " || "$A$ " \"#EOC# "* _ ; [ANYCOHORT - MATCHCOHORT(\DEL* "B " \DEL*)]* _ ;

define ConstrainR "$1$ " -> "$0$ " || _ NoMarkedReading .o. define Rule22Pre InitialFilter .o.
"#1# " -> "#0# " || NoMarkedHead _ .o. MarkFormTarget(?*,\DEL* "X " \DEL*) .o.
"$1$ " -> "$0$ " || _ NoMarkedReading .o. ConstrainS .o.
"$1$ " -> "$0$ " || _ NoLiveReading .o. "$A$ " => _ ANYCOHORT MATCHCOHORT(\DEL* "C " \DEL*);
"#1# " -> "#0# " || NoMarkedHead _ .o.
"$1$ " -> ["$A$ "|"$R$ "] .o. # Rule is split into two parts that are intersected
"#1# " -> "#2# " || "$A$ " \"#EOC# "* _ ; regex CompileRule(Rule21Pre & Rule22Pre);

Figure 2: Complete foma code example that compiles two different CG rules with the method.

8 Some practical experiments

8.1 Grammar compilation

We have built a CG-to-transducer compiler that con-
verts rules in the CG-2 format (Tapanainen, 1996)
into the type of FSTs discussed above. The com-
piler itself relies on low-level finite-state machine
construction functions available in the foma FST li-
brary (Hulden, 2009). To test the compiler against
large-scale grammars, we have run it on Constraint
Grammars of Finnish (Karlsson, 1990),3 and Basque
(Aduriz et al., 1997). Both grammars are quite large:
the Finnish grammar consists of 1,019 rules, and
the Basque of 1,760 rules. Table 2 shows the re-
sults of compiling all rules into individual transduc-
ers. In the table, what is given is the sum total of
states and transitions of all transducers (Σ|T |), and
the sum total of states and transitions for the left and
right sequential transducers (Σ|B|). As can be seen,

3Converted from the original to the more modern notation
by Trond Trosterud at the University of Tromsø in 2010.

the sequentialized transducers together are substan-
tially smaller than the non-sequentialized transduc-
ers. Compilation time for the respective grammars
is currently 2 min 59 sec. (Basque) and 1 min 09
sec. (Finnish).4

8.2 Rule transducer size growth

Naturally, there is a limit to the complexity of rules
that can be compiled into FSTs. Rules that depend
on long-distance left and right contexts will grow
quickly in size when represented as FSTs. Table
1 shows the sizes of different transducers compiled
from a single rule type

SELECT (X) IF (SCOPE (Y)) (4)

where SCOPE represents various rule scopes. For
instance, the scope ∗-3 (condition holds three or
more words to the left) results in a transducer of
39 states, and a left and right sequential transducer
whose sum total of states are 43. Complex rules with

4on a 2.8GHz Intel Core 2 Duo.

45



Basque Finnish

Rules 1,760 1,019
Σ|T | 469,938 states 231,786 states

11,229,332 trans. 2,741,165 trans.
Σ|B| 213,445 states 102,913 states

4,812,185 trans. 1,230,118 trans.

Table 2: Sums of sizes of resulting transducers with two
large-scale grammars.

multiple conditions may grow larger than the simple,
single-context rules in the table, but nevertheless, the
results indicate that most grammars should be repre-
sentable as FSTs in practice. In our test grammars,
the longest scope ever used for a condition was 6 co-
horts to the right (in Basque)—although e.g. Vouti-
lainen (1999) reports on sometimes needing slightly
longer contexts than this for a grammar of English
(max. 9).

Since the bimachine factorization used in con-
structing the left and right sequential transducers in-
troduces unique auxiliary symbols to signal pend-
ing ambiguity during the left-to-right pass, which is
later resolved, there is some slight growth of the al-
phabet in these transducers. However, this growth is
fairly small: the sequentialization of all the rules in
the two grammars tested could be performed with a
maximum of 8 auxiliary symbols, usually only one
or two for the majority of the rules.

8.3 Grammar analysis

The fact that we can compile each rule in a Con-
straint Grammar into a finite state transducer also
yields other benefits apart from rule application
speed. Grammars can be analyzed with respect to er-
rors in detailed fashion with methods that go beyond
existing debugging capabilities in CG parsers. For
example, the formalism allows for vacuous rules, i.e.
rules that never act on any input. Consider, for ex-
ample: SELECT (X) IF (NOT 0 (X)).

Such rules are quite a common redundancy in ac-
tual CG grammars and tend to go undetected. While
the above rule is easily seen at first glance to be vac-
uous, more complex rules are more demanding to
analyze in this respect. For example, the rule

SELECT (ADB) IF (0C ADJ-ADB)
(-1 KASEZGRAM OR ERG OR PAR);

was encountered in an actual grammar. It is in-
deed vacuous, but to detect this, we need to analyze
the sets ADJ-ADB, KASEZGRAM, ERG, and PAR, as
well as the logic of the rule.

Using finite-state techniques, we can calculate,
for a rule transducer R its intersection with the set of
all transducers that change #0# symbols into #X#-
symbols.

R ∩ (? :?∗ #0# :#X# ?:?∗) (5)

yielding a transducer whose domain contains all the
inputs that are affected by the rule R, and allowing us
to answer the question whether the rule is vacuous.
Similar techniques can be used to analyze rule re-
dundancy (are two superficially distinct rules equiv-
alent), and rule subsumption; does R1 subsume R2,
making it redundant, or do rules R1 and R2 together
act identically to R3 alone, and so forth.

9 Conclusion & future work

We have presented a method for compiling individ-
ual Constraint Grammar rules into finite-state trans-
ducers. This reduces the worst-case time require-
ments for CG parsing from cubic to quadratic. The
possibility of further conversion of rule transduc-
ers into left and right sequential ones cuts down on
the time constants involved in rule disambiguation.
Testing an implementation against wide-coverage
grammars seems to indicate that the method is
practical even for large grammars. Integrating the
approach proposed here with earlier strategies to
CG-parsing—most important being efficient track-
ing of which rules can potentially apply to an in-
put at any given stage to avoid applying transducers
unnecessarily—remains an important next practical
step.
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