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Abstract

We present a method of evaluating the imme-

diate performance impact of user state mis-

classifications in spoken dialogue systems.

We illustrate the method with a tutoring sys-

tem that adapts to student uncertainty over and

above correctness. First we define a rank-

ing of user states representing local perfor-

mance. Second, we compare user state trajec-

tories when the first state is accurately clas-

sified versus misclassified. Trajectories are

quantified using a previously proposed met-

ric representing the likelihood of transitioning

from one user state to another. Comparison of

the two sets of trajectories shows whether user

state misclassifications change the likelihood

of subsequent higher or lower ranked states,

relative to accurate classification. Our tutoring

system results illustrate the case where user

state misclassification increases the likelihood

of negative performance trajectories as com-

pared to accurate classification.

1 Introduction

Spoken dialogue systems research has shown that

natural language processing errors can negatively

impact global system performance. For exam-

ple, automatic speech recognition errors have been

shown to negatively correlate with user satisfaction

surveys taken after the system interaction is over

(e.g., (Walker et al., 2000a; Pon-Barry et al., 2004)).

Automatic user state classification errors have

also been shown to negatively impact global per-

formance in spoken dialogue systems (e.g., (Pon-

Barry et al., 2006)). For example, in our prior work

with an uncertainty-adaptive spoken dialogue com-

puter tutoring system, we found that recognizing and

adapting to the user’s state of uncertainty, over and

above his/her state of correctness, significantly im-

proved global learning over all users (as measured

by tests taken before and after the system interac-

tion). However, this was only true when the user

uncertainty was manually labeled during the inter-

action by an unseen human “wizard of oz” (Forbes-

Riley and Litman, 2011b); it was not true when the

uncertainty was automatically labeled by the system.

Further analysis showed that uncertainty classifica-

tion errors largely accounted for the global perfor-

mance decrease in our fully automated system. In

particular, only a small proportion of users’ actual

uncertainty was being accurately classified by the

system (Forbes-Riley and Litman, 2011a).1

The question we address in this study is how to

analyze the impact of automatic user state classifi-

cation errors when analyzing performance at a local

level. In particular, is there a measurable local per-

formance difference when one compares what hap-

pens in a dialogue after a turn is accurately classi-

fied versus misclassified? We show here how user

state trajectories can be used to answer this ques-

tion. First, a ranking of user states is defined (Sec-

tion 3.1). Second, user state trajectories are com-

puted from two sets of system dialogue: one in

1In natural language processing (NLP) research, the terms

“(in)correct” and “(un)certain” can have multiple interpreta-

tions. To avoid confusion, we reserve these terms in this paper

only to refer to the semantic content and affective/attitudinal ex-

pression of user answers (respectively). When referring to the

NLP performance of our system, we use the terms “accurately

classified” and “misclassified”.
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which the user state of interest is accurately clas-

sified in the first turn in the trajectory, and another

in which it is misclassified (Section 3.2). Trajec-

tories are quantified as the likelihood of transition-

ing from one user state to another (D’Mello et al.,

2007). Comparison of the two sets of trajectories in-

dicates how user state misclassifications change the

relative likelihood of subsequent states. Transitions

to higher ranked states indicate improved local per-

formance while transitions to lower ranked states in-

dicate decreased local performance.

In our research, we are interested in this question

because we hypothesize that accurate and inaccurate

user state classification in our uncertainty-adaptive

system yielded immediate differences in user behav-

ior. We further hypothesize that our uncertainty-

adaptive system had a negative immediate impact

on the user’s state when (un)certainty was misclas-

sified, as compared to when (un)certainty was ac-

curately classified. Our user state trajectory results

support these hypotheses. We find that (un)certainty

misclassifications increased the likelihood of transi-

tioning to the lowest ranked user state in the next

turn. In contrast, accurate (un)certainty classifica-

tion yielded an increased likelihood of more positive

performance trajectories (Section 4).

More generally, this question is relevant to other

automatically classified user states and other types

of dialogue systems, whenever the goal is to un-

derstand the immediate impact of user state classi-

fication errors on user behavior during the dialogue

(Sections 3.1 and Section 5).

2 The System and Dialogues

We apply this local performance analysis to dia-

logues between college students and our fully auto-

mated spoken dialogue tutoring system, ITSPOKE.2

Two sets of dialogues are used here, which come

from two versions of ITSPOKE: the uncertainty-

adaptive and non-adaptive versions. Both ver-

sions automatically classify user (un)certainty and

(in)correctness for each turn. However, the non-

adaptive version’s responses are based only on

(in)correctness, while the uncertainty-adaptive ver-

sion provides an uncertainty adaptation to uncer-

2ITSPOKE(Intelligent Tutoring SPOKEn dialogue) is a

spoken, modified version of Why2-Atlas (VanLehn et al., 2002).

tain+correct answers. All dialogues were collected

in our prior experiment comparing global learn-

ing across the uncertainty-adaptive and non-adaptive

system versions (see Section 1). The uncertainty-

adaptive system yielded 120 dialogues (1957 student

turns) from 24 subjects. The non-adaptive system

yielded 125 dialogues (2065 student turns) from 25

subjects. Our analysis will focus on the dialogues

from the uncertainty-adaptive system (Section 4.1);

the dialogues from the non-adaptive system will be

used for comparison (Section 4.2).

Briefly, ITSPOKE tutors 5 physics problems (one

per dialogue), in a Tutor Question - Student Answer

- Tutor Response format. The tutor questions seri-

ally present topics needed to solve each problem; ad-

jacent questions concern identical or closely related

topics. After each tutor question, the student answer

is digitized from head-mounted microphone input

and sent to the Sphinx2 recognizer, which yields an

automatic transcript. The answer’s (in)correctness is

then automatically classified based on this transcript,

using the TuTalk semantic analyzer (Jordan et al.,

2007). Simultaneously, the answer’s (un)certainty

is automatically classified by inputting features of

the speech signal, the automatic transcript, and the

dialogue context into a logistic regression model.3

All natural language processing components were

trained using prior ITSPOKE corpora.

The dialogue manager determines the appropriate

tutor response and sends it to the Cepstral text-to-

speech system. The uncertainty-adaptive and non-

adaptive system versions give the same response to

incorrect answers (regardless of (un)certainty): in-

correctness feedback (e.g., “That’s not right”) fol-

lowed by additional remedial content to help stu-

dents understand why their answer was incorrect.

Both versions also give the same response to cer-

tain+correct answers: correctness feedback only

(e.g., “That’s right”). The two versions differ in their

response to uncertain+correct answers. The non-

adaptive version responds with correctness feed-

back only, while the uncertainty-adaptive version re-

sponds with correctness feedback followed by addi-

tional remedial content to help students resolve their

uncertainty. This uncertainty adaptation is based on

3The uncertainty model includes lexical, pitch, temporal,

and energy features as well as tutor question and user gender,

and is described further in (Forbes-Riley and Litman, 2011a).
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tutor1: Let’s begin by looking at the motion of the man and his keys while he’s holding them. How does his velocity

compare to that of his keys?

student-automatic1: his also the is the same as that of his keys points force (certain+incorrect)

student-manual1: his velocity is the same as that of his keys while he’s holding them (uncertain+correct)

tutor2: Actually... Their velocities must be the same, because the man’s holding his keys, so they’re not moving with

respect to each other. [...] What are the forces exerted on the man after he releases his keys?

student-automatic2: gravity (uncertain+correct)

student-manual2: gravity?? (uncertain+correct)

non-adaptive-tutor3: Right. So what’s the direction of the force of gravity on the man (e.g., vertically up)?

uncertainty-adaptive-tutor3: Right. Gravity is the only force acting on the man. This force is also called the weight

of the man. It’s always present when an object is in earth’s gravitational field. So what’s the direction of the force of

gravity on the man (e.g., vertically up)?

Figure 1: Annotated Dialogue Example Showing Uncertainty Adaptation and User State Classifications

prior tutoring research, which argues that incorrect-

ness and uncertainty are both signals of a “learn-

ing impasse”, i.e., an opportunity to better learn the

material (VanLehn et al., 2003). Our uncertainty

adaptation only provides additional remedial con-

tent after the uncertain+correct impasse, because in-

correctness impasses (uncertain and certain) already

receive remedial content from the non-adaptive sys-

tem. It is assumed that this content helps resolve

both incorrectness and uncertainty (when present).

After the experiment, each student answer

(turn) was manually transcribed and labeled for

(un)certainty and (in)correctness. One labeler

performed the annotation based on schemes devel-

oped and evaluated on prior ITSPOKE corpora,

where this labeler and another labeler displayed

interannotator reliability of 0.85 and 0.62 Kappa

on (in)correctness and (un)certainty, respec-

tively (Forbes-Riley and Litman, 2011a).4 Com-

parison of the automatic and manual labels yielded

84.7% accuracy for automatic (in)correctness

classification and 80.3% accuracy for auto-

matic (un)certainty classification. However, the

(un)certainty model had an uncertainty recall of

only about 20%, while the (in)correctness model

had a correctness recall of about 80% (Forbes-Riley

and Litman, 2011a).5

4Because these evaluations showed that this trained labeler

could reliably annotate (un)certainty and (in)correctness in IT-

SPOKE dialogues, no further evaluations were performed.
5The lower recall for predicting uncertainty is neverthe-

Figure 1 illustrates ITSPOKE’s natural language

processing components and the two system versions.

The first answer is classified as certain+incorrect

(student-automatic1) but manually labeled as un-

certain+correct (student-manual1); the manual and

automatic transcripts are also substantially differ-

ent. Because this answer was misclassified as in-

correct, both versions give the same response (tu-

tor2). The second answer is accurately classified as

uncertain+correct. The non-adaptive system thus ig-

nores the uncertainty and only provides correctness

feedback (non-adaptive-tutor3), while the adaptive

system responds with correctness feedback and ad-

ditional remedial content to help resolve the uncer-

tainty (uncertainty-adaptive-tutor3).

3 Local Performance Evaluation

Here we discuss how to evaluate the local impact of

user state misclassification in dialogue systems.

3.1 Defining a User State Severity Ranking

Building on tutoring research that views both uncer-

tainty and incorrectness as signals of learning im-

passes (Section 2), we previously defined a sever-

ity ranking for the four impasse states correspond-

ing to all combinations of binary (in)correctness

less higher than always predicting no uncertainty (a majority

class baseline has 0% recall), and is on par with prior work in

affect-adaptive tutoring systems, e.g. (Walonoski and Heffer-

nan, 2006); in general affective systems research has found it

difficult to accurately predict positive occurrences of affect.
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Impasse State: certain+incorrect uncertain+incorrect uncertain+correct certain+correct

Severity: most less least none

Figure 2: User Impasse State Severity Ranking

and (un)certainty (Forbes-Riley and Litman, 2011a).

This ranking, shown in Figure 2, reflects the as-

sumption that a student must perceive an impasse in

order to resolve it. A state of uncertainty reflects this

awareness. Therefore, the most severe type of learn-

ing impasse occurs when a student is incorrect but

not aware of it. Impasse states of decreasing sever-

ity occur when the student is incorrect but aware that

s/he might be, and correct but believes s/he may not

be, respectively. No impasse exists when a student

is correct and not uncertain about it.

In our prior work, this ranking of user states was

independently validated by showing that average im-

passe state severity negatively correlates with global

learning gain in our system dialogues (Forbes-Riley

and Litman, 2011a). In other words, a higher pro-

portion of user states with less severe or no impasses

directly relates to higher global learning gain.

More generally, the idea of ranking user states in

terms of those that do or do not represent communi-

cation impasses applies to other dialogue system do-

mains and other user state dimensions as well. For

example, in information-seeking domains, frustra-

tion and anger are common affective states whose

occurrence during the dialogue signals severe com-

munication problems (Batliner et al., 2003), while

hang-ups and turns requesting a human operator are

other types of user states whose occurrence dur-

ing the dialogue signals severe communication prob-

lems (Walker et al., 2000b).

Moreover, state trajectories can be used to repre-

sent abstractions over other types of user (or system)

behaviors. In our tutoring system analysis, repre-

senting user states in terms of only (un)certainty and

(in)correctness is an abstraction that we find useful

for analyzing impasse trajectories. However, dur-

ing run-time, a finite-state dialogue manager con-

sisting of 142 states actually controls the system’s

operation, and uses many other features besides user

uncertainty and incorrectness to determine the sys-

tem’s response (e.g. the physics concepts related to

the current system question, the history of prior stu-

dent answers to similar questions, etc.). Any of these

states could be analyzed as well to understand their

local performance impact, as could their analogs in

other system domains. For example, in a train di-

alogue system, while the actual state representation

used during operation could be quite complex, for

a trajectory analysis a simpler representation could

be suitable, one which tracks whether the system

knows the values of the n attributes needed to query

the database. The state ranking in this case would

be over equivalence classes of states: states with n

attributes known > states with n-1 attributes known

> ... > initial state with 0 attributes known.

3.2 Computing User State Trajectories

Local trajectories of user states during a dialogue

can be computed as the likelihood of transitioning

from the user state in turn n to the user state in turn

n+1. Here we use D’Mello et al.’s metric, transition

likelihood L (D’Mello et al., 2007).

Transition likelihood L is computed as shown be-

low, where n refers to the impasse state in turn n

and n+1 refers to the impasse state in turn n+1. As

shown, L is computed as the conditional probabil-

ity that the user state in turn n+1 will occur given

that the user state in turn n has occurred, adjusted

for the base rate of occurrence of the user state in

turn n+1. The denominator normalizes the result so

that L ranges from -∞ to 1. L=1 indicates that n+1

always follows n over and above the probability of

n+1 occurring. L=0 indicates that n+1 follows n at

the chance level. L<0 indicate that the likelihood of

n+1 following n is much lower than the base rate of

n+1 occurring.6

L(n→n+1) =
P (n+1|n)−P (n+1)

1−P (n+1)

Transition likelihood L has previously been used

to compute the likelihood of transitioning from one

affective state to another (e.g., from confusion to

6Note that this metric, which assesses the adjusted probabil-

ity of one user state following another, is equivalent to Kappa

in computing agreement among annotators after adjusting for

chance (D’Mello et al., 2007).
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frustration) in a single set of dialogues between

student and computer tutor (D’Mello et al., 2007).

Transition likelihood L has also been used to com-

pare how the likelihoods of transitioning from one

affective state to another vary across two differ-

ent sets of dialogues collected with two different

versions of an affect-adaptive tutoring system (Mc-

Quiggan et al., 2008). Our analysis is based on

this analysis, but extends it in three ways: 1) our

transitions involve complex user states composed of

two dimensions ((un)certainty and (in)correctness),

2) the user states in our transitions are ranked to

enable a local performance analysis, 3) our perfor-

mance analysis is applied to the question of how user

state misclassification impacts local performance,

by comparing transition likelihoods after accurate

and inaccurate user state classifications.

In this prior work and in our work, likelihoods

for each transition are computed for each user (over

all dialogues of a user). ANOVAs with post-hoc

pairwise tests can then determine if there were sig-

nificant differences between all possible transitions

from the current user state in turn n.

To investigate how user state misclassifications

impact local performance, two user trajectories are

computed per user for each n→n+1 transition: one

when the manual and automatic user state labels

for turn n agreed, and another when they did not

agree. In both cases, using the manual label for turn

n+1 enables the true final user state to be compared

across the two sets of trajectories. Comparison of

the final state in the two sets of trajectories indicates

how user state misclassifications change the relative

likelihood of the subsequent user states. Transitions

to higher ranked states indicate improved local per-

formance while transitions to lower ranked states in-

dicate decreased local performance.

4 Impact of User State Misclassifications

in Uncertainty-Adaptive ITSPOKE

We now apply this analysis to the uncertainty-

adaptive ITSPOKE dialogues, to investigate how

user state misclassification impacts the local perfor-

mance of the uncertainty adaptation.

Since the complex user state of uncertain+correct

triggers the uncertainty adaptation, misclassifying

(un)certainty or (in)correctness can potentially im-

pact the local performance of the adaptation. How-

ever, as noted in Section 2, we previously found

that uncertainty misclassifications in our system

were more severe than correctness misclassifica-

tions. Thus, to streamline our analysis and avoid

data skew issues, we focus on how (un)certainty

misclassifications in manually labeled correct an-

swers impact our local performance trajectories.

There are 1270 manually labeled correct turns in

the dialogues collected with uncertainty-adaptive

ITSPOKE. In the dialogues collected with non-

adaptive ITSPOKE (which we will use for compari-

son), there are 1353 manually labeled correct turns.

We hypothesize that when (un)certainty misclas-

sification in correct answers causes the uncertainty

adaptation to be erroneously triggered or blocked,

we will see a negative performance impact, in terms

of an increased likelihood of transitioning to a more

severe impasse state when uncertainty is misclassi-

fied as compared to when it is accurately classified.

4.1 Uncertainty-Adaptive ITSPOKE Results

Accurate Uncertainty Classification: Figure 3

presents descriptive statistics for the likelihood (L)

that a manually labeled uncertain+correct answer

accurately classified as uncertain in turn n will tran-

sition to each of the four manually labeled impasse

states in turn n+1. As noted in Section 3.2, L=0 indi-

cates that the transition likelihood is equal to chance,

while L>0 and L<0 indicate likelihoods greater and

less than chance, respectively.

An ANOVA indicated that there were statistically

significant differences among the likelihoods in Fig-

ure 3 (F(3,56)=3.87, p=.02). The most likely transi-

tions are shown with stripes. Specifically, post-hoc

pairwise tests showed that in turn n+1, an uncer-

tain+incorrect answer (p<.01) or uncertain+correct

answer (p=.02) is significantly more likely than a

certain+correct answer (but are themselves equally

likely). In addition, an uncertain+incorrect answer

is significantly more likely than a certain+incorrect

answer (p=.05), in turn n+1. A dialogue example of

the most likely transition after accurately classified

uncertainty is shown in Figure 5, where it is com-

pared with the misclassified minimal pair in Figure 6

(see Appendix).

These results indicate that accurately classifying

(and thus accurately adapting to) uncertain+correct
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Figure 3: Turn n→ Turn n+1 Transition Likelihoods (L)

after a manually labeled uncertain+correct answer in turn

n is accurately classified as uncertain and receives the un-

certainty adaptation

answers is most likely to yield continued uncertainty

(regardless of correctness) in turn n+1. Prior re-

search (Craig et al., 2004; Kort et al., 2001) has

shown that uncertainty and questioning are positive

and crucial aspects of the learning process. The

continued uncertainty suggests that the uncertainty

adaptation keeps the student engaged in the learn-

ing process, and the equal likelihood of correctness

or incorrectness accompanying this uncertainty sug-

gests that they have not yet unreservedly adopted ei-

ther the correct or incorrect line of reasoning about

the topic under discussion.

To determine whether any of these transitions are

directly tied to global performance, we computed

Pearson’s correlations over all students between the

percentage of each transition and global learning

gain.7 Interestingly, transitioning from an accu-

rately classified correct+uncertain answer to a cor-

rect+certain answer is negatively related to global

learning gain (R=-.458, p=.025). This indicates that

continued uncertainty after the uncertainty adapta-

tion is provided is more beneficial, in the long run,

than no uncertainty. No other trajectories are di-

rectly related to global learning. Although our prior

result, that average impasse severity negatively cor-

relates with global learning gain (Section 3.1), indi-

cates it is better from a global perspective for a stu-

dent to be in a state of no impasse (correct+certain),

it does not tell us the best way for the student to at-

7normalized learning gain = (posttest-pretest)/(1-pretest).

tain this state. The results of our transition correla-

tions shed light on this - they tell us that transitioning

directly from correct+uncertain is not the best way

to attain the no impasse state. We hypothesize that

looking at wider transition windows (e.g., trigrams)

will shed light on what is the best way to attain this

state. For example, it may be that the best way to

transition to a state of no impasse is to do so after

sustained uncertainty (as in Figure 3).

Uncertainty Misclassification: Considering now

user state misclassifications, our results for accu-

rately classified uncertain+correct answers are in

sharp contrast to those for manually labeled uncer-

tain+correct answers misclassified as certain in turn

n. In particular, an ANOVA indicated that all manu-

ally labeled impasse states are equally likely in n+1

(F(3,88)=1.22, p=.32) after a misclassified uncer-

tain+correct answer.8

These results indicate that misclassifying (and

erroneously not adapting to) uncertain+correct an-

swers is as likely to have an immediate negative im-

pact on learning as it is to have a neutral or positive

impact. In particular, the misclassification is likely

to cause some students to transition from the least

severe impasse about the concept in turn n to the

most severe impasse about the concept in turn n+1.9

When they do not receive the uncertainty adaptation,

these students adopt an incorrect line of reasoning in

turn n+1, without any uncertainty about it at all.

As illustration, compare the example in Figure 5,

where uncertainty is accurately classified, with the

example in Figure 6, where uncertainty is misclas-

sified (see Appendix). As shown, the uncertainty in

student-manual1 signals that further explanation is

needed. When received (Figure 5) the student still

makes a math error on the next question, but s/he

appears to understand the task. In contrast, when the

uncertainty adaptation is erroneously not received

(Figure 6), there is no indication that the student’s

understanding has increased; s/he appears to be sim-

ply repeating the number 9.8 (a number which ap-

pears frequently in Newtonian physics). User uncer-

tainty misclassification in other domains could have

8Since the ANOVA results were non-significant, no figure

or correlations are discussed.
9As noted in Section 2, adjacent turns within a dialogue will

either address the same or closely related topics.
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similar effects; in general, if a user is uncertain in

turn n about how to perform a task, and the system

moves on without supplying information to resolve

this uncertainty, there may be an immediate negative

impact if that knowledge is required or presupposed

again in turn n+1.

Accurate Certainty Classification: Turning now

to manually labeled certain+correct answers, Fig-

ure 4 presents descriptive statistics for the likelihood

that when accurately classified as certain in turn

n, certain+correct answers will transition to each

of the four manually labeled impasse states in turn

n+1. An ANOVA indicated that there were statisti-

cally significant differences among these likelihoods

(F(3,92)=17.96, p<.01). The most likely transitions

are shown with stripes. More specifically, post-hoc

pairwise tests showed that in turn n+1, a manually

labeled certain+correct answer is significantly more

likely than any other impasse state (p<.01), and all

other impasse states were equally likely. A dialogue

example of the most likely transition after accurately

classified certainty is shown in Figure 7, where it is

compared with the misclassified minimal pair in Fig-

ure 8 (see Appendix).

These results indicate that accurately classifying

and not adapting to certain+correct answers has an

immediate positive impact on the learning process,

by not introducing learning impasses about concepts

already understood. Note however that Pearson’s

correlations for these transitions showed no signif-

icant relation to global performance.

Certainty Misclassification: Again, our results

for accurately classified certain+correct answers are

in sharp contrast with those found for manually la-

beled certain+correct answers misclassified as un-

certain in turn n. An ANOVA indicated that all man-

ually labeled impasse states are equally likely in turn

n+1 (F(3,72)=0.33, p=.80). These results indicate

that misclassifying and erroneously adapting to cer-

tain+correct answers is as likely to have an imme-

diate negative impact on learning as it is to have a

neutral or positive impact. In particular, the misclas-

sification is likely to cause some students to tran-

sition from no impasse to the most severe impasse

state. When they erroneously receive the uncertainty

adaptation, these students go from no impasse at all

in turn n to an incorrect line of reasoning in turn n+1,

Figure 4: Turn n→ Turn n+1 Transition Likelihoods (L)

after a manually labeled certain+correct answer in turn n

is accurately classified as certain and does not receive the

uncertainty adaptation

without any uncertainty about it at all.

As illustration, compare the example in Figure 7,

where certainty is accurately classified, with the ex-

ample in in Figure 8, where certainty is misclas-

sified (see Appendix). As shown, the certainty in

student-manual1 signals that no further explanation

is needed so the system can move on (Figure 7).

When the uncertainty adaptation is erroneously re-

ceived even though the student is certain (Figure 8),

this appears to have caused the student to stop pay-

ing close attention and thus provide an obviously in-

correct answer to an easy question. User certainty

misclassification in other domains could have simi-

lar effects; in general, if a user is already certain in

turn n about how to perform a task, and the system

“wastes” his/her time by resupplying information

that is already understood, there may be an imme-

diate negative impact in terms of loss of focus, dis-

engagement, or even decreased understanding, that

cause the task in turn n+1 to be performed incor-

rectly.

4.2 Comparing Non-Adaptive ITSPOKE

As a sanity check, we performed the same trajec-

tory analysis on the dialogues from the non-adaptive

version of the system. The purpose here was to con-

firm the presupposition of the above analysis, that

uncertainty-adaptive ITSPOKE was actually pro-

ducing different local behaviors than non-adaptive

ITSPOKE. In other words, since the non-adaptive
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system ignores uncertainty, there should be no dif-

ference in transition likelihoods when uncertainty is

accurately classified versus when it is misclassified.

This expectation was borne out. ANOVAs indi-

cated that in the non-adaptive system, a manually

labeled uncertain+correct answer is equally likely

to transition to any of the four manually labeled

impasse states in turn n+1, regardless of whether

it was accurately classified as uncertain in turn n

(F(3,48)=0.25, p=.86) or misclassified as certain in

turn n (F(3,92)=0.07, p=.98). Thus as expected, un-

certain+correct answers in the non-adaptive system

pattern like uncertain+correct answers misclassified

as certain in the uncertainty-adaptive system. In

both cases, we see the same negative immediate per-

formance impact of not giving uncertain+correct an-

swers the uncertainty adaptation.

ANOVAs with post-hoc pairwise tests further in-

dicated that in the non-adaptive system, a manually

labeled certain+correct answer is significantly more

likely to transition to a certain+correct answer than

to any other manually labeled impasse state, regard-

less of whether it was accurately classified as certain

in turn n (ANOVA:(F(3,96)=20.81, p<.001), post-

hoc tests: p<.001) or misclassified as uncertain in

turn n (ANOVA:(F(3,80)=14.00, p<.001), post-hoc

tests: p<.001). Thus as expected, certain+correct

answers in the non-adaptive system pattern like ac-

curately classified certain+correct answers in the

uncertainty-adaptive system. In both cases, we see

the same positive immediate performance impact of

not giving manually labeled certain+correct answers

the uncertainty adaptation.

4.3 Comparing Local and Global Performance

Results

Finally, in analyses such as this one, comparing lo-

cal and global performance results can help pinpoint

specific areas for future system redesign. In our

case, this comparison suggests the most important

aspect to focus on with respect to improving our un-

certainty model.

In particular, as noted in Section 1, we previ-

ously found that the low uncertainty recall of our

system (approximately 20%) had a negative global

performance impact; mistaking so much true uncer-

tainty for certainty substantially reduced the amount

users learned (Forbes-Riley and Litman, 2011a).

We also showed in this prior work that mistaking

certainty for uncertainty did not negatively impact

the amount users learned. These results suggested

that the system should be less cautious in applying

the uncertainty-adaptive behavior; i.e., applying it

whenever there is some possibility that the user is ac-

tually uncertain, even if it means applying it to some

turns that are actually certain.

On the other hand, our local performance analy-

sis in this paper showed that (un)certainty misclas-

sification increased the likelihood of an immediate

negative impact on learning. These results suggest

that the system should be more cautious in applying

the uncertainty-adaptive behavior; i.e., only apply-

ing it when there is a high probability that the user

is actually uncertain.

Together these local and global results suggest

that we should focus on improving uncertainty re-

call without decreasing uncertainty precision, in our

uncertainty model. With this goal in mind, we are

currently exploring the use of features and methods

from recent INTERSPEECH emotion and paralin-

guistic challenges (Schuller et al., 2009; Schuller et

al., 2010).

5 Conclusion and Future Directions

This paper presents an approach for analyzing the

immediate impact of user state misclassifications in

dialogue systems. A ranking of user states is de-

fined, and then user state trajectories are compared

when the first state is accurately classified versus

misclassified. Trajectories are quantified using a

previously proposed metric representing the likeli-

hood of transitioning between states. Comparison

of the two sets of trajectories shows whether mis-

classifications change the likelihood of subsequent

higher or lower ranked states, relative to accurate

classification. We illustrated the approach with an

adaptive tutoring system that automatically detects

and adapts to student uncertainty.

As our results indicate, the approach can be used

to answer questions which global performance anal-

yses overlook. First, the analysis shows whether

user state misclassifications actually matter locally

- whether these errors have an immediate effect on

user behavior or not. Moreover, the analysis can de-

termine whether this effect is positive or negative or
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neutral. In our tutoring system data, we found that

misclassifying user uncertainty had a negative im-

mediate impact on user behavior, relative to accurate

classification.

The analysis can also confirm that a dialogue in-

tervention actually changes user behaviors. In our

tutoring system data, we found that the adaptive sys-

tem yielded significantly different user state trajec-

tories than the non-adaptive system, even though,

as noted in Section 1, our prior global performance

analysis did not show any overall differences among

the global performance metrics that we examined

across the adaptive and non-adaptive systems.

In addition, the analysis can confirm that a dia-

logue intervention shifts user behaviors in the de-

sired direction. In our tutoring system data, we

found that the immediate effect of accurately adapt-

ing to uncertainty was most likely to be continued

uncertainty. Although the adaptation does not yield

an immediate transition to the highest ranked user

state, the outcome is clearly more positive than that

of ignoring uncertainty, which increases the likeli-

hood of transitioning to the lowest ranked user state.

Finally, the local performance results can shed

light on the steps needed to improve global perfor-

mance, by investigating how the two are related. In

our tutoring system data, we found that there is not a

one-to-one relationship between the most beneficial

local and global outcomes. In particular, transition-

ing directly to the highest ranked (no impasse) state

after receiving the uncertainty adaptation was neg-

atively correlated to global learning gain. We hy-

pothesized that looking at wider transition windows

(e.g., trigrams) will shed light on what is the best

local path to the highest ranked state.

We conclude by emphasizing that state trajecto-

ries can be used to represent abstractions over var-

ious types of user (or system) behaviors, in various

domains, whenever their local performance impact

is viewed as important to understand.
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APPENDIX

tutor1: If an object in freefall begins with a velocity of zero, what’ll its velocity be a second later? Please specify the

units too.

student-automatic1: 9.8 meters per second (uncertain+correct)

student-manual1: 9.8 meters per second?? (uncertain+correct)

tutor2: Fine. Because it’s in freefall, its acceleration is 9.8m/s2. This tells us that every second, its velocity increases

by 9.8 m/s. Therefore, at one second its velocity is 0 m/s, and a second later, its velocity is 9.8m/s. So, what’ll its

velocity be a second after that?

student-manual2: 18.6 meters per second?? (uncertain+incorrect)

Figure 5: Annotated Dialogue Example of Most Likely Transition after Accurate Uncertainty Classification

tutor1: If an object in freefall begins with a velocity of zero, what’ll its velocity be a second later? Please specify the

units too.

student-automatic1: 9.8 meters per second (certain+correct)

student-manual1: 9.8 meters per second?? (uncertain+correct)

tutor2: Fine. So, what’ll its velocity be a second after that?

student-manual2: 9.8 meters per second (certain+incorrect)

Figure 6: Annotated Dialogue Example of Negative Impact of Uncertainty Misclassification

tutor1: There’s only one horizontal force exerted on the truck during the collision with the car. What is it?

student-automatic1: impact force (certain+correct)

student-manual1: the impact force (certain+correct)

tutor2: Right. Now let’s find the forces exerted on the truck in the vertical direction during the collision. First, what

vertical force is always exerted on an object near the surface of the earth?

student-manual2: gravity (certain+correct)

Figure 7: Annotated Dialogue Example Showing Most Likely Transition after Accurate Certainty Classification

tutor1: There’s only one horizontal force exerted on the truck during the collision with the car. What is it?

student-automatic1: impact force (uncertain+correct)

student-manual1: the impact force (certain+correct)

tutor2: Right. The problem statement says the car and the truck are both traveling in a straight horizontal line when

they collide. So the impact force of the truck on the truck must be in the horizontal direction. It also says they are

driving on a patch of frictionless ice when they collide. So there is no friction to take into account. This means that

the impact force is the only horizontal force on the truck. Now let’s find the forces exerted on the truck in the vertical

direction during the collision. First, what vertical force is always exerted on an object near the surface of the earth?

student-manual2: normal force (certain+incorrect)

Figure 8: Annotated Dialogue Example Showing Negative Impact of Certainty Misclassification
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