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Abstract

Usually unsupervised dependency parsing
tries to optimize the probability of a corpus
by modifying the dependency model that was
presumably used to generate the corpus. In
this article we explore a different view in
which a dependency structure is among other
things a partial order on the nodes in terms of
centrality or saliency. Under this assumption
we model the partial order directly and derive
dependency trees from this order. The result is
an approach to unsupervised dependency pars-
ing that is very different from standard ones in
that it requires no training data. Each sentence
induces a model from which the parse is read
off. Our approach is evaluated on data from 12
differentlanguages. Two scenarios are consid-
ered: a scenario in which information about
part-of-speech is available, and a scenario in
which parsing relies only on word forms and
distributional clusters. Our approach is com-
petitive to state-of-the-art in both scenarios.

(Marcus et al., 1993) of about 15% in six years
(Klein and Manning, 2004; Spitkovsky et al., 2010),
and better and better results for other languages
(Gillenwater et al., 2010; Naseem et al., 2010),
but results are still far from what can be achieved
with small seeds, language-specific rules (Druck et
al., 2009) or using cross-language adaptation (Smith
and Eisner, 2009; Spreyer et al., 2010).

The standard method in unsupervised dependency
parsing is to optimize the overall probability of the
corpus by assigning trees to its sentences that cap-
ture general patterns in the distribution of part-of-
speech (POS). This happens in several iterations
over the corpus. This method requires clever initial-
ization, which can be seen as a kind of minimal su-
pervision. State-of-the-art unsupervised dependency
parsers, except Seginer (2007), also rely on manu-
ally annotated text or text processed by supervised
POS taggers. Since there is an intimate relationship
between POS tagging and dependency parsing, the
POS tags can also be seen as a seed or as partial an-

notation. Inducing a model from the corpus is typi-
cally a very slow process.

Unsupervised dependency parsers do not achieveThis paper presents a new and very different ap-
the same quality as supervised or semi-supervisguoach to unsupervised dependency parsing. The
parsers, but in some situations precision may be leparser does not induce a model from a big corpus,
important compared to the cost of producing manusut with a few exceptions only considers the sen-
ally annotated data. Moreover, unsupervised depetence in question. Itdoesuse a larger corpus to
dency parsing is attractive from a theoretical poininduce distributional clusters and a ranking of key
of view as it does not rely on a particular style of anwords in terms of frequency and centrality, but this
notation and may potentially provide insights abouis computationally efficient and is only indirectly re-
the difficulties of human language learning. lated to the subsequent assignment of dependency
Unsupervised dependency parsing has seen raggluctures to sentences. The obvious advantage of
progress recently, with error reductions on Englisimot relying on training data is that we do not have to
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worry about whether the test data reflects the sanveritten w; — w;. Letwy be the artificial root of
distribution as the target data (domain adaptation)he dependency structure. We us€ to denote the
and since our models are much smaller, parsing wilfansitive closure on the set of edges. Both nodes
be very fast. and edges are typically labeled. Since a dependency
The parser assigns a dependency structure to a s&ructure is a tree, it satisfies the following three
quence of words in two stages. It first decoratesonstraints: A dependency structure over a sentence

the n nodes of what will become our dependency : w, ..., w, iS connectedi.e.:
structure with word forms and distributional clus-
ters, constructs a directed acyclic graph from the Yw; € sawg —F w;

nodes in@(n?), and ranks the nodes using iterative ) o
graph-based ranking (Page and Brin, 1998). Subs@-dependency structure is alaeyclic i.e.:
quently, it constructs a tree from the ranked list of
words using a simplé(n log n) parsing algorithm.
Our parser is evaluated on the selection of 1%inal|y, a dependency structure sngle-headed
dependency treebanks also used in Gillenwater gf, .
al. (2010). We consider two cases: parsing raw text
and parsing text with information about POS. Y, Yw;.(wy — w; Awg — w;) = w; = w,
Strictly unsupervised dependency parsing is of
course a more difficult problem than unsupervised If we also require that each vertex other than the
dependency parsing of manually annotated POS sartificial root node has an incoming edge we have a
guences. Nevertheless ostrictly unsupervised complete characterization of dependency structures.
parser, which only sees word forms, performs signifin sum, a dependency structure is a tree with a lin-
icantly better than structural baselines, and it outpeear order on the leaves where the root of the tree
forms the standard POS-informed DMV-EM modeffor practical reasons is attached to an artificial root
(Klein and Manning, 2004) on 3/12 languages. Thaode. The artificial root node makes it easier to im-
full parser, which sees manually annotated text, islement parsing algorithms.
competitive to state-of-the-art models such as E- Finally, we defineprojectivity, i.e. whether the
DMV PR AS 140 (Gillenwater et al., 2018). linear order is projective wrt. the dependency tree,
as the property of dependency trees that;if— w;
it also holds that all words in betwean; and w;
The observed variables in unsupervised dependengye dominated byy;, i.e. w; —1 wy. Intuitively,
parsing are a corpus of sentenees= si,...,s, a projective dependency structure contains no cross-
where each wordv; in s; is associated with a POS ing edges. Projectivity is not a necessary property
tagp;. The hidden variables are dependency struef dependency structures. Some dependency struc-
turest = ¢y,...,t, Wheres; labels the vertices of tures are projective, others are not. Most if not
t;. Each vertex has a single incoming edge, possiblll previous work in unsupervised dependency pars-
except one called the root of the tree. In this worling has focused on projective dependency parsing,
and in most other work in dependency parsing, wbuilding on work in context-free parsing, but our
introduce an artificial root node so that all verticeparser is guaranteed to produce well-formed non-
decorated by word forms have an incoming edge. projective dependency trees. Non-projective pars-
A dependency structure such as the one in Figng algorithms for supervised dependency parsing
ure 1 is thus a tree decorated with labels and augrave, for example, been presented in McDonald et
mented with a linear order on the nodes. Each edgg. (2005) and Nivre (2009).
(1,7) is referred to as a dependency between a head
word w; and a dependent word; and sometimes 1.2 Related work

!Naseem et al. (2010) obtain slightly better results, buy onIDependenCy Model with Valence (DMV) by Klein

evaluate on six languages. They made their code publicgthou @nd Manning (2004) was the first unsupervised de-
http://groups.csail.mit.edu/rbg/code/dependency/ pendency parser to achieve an accuracy for manually

—Jw; € s.w; —T w;

1.1 Preliminaries
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POS-tagged English above a right-branching basbeetter than the DMV model.
line.
DMV is a generative model in which the sentence2 Ranking dependency tree nodes

rootis generated and then each head recursively geﬂﬁe main intuition behind our approach to unsuper-

erates its left and right dependents. For egch s, ) L
t; is assumed to have been built the following wayyIsed dependency parsing is that the nodes near the

s root in a dependency structure are in some sense the
The arguments of a heddin directiond are gen- ) :
. o most important ones. Semantically, the nodes near
erated one after another with the probability that n . ) .
-~ . the root typically express the main predicate and
more arguments af should be generated in direc- its arguments. Iterative graph-based ranking (Page
tion d conditioned o, d and whether this would be 9 : grap 9 9

the first argument of in directiond. The POS tag of and Br'm, 1998)_was f|rsjc used to rank vv_ebpages
. . ; according to their centrality, but the technique has
the argument of. is generated giveh andd. Klein

and Manning (2004) use expectation maximizatioéclOunOI wide application in natural language process-

(EM) to estimate probabilities with manually tuned 9 Vr?\rlatlons of the algorithm presented In Page
linguistically-biased priors. and Brin (1998) have been used in keyword extrac-

Smith and Eisner (2005) use contrastive est_lon and extractive summarization (Mihalcea and Ta-

timation instead of EM, while Smith and Eis- rau, 2004), word sense disambiguation (Agirre and
ner (2006) use structural annealing which pena§ ' ’

. . L san et al., 2010). In this paper, we use it as the first
izes long-distance dependencies initially, graduall teD N & two-st N wised dependen rsin
weakening the penalty during training. Cohen € ep In a wo-step Unsupervised dependency parsing

al. (2008) use Bayesian priors (Dirichlet and LogislD rocedure. _
The parser assigns a dependency structure to a se-

tic Normal) with DMV. All of the above approaches ¢ ds in t ¢ it first d X
to unsupervised dependency parsing build on th Hence of words In two stages. Irst decorates

linguistically-biased priors introduced by Klein andtte "t nodegtr(l) f wh(?tfwnl bec%mg (t)utr) (E:e perlwd(Tncy
Manning (2004). structure with word forms and distributional clus-

In a similar way Gillenwater et al. (2010) try ters, anStrUQCts a directed acyclic graph from .the
nodes inO(n*), and ranks the nodes using iterative

to penalize models with a large number of disr_%raph based ranking. Subsequently, it constructs
tinct dependency types by using sparse posteriors.“" ' ’
P y yp y g sp P tree from the ranked list of words using a sim-

They evaluate their system on 11 treebanks from t Olnl . loorithm. Thi tion d
CONLL 2006 Shared Task and the Penn-Iil treebanR € O (77 log n) parsing algorithm. This section de-
and achieve state-of-the-art performance. scribes the graph construction step in some detalil
An exception to using linguistically-biased priorsffJInOI t?rleflltyi]descrlzes the iterative graph-based rank-
is Spitkovsky et al. (2009) who use predictions on'9 agqu m used. i . o
sentences of length to initialize search on sen- The first step, however, is assigning distributional

tences of length + 1. In other words, their method clusters to the words in the sentence. We use a hi-
requires no manual tuning and bootstraps itself 0tﬁrarchical clustering algorithm to induce 500 clus-

increasingly longer sentences ters from the treebanks using publicly available soft-
. 2 . . . .
A very different, but interesting, approach is taker{Vare: This pr(_)cedure IS quqdraﬂc in the number of
in Brody (2010) who use methods from unsuIoerg;lusters, but linear in the size of the corpus. The
vised word alignment for unsupervised dependenc‘iJUSter names are bitvectors (see Figure 1).
parsing. In particular, he sees dependency parsirig1
as directional alignment from a sentence (possible _ _ .
dependents) to itself (possible heads) with the mod-n€ text graph is now constructed by adding dif-
ification that words cannot align to themselves; folferent kinds of directed edges between nodes. The
lowing Klein and Manning (2004) and the subse&dges are not weighted, but multiple edges between
quent papers mentioned above, Brody (2010) comodes will make transitions between these nodes in
siders sequences of POS tags rather than raw text.zqip:/amww.cs.berkeley.edwiliang/software/brown-
Results are below state-of-the-art, but in some caseisster-1.2.zip

Edges
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iterative graph-based ranking more likely. The difstructural baseline; either left-attach, i.e. all words
ferent kinds of edges play the same role in our modeittach to their left neighbor, or right-attach. Which
as the rule templates in the DMV model, and thetructural baseline is used depends on the language
are motivated below. in question. It is thus assumed that we know enough
Some of the edge assignments discussed bel@bout the language to know what structural baseline
may seem rather heuristic. The edge template waerforms best. It is therefore safe to incorporate this
developed on development data from the Englisknowledge in our unsupervised parsers; our parsers
Penn-lll treebank (Marcus et al., 1993). Our edgare still as "unsupervised” as our baselines. If a lan-
selection was incremental considering first an exguage has a strong left-attach baseline, like Bulgar-
tended set of candidate edges with arbitrary paranan, the first word in the sentence is likely to be very
eters and then considering each edge type at a tinentral for reasons of economy of processing. The
If the edge type was helpful, we optimized any postanguage is likely to be head-initial. On the other
sible parameters (say context windows) and went dmnd, if a language has a strong right-attach base-
to the next edge type: otherwise we disregardéd itline, like Turkish, the last word is likely to be cen-
Following data set et al. (2010), we apply the bedral. The language is likely to be head-final. Some
setting for English to all other languages. languages like Slovene have strong @0%) left-
Vine edgesEisner and Smith (2005) motivate a vineattachand right-attach baselines, however. We in-
parsing approach to supervised dependency parsingrporate the knowledge that a language has a strong
arguing that language users have a strong prefdeft-attach or right-attach baseline if more than one
ence for short dependencies. Reflecting preferentiaird of the dependencies are attachments to a im-
for short dependencies, we first add links betweemediate left, resp. right, neighbor. Specifically, we
all words and their neighbors and neighbors’ neighadd edges from all nodes to the first element in the
bors. This also guarantees that the final graph is cosentence if a language has a strong left-attach base-
nected. line; and from all edges to the last (non-punctuation)
Keywords and closed class word$Ve use a key- element in the sentence if a language has a strong
word extraction algorithm without stop word lists toright-attach baseline.

extract non-content words and the most importaniord inequality. An edge is added between two
content words, typically nouns. The algorithm is ayords if they have different word forms. It is not

crude simplification of TextRank (Mihalcea and Ta-ery likely that a dependent and a head have the
rau, 2004) that does not rely on linguistic resourcesame word form.

so that we can easily apply it to Iow-resqurce _IanCIUSter equality. An edge is added between two
guages. Since we do not use stop word lists, h'ghb(/ords if they are neighbors or neighbors’ neighbors

¥a|r|1keddwg)rdshwnll typically be nonl-corr:tenthwo;ds,and belong to the same clusters. If so, the two words
ollowed by what is more commonly thought of a5 e conjoined.

keywords. Immediate neighbors to top-100 words o i i
are linked to these words. The idea is that nonviorPhological inequality. If two words w;, w; in
content words may take neighboring words as a}fhe same cgntexqz(— jl = 4) share prefix or suf-
guments, but dependencies are typically very loc 1i|'x, i.e. the first or last three letters, we add an edge
The genuine keywords, ranked 100-1000, may a%etwee” them.
heads of dependents further away, and we therefore
add edges between these wortdsand their neigh- 2.2 Edges using POS
boring wordswj if |i — j| < 4. _
Head-initial/head-final. It is standard in unsuper- Verb edgesAll words are attached to all words with
vised dependency parsing to compare against &POS tag beginning with "V....".

3The search was simplified considerably. For example, w. Finally, when We-have access t-o POS information,
only considered symmetric context windows,. where Ieftemh’t $ve do not rer onvine edges besides Ieft_-attaCh’ and
length equals length of right context, and we binned thigtien W€ do not rely on keyword edges or suffix edges ei-
considering only values 1, 2, 4, 8 and all. ther.
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2.3 Ranking from/to The market crumbled

: _ The 0 4 6 3
Given the constructed graph we rank the nodes using  market 4 0 5 3
the algorithm in Page and Brin (1998), also known  crumbled | 4 4 0 4
as PageRank. The input to this algorithm is any di- ___ 223 24 6 23
rected graphG = (E, V') and the output is an as- PR(0) 8 4.1 30.3 7
signmentPR : V — R of a score, also referred to o - i
as PageRank, to each verjtgx inthe graph suchthatall, . Thef kaet r cDmbIe p _ !
scores sum to 1. A simplified version of PageRank 1 2 3 4

1010100 10111011000 110101010100 1110

can be defined recursively as:

PR(w) Figure 1. Graph, pagerank (PR) and predicted depen-
weBy L( dency structure for sentence 5, PTB-Ill Sect. 23.

PR(v) =% o)
whereB, is the set of vertices such thab, v) €

E, and L(w) is the number of outgoing links from a ranking of the nodes. This method will produce

w, i.e. {(u,v)|(u,v') € E,u = w}|. In addi- the correct analysis of this sentence; see Figure 1.

tion to this, Page and Brin (1998) introduces a sofhis is because the PageRank scores reflect syntac-

called damping factor to reflect that fact that Internetic superiority; the root of the sentence typically has

users do not continue crawling web sites forever, buhe highest rank, and the least important nodes are

restart, returning to random web sites. This influranked lowly.

ences centrality judgments and therefore should be

reflected in the probability assignment. Since theré From ranking of nodes to dependency

is no obvious analogue of this in our case, we sim- trees

lify the PageRank algorithm and do not incorpo-
plify g - P Crtonsider the example in Figure 1 again. Once we

rate damping (or equivalent, set the damping fact .
ping (or eq ping %ave ranked the nodes in our dependency structure,

to 1.0). ) N
Note, by the way, that although our graphs ardve build a dependency structure from it using the

non-weighted and directed, like a graph of wet‘))arsmg algprithm in Figure 2. The input of the
pages and hyperlinks (and unlike the text graphs graph is a list of ranked words = (n1,...,7m),
here each node; corresponds to a sentence posi-

Mihalcea and Tarau (2004), for example), severdl q db e
pairs of nodes may be connected by multiple edgelO" 7pr2ind(i) d€COTrated by a word formey,gina(;).

making a transition between them more probablé’yhergp“@fi"d : {li""’m} = {1,...,m}is a

Multiple edges provide a coarse weighting of the unr_nappmg rom .ran to sgntence pOS.ItIOH..

derlying minimal graph. The interesting step in the algorithm is the head
selection step. Each word is assigned a head taken

2.4 Example from all the previously used heads and the word to

In Figure 1, we see an example graph of word node¥/hich @ head was just assigned. Of these words,
represented as a matrix, and a derived dependent§? simply select the closest head. If two possible
structuré® We see that there are four edges froneads are equally close, we select the one with high-
The to marketand six fromThe to crumbles for €St PageRank.

example. We then compute the PageRank of eachOur parsing algorithm runs i@ (nlogn), since
node using the algorithm described in Page ani§funs over the ranked words in a single pass con-
Brin (1998); see also Figure 1. The PageRank vafidering only previously stored words as possible
ues rank the nodes or the words. In Sect. 3, we dg€ads, and guarantees connectivity, acyclicity and

scribe a method for building a dependency tree froringle-headedness, and thus produces well-formed

ST —— rusture in Fi 1 contains devend non-projective dependency trees. To see this, re-
e dependency structure in Figure 1 contains dependen

labels such as 'SBJ’ and 'ROOT’. These are just included fo&‘ember that We”formed_ fjgpendency trees are Sl_JCh
readability. We follow the literature on unsupervised depe that all nodes but the artificial root nodes have a sin-

dency parsing and focus only on unlabeled dependency garsirgle incoming edge. This follows immediately from
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1. = (ny,...,ny) # the ranking of nodes

2: H = (no) # possible heads

3: D = () # dependency structure

4: pr2ind : {1,...,m} — {1,...,m} # a mapping from rank to sentence position
5. for n; € 7w do

6: if [H|=1then

7 ¢ = 0 # used to ensure single-headedness

8. else

9: c=1

10:  endif

11 ny = argmin, cpye) |preind(i) — pr2ind(j)| # select head ab;
12. H = n; U H # maken; a possible head

130 D = {(Wprgind(i) — Wpraind(;7))} U D # add new edge t®
14: end for
15: return D

Figure 2: Parsing algorithm.

the fact that each node is assigned a head (line 181 Strictly unsupervised dependency parsing
Furthermore, the dependency tree must be acycl
This follows immediately f“’f“ th? fact that a wor_d model that has no access to POS information. Since
can only attach to a word with higher rank than it-

i C tivity foll ¢ the fact that th we are not aware of other work in strictly unsuper-
sell. -Lonnectivity follows from he fact that there, .. 4 multi-lingual dependency parsing, so we com-
is an artificial root node and that all words attach t

thi d ¢ des dominated by th ¢ nod are against the best structural baseline (left-attach
IS hode or o nodes dominated by the root hode, right-attach) and the standard DMV-EM model
Finally, we ensure single-headedness by explicitl

) , f Klein and Manning (2004). The latter, however,
disregarding the root node once we have attached t 85 access to POS information and should not be
node with highest rank to it (line 6—7). Our parsin

. L ) gthought of as a baseline. Results are presented in
algorithm does not guarantee projectivity, since thEigure 3

iterative graph-based ranking of nodes can permute”, . . .
grap g P Itis interesting that we actually outperform DMV-

the nodes in any order.

EM on some languages. On average our scores are
significantly better § < 0.01) than the best struc-
tural baselines (3.8%), but DMV-EM with POS tags

We use exactly the same experimental set-up (i%still 3.0% bet_ter than our strictly unsupervised
Gillenwater et al. (2010). The edge model Wagnodel. Fpr English, our system performs a lot worse
developed on development data from the Englisiian Seginer (2007).

Penn-lll treebank (Marcus et al., 1993), and we eval- . :
uate on Sect. 23 of the English treebanks and the te45'? Unsupervised dependency parsing
sections of the remaining 11 treebanks, which were (standard)
all used in the CoNLL-X Shared Task (Buchholz andVe then evaluate our unsupervised dependency
Marsi, 2006). Gillenwater et al. (2010) for someparser in the more standard scenario of parsing sen-
reason did not evaluate on the Arabic and Chinegences annotated with POS. We now compare our-
treebanks also used in the shared task. We also falelves to two state-of-the-art models, namely DMV
low Gillenwater et al. (2010) in only evaluating ourPR-AS 140 and E-DMV PR-AS 140 (Gillenwater et
parser on sentences of at most 10 non-punctuatiah, 2010). Finally, we also report results of the IBM
words and in reporting unlabeled attachment scoresodel 3 proposed by Brody (2010) for unsupervised
excluding punctuation. dependency parsing, since this is the only recent pro-

We first evaluate the strictly unsupervised parsing

4 Experiments
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baseline EM ours ROOT
Bulgarian 37.7 37.8 419 RooT
Czech 325 29.6 28.7 . * Bll £ S ik ‘3 _ld_
Danish 43.7 47.2 43.7 -Root- elgien eschrankt erteidigung
NE VVFIN NN
Dutch 38.7 37.1 331 e
English 339 458 36.1 %) (" )
German 27.2 35.7 36.9 -Root- Belgien beschrankt Verteidigung
Japanese 44.7 52.8 56.5 NE VVFIN NN
Portuguese 355 35.7 35.2
glogr?igﬁ g?g jég ggg Figure 5: Predicted dependency structures for sentence 4
S\F/)vedish 30.6 39'4 34'5 in the German test section; strictly unsupervised (above)
Turkish 36.6 46.8 45'9 and standard (below) approach. Red arcs show wrong
A 345 413 383 decisions.

Figure 3: Unlabeled attachment scores (in %) on raw texg00d at attaching nouns as the model with POS, it
(EM baseline has access to POS.) is much worse attaching verbs. Since more links

to verbs are added, verbs receive higher rank, and

this improves f-scores for attachments to the artifi-

posal we are aware of that departs significantly fron&ial root node:

the DMV model. The results are presented in Fig-

ure 4 f-score | strict-unsup unsup

’ o to_root | 39.5% 74.0%

Our results are on average significantly better than 1 62.3% 69.6%

DMV PR-AS 140 @.5%), and better than DMV PR- 2 7.4% 24.4%

AS 140 on 8/12 languages. E-DMV PR-AS 140 is 3-6 0 22.4%
slightly better than our model on average (1.3%), 7 0 0

but we still obtain better results on 6/12 languages. This is also what helps the model with POS when
Our results are a lot better than IBM-M3. Naseenparsing the example sentence in Figure 5. The POS-
et al. (2010) report better results than ours on Pojhformed parser also predicts longer dependencies.
tuguese, Slovene, Spanish and Swedish, but worseThe same pattern is observed in the Turkish data,

on Danish. but perhaps less dramatically so:
. acc strict-unsup  unsup
5 Error analysis Noun | 3% 5%

In our error analysis, we focus on the results for Verb | 41% 51%

German and Turkish. We first compare the results The increase in accuracy is again higher with
of the strictly unsupervised model on German wittverbs than with nouns, but the error reduction was
the results on German text annotated with POS. THegher for German.

main difference between the two models is that more f-score | strict-unsup  unsup
links to verbs are added to the sentence graph prior to_root | 57.4% 90.4%
to ranking nodes when parsing text annotated with 1 65.7% 69.6%
POS. For this reason, the latter model improves con- 2 32.1% 26.5%
siderably in attaching verbs compared to the strictly 3‘6 31-6% 122457;?

unsupervised model: _ .
The parsers predict more long dependencies for

acc strict-unsup  unsup . ) - .
NN 23% 8% Turkish than fo_r German; precision is generally
NE 41% 39% good, but recall is very low.

VVFIN | 31% 100% 6 C lUSi

VAFIN | 9% 86% onclusion

VVPP | 13% 53% We have presented a new approach to unsupervised

While the strictly unsupervised model is about aslependency parsing. The key idea is that a depen-
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DMV PR-AS 140 E-DMV PR-AS 140 ours IBM-M3
Bulgarian 54.0 59.8 52.5
Czech 32.0 54.6 42.8
Danish 42.4 47.2 55.2 41.9
Dutch 37.9 46.6 49.4 35.3
English 61.9 64.4 50.2 39.3
German 39.6 35.7 50.4
Japanese 60.2 59.4 58.3
Portuguese 47.8 49.5 52.8
Slovene 50.3 51.2 441
Spanish 62.4 57.9 52.1
Swedish 38.7 41.4 455
Turkish 534 56.9 57.9
AV 48.4 52.2 50.9

Figure 4: Unlabeled attachment scores (in %) on text anedtatth POS.

dency structure also expresses centrality or saliendyan Klein and Christopher Manning. 2004. Corpus-
so by modeling centrality directly, we obtain infor- based induction of syntactic structure: models of de-
mation that we can use to build dependency struc- Pendency and constituency. ACL.

tures. Our unsupervised dependency parser thlfichell Marcus, Mary Marcinkiewicz, and Beatrice
works in two stages: it first uses iterative graph- Santorini. 1993. Building a large annotated corpus

based ki K ds i f | of English: the Penn TreebankComputational Lin-
ased ranking to rank words In terms of central- guistics 19(2):313-330.

ity and then constructs a dependency tree from th@yan McDonald, Fernando Pereira, Kiril Ribarov, and
ranking. Our parser was shown to be competitive to jan Hajic. 2005. Non-projective dependency parsing
state-of-the-art unsupervised dependency parsers. using spanning tree algorithms. HLT-EMNLP.
Rada Mihalcea and Paul Tarau. 2004. Textrank: bringing
order into texts. IEEMNLP.
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