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Abstract

Word Sense Induction (WSI) is an unsu-
pervised approach for learning the multiple
senses of a word. Graph-based approaches to
WSI frequently represent word co-occurrence
as a graph and use the statistical properties
of the graph to identify the senses. We rein-
terpret graph-based WSI as community detec-
tion, a well studied problem in network sci-

fined as a group of connected nodes that are more
connected to each other than to the rest of the graph
(Fortunato, 2010). Within the co-occurrence graph,
we hypothesize that communities identify sense-
specific contexts for each of the terms. Community
detection identifies groups of contextual cues that
constrain each of the words in a community to a sin-
gle sense.

To test our hypothesis, we require a community

ence. The relations in the co-occurrence graph
give rise to word communities, which distin-

guish senses. Our results show competitive
performance on the SemEval-2010 WSI Task.

detection algorithm with two key properties: (1) a
word may belong to multiple, overlapping commu-
nities, which is necessary for discovering multiple
senses, and (2) the community detection may be hi-
, erarchically tuned, which corresponds to sense gran-
1 Introduction ularity. Therefore, we adapt a recent, state of the art
Many words have several distinct meanings. For exapproach, Link Clustering (Ahn et al., 2010). Our
ample, “law” may refer to legislation, a rule, or po-initial study suggests that community detection of-
lice depending on the context. Word Sense Induders competitive performance and sense quality.
tion (WSI) discovers th_e _diffe_rent senses of awordy  \word Sense Induction

such as “law,” by examining its contextual uses. By ]

deriving the senses of aword directly from a corpug™ €0-0ccurrence graph is fundamental to our ap-

WSl is able to identify specialized, topical meaning®roach; terms are represented as nodes ar,ld an
in domains such as medicine or law, which prede€d9¢ between two nodes indicates the terms’ co-

fined sense inventories may not include occurrence, with a weight proportional to frequency.

aWe consider graph-based approaches to Wéll\{hile prior work has focused on clustering the

which typically construct a graph from word occur-nodes to induce senses, using Link _Clu_stering (Ahn
rences or collocations. The core problem is how t§t @ 2010), we cluster thetiges, which is equiv-
identify sense-specific information within the graptfl€nt 1 grouping the word collocations to iden-
in order to perform sense induction. Current apllly Sense-specific contexts. We summarize our ap-
proaches have used clustering (Dorow and wideroach as fo_ur_ steps: (1) selecting the contextual
dows, 2003; Klapaftis and Manandhar, 2008) ofU€S: (2) building a co-occurrence graph, (3) per-

statistical graph models (Klapaftis and Manandhaf°'Ming community detection on the graph, and (4)

2010) to identify sense-specific subgraphs. sense labeling new contexts using the discovered

We reinterpret the challenge of identifying senseSommunities.

specific information in a co-occurrence graph as on€ontext Refinement Representing the co-
of community detection, where a community is de- occurrence graph for all terms in a context is
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prohibitively expensive. Moreover, often only a
subset of the terms in a context constrain the sense
of an ambiguous word. Therefore, we refine a
word’s context to include only a subset of the terms
present. Following previous work (Véronis, 2004),
we select only nouns in the context.

Early experiments indicated that including infre-
guent terms in the co-occurrence graph yielded poor =
performance, which we attribute to having too fewmms '\Y//‘\_\}
connecting edges to identify meaningful community /&@
structure. Therefore, we include only those nouns RCD:
occurring in the most frequent 5000 tokens, which
are likely to be representative the largest communi-
ties in which a term takes part. Last, we include all
the nouns and verbs used in the SemEval 2010 WSI
Task (Manandhar et al., 2010), which are used ifigure 1: A portion of the local co-occurrence graph
our evaluation. The selected context terms are thdar “mouse” from the SemEval-2010 Task 14 corpus
stemmed using the Porter stemmer.

S

T @@
\ ‘9& l";(ﬁ'

/ /

7 ¢

o -
NERss

Building the Co-occurrence Graph The graphis ties we selected the approach of Ahn et al. (2010),
iteratively constructed by adding edges between th&mmarized next, which performs well for overlap-
terms from a context. For each pair-wise combiping community structure.

nation of terms, an edge is added and its weight First, the edges are clustered using an unweighted

is increased by 1. This step effectively embeds gmjlarity function based on the neighbors of two
clique if it did not exist before, connecting all of edgese; ; ande; ;. sim( njNny

1 St €ij,€ik) = O where
the context’s words within the graph. Once all CON3,. denotes the nodeand its neighbors. This simi-

texts have been seen, the graph is then pruned o g, reflects the percentage of terms that co-occur
move all edges with weight below a thresheld=  , common with the term for nodegsand k, inde-

25. This step removes edges form infrequent collogengent of the terms that co-occur with the shared
cations, which may not contribute sufficient grapherm forj. For example, in Figure 1, the similarity
structure for community detection, and as a practir-or the edges connecting “mouse” with “user’ and

cal consideration, greatly speeds up the communityqtyare "2 measures the overlap in the neighbors

. ] gl
detection process. However, we note that parametgf « ,ser” and “software” independent of the neigh-

was Ia_lrgely unoptimi_zed and future yvork may see Bors for “mouse,” such as “cell” and “size.”

benefit from accounting for edge weight. Using this similarity function, the edges are ag-
Community Detection Within the co-occurrence glomeratively clustered into a dendrogram. We use
graph, communities may have partial overlap. Fdihe single-link criteria which iteratively merges the
example, Figure 1 illustrates a part of the local grapfwo clusters connected by the edge pair with the
for “mouse.” Two clear senses emerge from th&ighest similarity. The dendrogram may then be cut
neighbors: one for the input device and another faat different levels to reveal different cluster granu-
the animal. However, the terms that correspontfrities; cuts near the bottom of the dendrogram cre-
to one sense also co-occur with terms corresponéte a larger number of small groups of collocations,
ing to the other sense, e.g., “information,” whichwhereas cuts near the top create fewer, larger groups
hinders finding communities directly from discon-of collocations. To select the specific partitioning
nected components in the local neighborhood. Fin®f the dendrogram into clusters, we select the solu-
ing sense-specific communities requires recognizirigon that maximizes the partition density, which Ahn
that the co-occurring terms may be shared by mukt al. (2010) define a® = % Y mc(m“(”c’l)

. " . . . . ¢ (ne=2)(nc—1)”
tiple communities. Therefore, to identify communi-whereM is the number of edges in the grapide-
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notes a specific cluster, amgd andm, are the num- FScore  V-Meas. 20 Se0/40
ber of nodes and edges in clusterespectively. Spp  61.1(3) 3.6(18) 57.64(18) 57.64 (16)
The final set of communities is derived from these Sv 56.16 (9) 8.7(6)  57.90(18) 57.36(17)
partitions: a node is a member of each community in 57 634(1) 0(26)  56.18(21) 56.20 (21)
which one of its edges occurs. Last, we remove all Best-  63.3(1)  0(26) 58.69 (14) 58.24 (13)
communities of size 3 and below, which we interpret Best  26.7(25) 16.2(1) 58.34(16) 57.27 (17)
: : . . estt 49.8(15) 15.7(2) 62.44(1) 61.96(1)
as haV|_ng too few ser_nanﬂc constraints to reliably \\“s' ¢34 0 58.67 58.95
disambiguate each of its terms.

Table 1: Performance results on the SemEval-2010

Sense Induction from Communities Each term K with K <h ) h ;
in a community is treated as having a specific sens)é\,ls‘I Task, with rank shown in parentheses. Refer-

with one sense per community. To label a contextudl''Ce Scores of the best submitted systems are shown

usage, we identify the community that best maps lis) the bottom.

the context. For a given context, made of the set of

words 1V, we score each communityconsisting of & 1;8 [ o 3. 5
words(C, using the Jaccard index weighted by com§ ¢ éy,g:.Me'ﬁ)’\E%rsgggg """"""" j 225 ‘g
munity size: score(C;, W) = |Cy] - {gﬂw{ This § o 5 E
similarity function favors mapping contexts to IargerE 1,08 0909 S
communities, which we interpret as having more se- g0 | P\W' | VoNoaeore T 008
mantic constraints. The final sense labeling consistg ¢ | P W 882 %
of the scores for all overlapping communities. f 040 8:8‘31 §
3 Evaluation 020 % ”

0.00 b—— . . . - - - L 0.00
We use the SemEval-2 Task 14 evaluation (Manand- % @ %, %, %, o, %, g,

har et al., 2010) to measure the qua“ty of induced Merge Steps Prior to Cutting the Dendrogram (in thousands)
senses. We summarize the evaluation as follows.

Systems are provided with an unlabeled training cofigure 2: V-Measure and paired FScore results
pus consisting of 879,807 multi-sentence contex{®r different partitionings of the dendrogram. The
for 100 polysemous words, comprised of 50 noundashed vertical line indicatesy p

and 50 verbs. Systems induce sense representations

for target words from the training corpus and then i finst Th sed luation t
use those representations to label the senses of g'on orinstances. The SUPETVISed evaluation frans-
. orms the induced sense clusters of a portion of the
target words in unseen contexts from a test corpus. ) " o
. . . corpus into a word sense classifier, which is then
We use the entire multi-sentence context for bUIIdfeste d on the remaining corous. An 80/20 train-test
ing the co-occurrence graph. g corpus.

. . ) lit, , and 60/40 split, , both d.
The induced sense labeling is scored using two " Ss0/20: AN SPlit, &40, are both use

unsupervised and one supervised methods. The UResults As a first measure of the quality of the in-
supervised scores consists of two contrasting medtced senses, we evaluated both the solution that
sures: the paired FScore (Artiles et al., 2009) anghaximized the partition density, referred tossp,

the V-Measure (Rosenberg and Hirschberg, 2007and an additional 5,000 solutions, evenly distributed
Briefly, the V-Measure rates the homogeneity andmong the possible dendrogram patrtitionings. Fig-
completeness of a clustering solution. Solutions thatre 2 shows the score distribution for V-Measure and
have word clusters formed from one gold-standargdaired FScore. Table 1 lists the scores and rank for
sense are homogeneous; completeness measuresShg and the solutions that optimize the V-Measure,
degree to which a gold-standard sense’s instancés, and FScore,Sr, among the 26 participating
are assigned to a single cluster. The paired FScofask-14 systems. For comparison, we include the
reflects the overlap of the solution and the gold staritighest performing systems on each measure and the
dard in cluster assignments for all pair-wise combiMost Frequent Sense (MFS) baseline.
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Discussion Optimizing the partition density re- strated that word co-occurrence graphs follow a
sults in high performance only for the FScore; howsmall-world network pattern. In his scheme, word
ever, optimizing for the V-Measure yields competi-senses are discovered by iteratively deleting the
tive performance on both measures. The behavior isore connected portions of the subgraph to reveal
encouraging as most approaches submitted to Tatfle different senses’ network structure. Our work
14 favor only one measure. capitalizes on this intuition of discovering sense-
Figure 2 indicates a relationship between the \kelated subgraphs, but leverages formalized methods
Measure and community memberships. Thereforégr community detection to identify them.
using.Sy, we calculated the Pearson correlation be- Dorow and Widdows (2003) identify sense-
tween a term’s scores and the number of communitglated subgraphs in a similar method to commu-
memberships within a single solution. The correnity detection for local region of the co-occurrence
lation with the paired FScore, = -0.167, was not graph. They use a random walk approach to identify
statistically significant ap < .05, while correlation regions of the graph that are sense-specific. Though
with the V-Measurey = 0.417 is significant with not identical, we note that the random walk model
p < 1.6e-5. This suggests that at a specific conhias been successfully applied to community detec-
munity granularity, additional communities enabldion (Rosvall et al., 2009). Furthermore, Dorow and
the WSI mapping process to make better sense didfiddows (2003) performs graph clustering on a per-
tinctions between contexts. However, we note thatord basis; in contrast, the proposed approach iden-
V-Measure begins to drop as the average commitifies communities for the entire graph, effectively
nity membership increases in solutions aftgr, as performing an all-word WSI.
shown in Figure 2. We suspect that as the agglomer- Klapaftis and Manandhar (2010) capture hierar-
ative merge process continues, communities reprehical relations between collocations using a Hi-
senting different senses become merged, leading éparchical Random Graph model where nodes are
a loss of purity. collocations and edges indicate their co-occurrence,
The lower performance df pp and the impact of which improved performance over non-hierarchical
community memberships raises the important quesiodels. Our community detection approach also
tion of how to best select the communities. Whilecaptures the hierarchical structure of the collocation
co-occurrence graphs have been shown to exhilgtaph, but uses a much simpler graphical representa-
small-world network patterns (Véronis, 2004), op4ion that forn terms require®(n) nodes and(n?)
timizing for the general criterion of partition density edges, compared 0 (n?) nodes and)(n?) edges
that has performed well on such networks does néor the above approach, which allows it to build the
result in communities that map well to sense-specificollocation graph from a larger set of terms.
contexts. We believe that this behavior is due t% Conclusion
impact of the sense inventory; selecting a commu-
nity solution purely based on the graph’s structur&Ve have proposed a new graph-based method for
may not capture the correct sense distinctions, eéWSI based on finding sense-specific word commu-
ther having communities with too few members taities within a co-occurrence graph, which are then
distinguish between senses or too many membeiggentify distinguish senses in new contexts. An
which conflates senses. However, a promising funitial analysis using the SemEval-2010 WSI task
ture direction is to examine whether the there exisiemonstrates competitive performance. Future re-
features of the graph structure that would allow fosearch will address two potential avenues: (1) the
recognizing the specific community solutions thatmpact of word frequency on community size and
correspond directly to different sense granularitiegyemberships and (2) identifying both graph proper-
without the need for an external evaluation metric. ties and semantic relations within hierarchical com-
munities that distinguish between sense granulari-
4 Related Work ties. Software for the WSI model and for Link Clus-
We highlight those related works with connectiongering is available as a part of the S-Space Package
to community detection. Véronis (2004) demon{Jurgens and Stevens, 2010).
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