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Preface

TextGraphs is at its SIXTH edition! This confirms that two seemingly distinct disciplines, graph
theoretic models and computational linguistics, are in fact intimately connected, with a large variety of
Natural Language Processing (NLP) applications adopting efficient and elegant solutions from graph-
theoretical framework.

The TextGraphs workshop series addresses a broad spectrum of research areas and brings together
specialists working on graph-based models and algorithms for natural language processing and
computational linguistics, as well as on the theoretical foundations of related graph-based methods.

This workshop series is aimed at fostering an exchange of ideas by facilitating a discussion about both
the techniques and the theoretical justification of the empirical results among the NLP community
members. Spawning a deeper understanding of the basic theoretical principles involved, such
interaction is vital to the further progress of graph-based NLP applications.

The submissions to this year workshop were high quality and also the selection process was more
competitive than in previous editions. We selected 9 out of 16 papers for an acceptance rate of about
55%. The predominant topics of such contributions are, as usual, semantic similarity and word sense
disambiguation. However, thanks also to the special theme of this year in the area of machine learning,
i.e. Graphs in Structured Input/Output Learning, a larger use of principled statistical approaches can be
observed. This trend will be nicely supported by the very interesting invited talk by Prof. Hal Daumé
III on advanced and practical machine learning, entitled: Structured Prediction need not be Slow.

Finally, we are grateful to the European Community project, EternalS: “Trustworthy Eternal Systems
via Evolving Software, Data and Knowledge” (project number FP7 247758) for continuing to sponsor
our workshop.

The organizers
Irina Matveeva, Lluı́s Màrquez, Alessandro Moschitti and Fabio Massimo Zanzotto
Portland, June 2011
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Structured Prediction need not be Slow
Invited talk

Hal Daumé III

University of Maryland – College Park
hal@umiacs.umd.edu

Abstract

Classic algorithms for predicting structured data (eg., graphs, trees, etc.) rely on expensive (sometimes
intractable) inference at test time. In this talk, I’ll discuss several recent approaches that enable
computationally efficient (eg., linear-time) prediction at test time. These approaches fall in the category
of learning algorithms that optimize accuracy for some fixed notion of efficiency. I’ll conclude by
considering the question: can a learning algorithm figure out how to make fast predictions on its own?
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Abstract

This paper proposes a novel application of
a supervised topic model to do entity rela-
tion detection (ERD). We adapt Maximum En-
tropy Discriminant Latent Dirichlet Alloca-
tion (MEDLDA) with mixed membership for
relation detection. The ERD task is refor-
mulated to fit into the topic modeling frame-
work. Our approach combines the benefits of
both, maximum-likelihood estimation (MLE)
and max-margin estimation (MME), and the
mixed membership formulation enables the
system to incorporate heterogeneous features.
We incorporate different features into the sys-
tem and perform experiments on the ACE
2005 corpus. Our approach achieves better
overall performance for precision, recall and
Fmeasure metrics as compared to SVM-based
and LLDA-based models.

1 Introduction

Entity relation detection (ERD) aims at finding rela-
tions between pairs of Named Entities (NEs) in text.
Availability of annotated corpora (NIST, 2003; Dod-
dington et al., 2004) and introduction of shared tasks
(e.g. (Farkas et al., 2010; Carreras and Màrquez,
2005)) has spurred a large amount of research in this
field in recent times. Researchers have used super-
vised and semi-supervised approaches (Hasegawa et
al., 2004; Mintz et al., 2009; Jiang, 2009), and ex-
plored rich features (Kambhatla, 2004), kernel de-
sign (Culotta and Sorensen, 2004; Zhou et al., 2005;
Bunescu and Mooney, 2005; Qian et al., 2008) and
inference algorithms (Chan and Roth, 2011), to de-
tect predefined relations between NEs.

In this work, we explore if and how the latent se-
mantics of the text can help in detecting entity rela-
tions. For this, we adapt the Latent Dirichlet Alloca-
tion (LDA) approach to solve the ERD task. Specif-
ically, we present a ERD system based on Maxi-
mum Entropy Discriminant Latent Dirichlet Alloca-
tion (MEDLDA). MEDLDA (Zhu et al., 2009), is
an extension of Latent Dirichlet Allocation (LDA)
that combines capability of capturing latent seman-
tics with the discriminative capabilities of SVM.

There are a number of challenges in employing
the LDA framework for ERD. Latent Dirichlet Allo-
cation and its supervised extensions such as Labeled
LDA (LLDA) (Ramage et al., 2009) and supervised
LDA (sLDA) (Blei and McAuliffe, 2008) are pow-
erful generative models that capture the underlying
semantics of texts. However, they have trouble dis-
covering marginal classes and easily employing rich
feature sets, both of which are important for ERD.
We overcome the first drawback by employing a
MEDLDA framework, which integrates maximum
likelihood estimation (MLE) and maximum margin
estimation (MME). Specifically, it is a combination
of sLDA and support vector machines (SVMs). Fur-
ther, in order to employ rich and heterogeneous fea-
tures we introduce a separate exponential family dis-
tribution for each feature, similar to (Shan et al.,
2009), into our MEDLDA model.

We formulate the relation detection task within
the topic model framework as follows. Pairs of NE
mentions1 and the text between them is considered

1Adopting the terminology used in the Automatic Context
Extraction (ACE) program (NIST, 2003), specific NE instances
are called mentions.
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as mini-document. Each mini-document has a re-
lation type (analogous to the response variable in
the supervised topic model). The topic model in-
fers the topic (relation type) distribution of the mini-
documents. The supervised topic model discovers
a latent topic representation of the mini-documents
and a response parameter distribution. The topic
representation is discovered with observed response
variables during training. During testing, the topic
distribution of each mini-document can form a pre-
diction of the relation types.

We carry out experiments to measure the effec-
tiveness of our approach and compare it to SVM-
based and LLDA-based models, as well as to a pre-
vious work using the same corpora. We also mea-
sure and analyze the effectiveness of incorporating
different features in our model relative to other mod-
els. Our approach exhibits better overall precision,
recall and Fmeasure than baseline systems. We also
find that the MEDLDA-based approach shows con-
sistent capability for incorporation and improvement
due to a variety of heterogeneous features.

The rest of the paper is organized as follows. We
describe the proposed model in Section 2 and the
features that we explore in this work in Section 3.
Section 4 describes the data, experiments, results
and analyses. We discuss the related work in Sec-
tion 5 before concluding in Section 6.

2 MEDLDA for Relation Detection

MEDLDA is an extension of LDA proposed by Zhu,
Ahmed and Xing (2009). LDA is itself unsuper-
vised and the results are often hard to interpret.
However, with the addition of supervised informa-
tion (such as response variables), the resulting topic
models have much better predictive power for classi-
fication and regression. In our work, we use relation
annotations from the ACE (ACE, 2000 2005) corpus
to provide the supervision. NE pairs within a sen-
tence, and the text between them are considered as
a mini-document. Each mini-document is assumed
to be composed of a set of topics. The topic model
trained with these mini-documents given their rela-
tion type label can generate topics biased toward re-
lation types. Thus, the trained topic model will have
good predictive power on relation types.

We first describe the MEDLDA model from (Zhu

et al., 2009) and then describe how we adapt it for
relation detection using mixed membership exten-
sions.

2.1 MEDLDA

Figure 1: MEDLDA

The MEDLDA model described in (Zhu et al.,
2009) is illustrated in Figure 12.

Here, α is a k-dimensional parameter of a Dirich-
let distribution, β1:k are the parameters for k compo-
nent distribution over the words. Each component
refers to a topic. In a collection of documents D,
each document w1:N is generated from a sequence
of topics z1:N . θ is a k-dimensional topic distribu-
tion variable, which is sampled from a Dirichlet dis-
tribution Dir(α). Like common LDAs, MEDLDA
uses independence assumption for a finite set of ran-
dom variables z1, ..., zn which are independent and
identically distributed, conditioned on the parame-
ter θ. Like sLDA, MEDLDA is a supervised model.
A response variable Y connected to each document
is added for incorporating supervised side informa-
tion. The supervised side information is expected
to make MEDLDA topic discoveries more inter-
pretable. Zhu, Ahmed and Xing’s (2009) MEDLDA
model can be used in both regression and classifi-
cation. Concretely, Y is drawn from η1:c, a c k-
dimensional vector which can be derived from suit-
able statistical model. In our work, c is the num-
ber of relation types. Note that the plate diagram
for MEDLDA is quite similar to sLDA (Blei and
McAuliffe, 2008). But there is a difference – sLDA
focuses on building regression models, and thus the
response variable Y in sLDA is generated by a nor-
mal distribution.

Based on the plate diagram, the joint distribution
of latent and observable variables for our MEDLDA-

2(Zhu et al., 2009) do not have this plate digram in their
paper; rather, we create this illustration from the description of
their model.
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based relation detection is given by

p(θ, z,w,y|α, β1:k, η1:c)

=

D∏
d=1

p(θd|α)×
( N∏
n=1

p(zdn|θd)p(wdn|zdn, β1:k)
)

× p(yd|zd1:dN , η1:c) (1)

Another important difference from sLDA lies in
the fact that MEDLDA does joint learning with both
MME and MLE. The joint learning is done in two
stages, unsupervised topic discovery and multi-class
classification (we refer the reader to (Zhu et al.,
2009) for details). During training, EM algorithms
are utilized to infer the posterior distribution of the
hidden variables θ, z and η. In testing, the trained
models are used to predict relation types y.

2.2 Mixed Membership MEDLDA
Although the MEDLDA model described above can
be applied to the relation detection and classification
task, a few modifications are necessary before it can
be effective in predicting relation types. Mainly, a

Figure 2: Mixed Membership MEDLDA
limitation of LDA or other existing topic models is
the difficulty in incorporating rich features. This is
because LDA is designed to handle data points with
homogeneous features such as words. But for rela-
tion detection, like many other NLP tasks, it is im-
portant to have the flexibility of incorporating part-
of-speech tags, named entities, grammatical depen-
dencies and other linguistic features. We overcome
this limitation by introducing a separate exponential
family distribution for each feature similar to (Shan
et al., 2009). Thus, our MEDLDA-based relation
detection model is really a mixed-member Bayesian
network. Figure 2 illustrates our model with this ex-
tension.

Figure 2 is very similar to Figure 1; the only dif-
ference is that the topic component number k is now

kN . The generative process for each document this
model is as follows:

1. Sample a component proportion θd ∼
Dirichlet(α),

2. For each feature like word, part-of-speech,
named entity in the document,

(a) For n ∈ {1, ..., N}, sample zdn = i ∼
Discrete(θd)

(b) For n ∈ {1,...,N}, sample wdn ∼
P (wdn|βdni)

3. Sample the relation type label
from a softmax(z̄,η) where yd ∼
softmax(

exp(ηT
h z̄)∑c−1

h=1 exp(η
T
h z̄)

)

In the sampling, index i is the number of the topic
component which ranges from 1 : k. P (wdn|βdni) in
2(b) is an exponential family distribution where i is
from 1...k. Note that now we have βdni rather than
only βdi since we have drawn separate distributions
for each word (or feature) n.

Now, our MEDLDA-based relation-detection
model can integrate diverse features of different
types or the same features with different parameters.

Following the generative process, parameter es-
timation and inferences can be made with either
Gibbs sampling or variational methods. We use vari-
ational methods since we adapt MEDLDA package3

to mixed-membership MEDLDA and train relation
detection models.

2.3 Relation Detection

With the generative process, inference and parame-
ter estimation in place, we are ready to perform rela-
tion detection. The first step is to perform variational
inference given the testing instances.

In classification, we estimate the probability of
the relation type given topics and the response pa-
rameters, i.e. p(yd|zd1:dN , η1:c−1). With variational
approximation, we can derive the prediction rule as
F (y, z1:N , η) = ηT f(y, z̄) where f(y, z̄) is a fea-
ture vector. Now, SVM can be used to derive the

3this package is downloaded from
http://www.cs.cmu.edu/j̃unzhu/medlda.htm
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prediction rule. The final prediction can be general-
ized exactly the same as Zhu, Ahmed and Xing (Zhu
et al., 2009):

ŷ = argmaxyE[ηT f(y, Z̄)|α, β] (2)

3 Features

We explore the effectiveness of incorporating fea-
tures into our systems as well as the baselines. For
this, we construct feature sets similar to Jiang and
Zhai (2007) and Zhou (2005). Three kinds of fea-
tures are employed:

1. BOW The Bag of Words (BOW) feature cap-
tures all the words in our mini-document. It
comprises of the words of the two NE mentions
and the words between them.

2. SYN The SYN features are constructed to cap-
ture syntactic, semantic and structural infor-
mation of the mini-document. They include
features such as HM1 (the head word of the
first mention), HM2 (the head word of the sec-
ond mention), ET1, ET2, M1 and M2 (Entity
types and mention types of the two mentions
involved), #MB (number of other mentions in
between the two mentions), #WB (number of
words in between the two mentions).

3. COMP The COMP features are composite fea-
tures that are similar to SYN, but they addition-
ally capture language order and dependencies
between the features mentioned above. These
include features such as HM1HM2 (combining
head word of mention 1 and head word of men-
tion 2) , ET12 (combinations of mention entity
type), ML12 (combination of mention levels),
M1InM2 or M2InM1 (flag indicating whether
M2/M1 is included in M1/M2).

The main intuitions behind employing composite
features, COMP, are as follows. First, they capture
the ordering information. The ordering of words are
not captured by BOW. That is, BOW features as-
sume exchangeability. This works for models based
on random or seeded sampling (e.g. LDA) – as long
as words sampled are associated with a topic, the
hidden topics of the documents can be discovered.
In the case of ERD, this assumption might work

with symmetric relations. However, when the rela-
tions are asymmetric, ordering information is impor-
tant. Composite features such as HM1HM2 encodes
what mention head word precedes the other. Second,
features such as M1InM2 or M2InM1 capture token
dependencies. Besides exchangeability, LDA-based
models also assume that words are conditionally in-
dependent. Consequently, the system cannot capture
the knowledge that some mentions may be included
in other mentions. By constructing features such as
M1InM2 or M2InM1, we encode the dependency in-
formation explicitly.

4 Experiments

As MEDLDA is a combination of maximum mar-
gin principle with maximum likelihood estimation
for topic modes, we compare it with two baseline
systems. The first, SVM, uses only the maximum
margin principle, while the second, LLDA, uses only
maximum likelihood estimation for topic modeling.

4.1 Data
We use the ACE corpus (Phase 2, 2005) for eval-
uation. The ACE corpus has annotations for both
entities and relations. The corpus has six major re-
lations types, 23 subtypes and 7 entity types. In this
work, we focus only on the six high-level relation
types listed in Table 1. In addition to the the 6 ma-
jor types, we have an additional category, no relation
(NO-REL), that exists between entities that are not
related.

The data for our experiments consists of pairs of
NEs from a sentence, and the gold standard annota-
tion of their relation type (or NO-REL). All relations
in the ACE corpus are intra-sentential and hence we
do not create NE pairs that cross sentence bound-
aries. Also, almost all positive instances are within
two mentions of each other. Hence, we create NE
pairs for only those NEs that have at most 2 interven-
ing NEs in between. This gives us a total of 38,342
relation instances of which 32,640 are negative in-
stances (NO-REL) and 5702 are positive relation in-
stances belonging to one of the 6 categories.

4.2 Experimental Setup
We use 80% of the instances for training and 20%
for testing. The topic numbers and the penalty pa-
rameter of the cost function C are first determined

4



Major Type Definition Example

ART artifact
User, owner, inventor or the makers of the Kursk
manufacturer

GEN-AFF
citizen, resident, religion, U.S. Companies
ethnicity and organization-location

ORG-AFF
employment, founder, ownership, The CEO of Siemens

(Org-affiliation) sports-affiliation, investor-shareholder
student-alumni and membership

PART-WHOLE geographical, subsidiary and so on a branch of U.S bank

PER-SOC
business, family and a spokesman for the senator

(person-social) lasting personal relationship
PHYS (physical) located or near a military base in Germany

Table 1: Relation types for ACE 05 corpus

for each of the models (wherever applicable) using
the training data. Best parameters are determined
for the three conditions: 1) BOW features alone
BOW, 2) BOW plus SYN features (PlusSYN) and 3)
BOW plus SYN and COMP features (PlusCOMP).
All systems achieved their overall best performance
with PlusCOMP features (see Section 4.4 for a de-
tailed analysis).

4.2.1 MEDLDA

The number of topics are determined using the
equation 2K0 + K1 following Zhu, Ahmed and
Xing (2009) and K1 = 2K0. K0 is the number
of topics per class and K1 is the number of topics
shared by all relation types. The choice of topics is
based on the intuition that the shared component K1

should use all class labels to model common latent
structure while non-overlapping components should
model specific characteristics data from each class.
The ratio of topics is based on the understanding that
shared topics may be more than topics of each class.
The specific numbers do not produce much variation
in the final results. We experimented with the fol-
lowing number of topics: 20, 40, 70, 80, 90, 100,
110. BOW, PlusSYN, and PlusCOMP configura-
tions obtain the best performance for 90 topics, 80
topics, and 70 topics respectively.

Since SVMs are employed in the MEDLDA im-
plementation, we need to determine the penalty pa-
rameter of the cost function, C. We used 5 fold cross-
validation to locate the parameter C. The best values
for C are 25, 28, 30 respectively for BOW, PlusSYN

and PlusCOMP configurations. We used a linear
kernel as it is the most commonly used kernel for
text classification tasks. Since MEDLDA is run by
sampling, the result may be different each time. We
ran it 5 times for each setting and took the average
as the final results.

4.2.2 LLDA and SVM
The setting of topics for LLDA is similar to

MEDLDA. As LLDA is also run by sampling, we
ran it 5 times for each setting and took the average
as the final results. In SVMlight, a grid search tool
is provided to locate the the best value for parame-
ter C. The best C for all three conditions was found
to be 1. All other settings for the two models are
similar to those of MEDLDA.

4.3 Results

Prec% Rec% F%
SVM 53.2 35.2 40.3
LLDA 28.3 51.6 36.6

MEDLDA 57.8 53.2 55.4

Table 2: Overall performance of the 3 systems

We present the results of the three systems built
using PlusCOMP, as all systems achieved their best
overall performance using these features. Table 2 re-
ports the precision, recall and Fmeasure of the three
systems averaged across all 7 categories (the best
numbers for each metric are highlighted in bold).
Here we see that MEDLDA outperforms LLDA and

5



Labels
SVM LLDA MEDLDA

Pre% Rec% F% Pre% Rec% F% Pre% Rec% F%
ART 30 8 14 1.5 33 3 49 36 41

GEN-AFF 53 48 50 3 32 6 40 39 40
ORG-AFF 55 35 43 59 58 59 53 59 56

PART-WHOLE 39 08 14 31 82 45 44 52 48
PER-SOC 50 17 25 7 92 13 73 76 75

PHYS 55 35 43 26 47 33 56 19 29
NO-REL 90 95 93 70 17 27 89 91 90

Table 3: Multi-class Classification Results with PlusCOMP for SVM, LLDA and MEDLDA for the six ACE 05
categories and NO-REL

SVM across all metrics. Specifically, there is a 15
percentage point improvement in Fmeasure over the
best performing baseline. This result indicates that
our approach of combining topic model with max-
margin learning is effective for relation detection.

Now, looking at the results for each individual
relationship category (see Table 3; the best num-
bers for each category and metric are highlighted
in bold) we see that the Fmeasure for MEDLDA is
better than that for SVM for 4 out of the 6 ACE re-
lation types; and better than the Fmeasure obtained
by LLDA for all relation types except ORG-AFF.
Specifically, comparing with the best performing
baseline, MEDLDA produces a Fmeasure improve-
ment 27 percentage points for ART, 3 percentage
points for PART-WHOLE and 50 percentage points
for PER-SOC. Also, for four of the six ACE rela-
tion types, MEDLDA achieves the best precision.
Even in the cases where MEDLDA is not the best
performer for a relation category, its performance is
not very poor (unlike, for example, SVM for PART-
WHOLE and LLDA for ART, respectively).

Interestingly, the NO-REL category reveals a
sharp contrast in the performance of SVM and
LLDA. NO-REL is a difficult, catch-all category
that is a mixture of data with diverse distributions.
This is a category where maximum-margin learning
is more effective than maximum-likelihood estima-
tion. Notice that MEDLDA achieves performance
close to SVM for this category. This is because,
even though both LLDA and MEDLDA model hid-
den topics and then employ discovered hidden topics
to predict relation types, MEDLDA does joint infer-
ence of MLE and MME. This joint inference helps

to improve the detection of NO-REL.
Finally, we also compare our system’s results (us-

ing PlusCOMP features) with the results of previ-
ous research on the same corpus (Khayyamian et al.,
2009). They use similar experimental settings: ev-
ery pair of entities within a sentence is regarded to
involve a negative relation instance unless it is anno-
tated as positive in the corpus. A similar filter (they
use a distance filter) is used to sift out unrelated neg-
ative instances. Their train/test ratio of data split is
also the same as ours.

Khayyamian, Mirroshandel and Abolhas-
sani (2009) employ state-of-art kernel methods
developed by Collins and Duffy (2002) and only
report Fmeasures over the six ACE relation types.
For clarity, we reproduce their results in Table 4
and repeat MEDLDA Fmeasures from Table 3 in
the last column. The last row (Overall) reports the
macro-averages computed over all relation types for
each system. Here we see that overall, MEDLDA
outperforms all kernels. MEDLDA also performs
better than the best kernel for four of the six relation
types.

4.4 Analysis

As mentioned previously, all three systems achieved
their overall best performance with PlusCOMP fea-
tures. Here, we analyze if informative features are
consistently useful and if the systems can harness
the informative features consistently across all re-
lation types. Figures 3, 4 and 5 illustrate the F-
measures for SVM, LLDA and MEDLDA respec-
tively for the three conditions: BOW, PlusSYN and
PlusCOMP.
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Labels CD’01 AAP AAPD TSAAPD-0 TSAAPD-01 MEDLDA
ART% 51 49 50 48 47 41

GEN-AFF % 9 10 12 11 11 40
ORG-AFF % 43 43 43 43 45 56

PART-WHOLE % 30 28 29 30 28 48
PER-SOC % 62 58 70 63 73 75

PHYS % 32 36 29 33 33 29
Overall (Avg) 38 37 39 38 40 48

Table 4: F-measures for every kernel in (Khayyamian et al., 2009) and MEDLDA

Figure 3: SVM Fmeausres for 3 feature conditions

Figure 4: LLDA Fmeausres for 3 feature conditions

Figure 5: MEDLDA Fmeausres for 3 feature conditions

Let us first look at the best systems (based on
Fmeasure) for each of the six ACE relation types
in Table 3, and look at what feature set pro-

duces the best result for that system and relation.
MEDLDA is the best performer for ART, PART-
WHOLE and PER-SOC in Table 3. Figure 5 re-
veals that MEDLDA’s best performance for these re-
lation types are obtained using PlusCOMP features.
Similarly SVM obtains the best Fmeasure for GEN-
AFF and PHYS relations and Figure 3 shows that
SVM achieves its best performance for these cate-
gories using PlusCOMP. We also see a similar trend
with LLDA and the ORG-AFF relation type. These
results corroborate intuition from previous research
that informative features are important for relation
type recognition. The only exception to this is the
performance of SVM for NO-REL. This is not sur-
prising, as the features we use are focused on deter-
mining true relation types and NO-REL is a mixture
of all cases (and features) where relations do not ex-
ist.

Further analysis of the figures reveal that even
though there is a general trend towards better per-
formance with addition of more informative fea-
tures, not all systems show consistent improvements
across all relation types with the addition of com-
posite features. That is, some systems get degraded
performance due to feature addition. For example,
in Figure 3, we see that the SVM with PlusCOMP
features is outperformed by SVM with PlusSYN for
ART and SVM with BOW for NO-REL. The gains
from features are also inconsistent in the case of
LLDA (Figure 4). While the LLDA system with
PlusSYN features always improves over the one us-
ing BOW, the performance drops considerably when
using PlusCOMP features for ART and GEN-AFF.
On the other hand, MEDLDA (see Figure 5) shows
more consistent improvement for all relation types
with the addition of more complex features. Also,
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the gains are more substantial. This is encouraging
and opens up avenues for further exploration.

5 Related Work

Previous research has explored various methods and
features for relationship detection and mining. Ker-
nel methods have been popularly used for rela-
tion detection. Some examples are are dependency
tree kernels (Culotta and Sorensen, 2004), short-
est dependency path kernels (Bunescu and Mooney,
2005), and more recently, convolution tree kernels
(Zhao and Grishman, 2005; Zhang et al., 2006)
context-sensitive convolution tree kernels (Zhou et
al., 2007) and dynamic syntax tree kernels (Qian et
al., 2008). Kernel methods for relation extraction
focus on representing and capturing the structured
information of the text between the entities. In our
MEDLDA model, instead of computing distances
between subtrees, we sample topics based on their
distributions. The sampling is not only on the (mini)
document level, but also on the word level or on the
syntactic or semantic level. Our model focuses on
addressing the underlying semantics more directly
than typical kernel-based methods.

Chan and Roth (2011) employ constraints us-
ing an integer linear programming (ILP) framework.
Using this, they apply rich linguistic and knowledge-
based constraints based on coreference annotations,
a hierarchy of relations, syntacto-semantic structure,
and knowledge from Wikipedia. In our work, we
focus on capturing the latent semantics of the text
between the NEs.

A variety of features have been explored for ERD
in previous research (Zhou et al., 2005; Zhou et al.,
2008; Jiang and Zhai, 2007; Miller et al., 2000).
Syntactic features such as POS tags and dependency
path between entities; semantic features such as
Word-Net relations, semantic parse trees and types
of NEs; and structural features such as which entity
came first in the sentence have been found useful for
ERD. We too observe the utility of informative fea-
tures for this task. However, exploration of the fea-
ture space is not the main focus of this work. Rather,
our focus is on whether the models are capable of
incorporating rich features. A fuller exploration of
rich heterogeneous features is the focus of our fu-
ture work.

A closely related task is that of relation min-
ing and discovery, where unsupervised, semi-
supervised approaches have been effectively em-
ployed (Hasegawa et al., 2004; Mintz et al., 2009;
Jiang, 2009). For example, Hasegawa et al. (2004)
use clustering and entity type information, while
Mintz et al. (2009) employ distant supervision. Our
ERD task is different from these as we focus on
classifying the relation types into predefined relation
types in the ACE05 corpus.

Topic models have been applied previously for a
number of NLP tasks (e.g. (Lin et al., 2006; Titov
and McDonald, 2008). LDAs have also been em-
ployed to reduce feature dimensions in relation de-
tection systems (Hachey, 2006). However, to the
best of our knowledge, this is the first work to make
use of topic models to perform relation detection.

6 Conclusion and Future Work

In this work, we presented a system for en-
tity relation detection based on mixed-membership
MEDLDA. Our approach was motivated by the idea
that combination of max margin and maximum like-
lihood can help to improve relation detection task.
For this, we adapted the existing work on MEDLDA
and mixed membership models and formulated ERD
as a topic detection task. To the best of our knowl-
edge, this is the first work to make full use of topic
models for relation detection.

Our experiments show that the proposed approach
achieves better overall performance than SVM-
based and LLDA-based approaches across all met-
rics. We also experimented with different features
and the effectiveness of the different models for har-
nessing these features. Our analysis show that our
MEDLDA-based approach is able to effectively and
consistently incorporate informative features.

As a model that incorporates maximum-
likelihood, maximum-margin and mixed mem-
bership learning, MEDLDA has the potential of
incorporating rich kernel functions or conditional
topic random fields (CTRF) (Zhu and Xing, 2010).
These are some of the promising directions for our
future exploration.
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R. Farkas, V. Vincze, G. Móra, J. Csirik, and G. Szarvas.
2010. The CoNLL-2010 Shared Task: Learning to De-
tect Hedges and their Scope in Natural Language Text.
In CoNLL-2010, pages 1–12.

B. Hachey. 2006. Comparison of similarity models for
the relation discovery task. In COLING & ACL 2006,
page 25.

T Hasegawa, S Sekine, and Ralph Grishman. 2004. Dis-
covering relations among named entities from large
corpora. In 42nd ACL.

J. Jiang and C.X. Zhai. 2007. A systematic explo-
ration of the feature space for relation extraction. In
NAACL/HLT, pages 113–120.

J. Jiang. 2009. Multi-task transfer learning for weakly-
supervised relation extraction. In 47th ACL & 4th
AFNLP, pages 1012–1020. ACL.

N. Kambhatla. 2004. Combining lexical, syntactic, and
semantic features with maximum entropy models for
extracting relations. In ACL 2004 Interactive poster
and demonstration sessions.

M. Khayyamian, S.A. Mirroshandel, and H. Abolhassani.
2009. Syntactic tree-based relation extraction using a
generalization of Collins and Duffy convolution tree
kernel. In HLT/NAACL,: Student Research Workshop.

Wei-Hao Lin, Theresa Wilson, Janyce Wiebe, and
Alexander Hauptmann. 2006. Which side are you on?

Identifying perspectives at the document and sentence
levels. In CoNLL-2006.

S. Miller, H. Fox, L. Ramshaw, and R. Weischedel. 2000.
A novel use of statistical parsing to extract information
from text. In NAACL.

M Mintz, S Bills, R Snow, and D Jurafsky. 2009. Dis-
tant supervision for relation extraction without labeled
data. In 47th ACL & 4th AFNLP.

US NIST. 2003. The ACE 2003 Evaluation Plan. US Na-
tional Institute for Standards and Technology (NIST),
pages 2003–08.

L. Qian, G. Zhou, F. Kong, Q. Zhu, and P. Qian. 2008.
Exploiting constituent dependencies for tree kernel-
based semantic relation extraction. In 22nd ACL.

D. Ramage, D. Hall, R. Nallapati, and C.D. Manning.
2009. Labeled LDA: A supervised topic model for
credit attribution in multi-labeled corpora. In EMNLP.

H. Shan, A. Banerjee, and N.C. Oza. 2009. Discrim-
inative Mixed-membership Models. In ICDM, pages
466–475. IEEE.

Ivan Titov and Ryan McDonald. 2008. A joint model of
text and aspect ratings for sentiment summarization.
In ACL-08: HLT.

M. Zhang, J. Zhang, J. Su, and G. Zhou. 2006. A com-
posite kernel to extract relations between entities with
both flat and structured features. In 21st ICCL & 44th
ACL.

S. Zhao and R. Grishman. 2005. Extracting relations
with integrated information using kernel methods. In
43rd ACL.

G Zhou, S. Jian, Z. Jie, and Z. Min. 2005. Exploring
various knowledge in relation extraction. In In 43rd
ACL.

G Zhou, M. Zhang, D.H. Ji, and Q Zhu. 2007. Tree
kernel-based relation extraction with context-sensitive
structured parse tree information. In EMNLP/CoNLL-
2007, pages 728–736.

G.D. Zhou, M. Zhang, D.H. Ji, and Q.M. Zhu. 2008.
Hierarchical learning strategy in semantic relation ex-
traction. Information Processing & Management,
44(3):1008–1021.

J. Zhu and E.P. Xing. 2010. Conditional Topic Random
Fields. In ICML. ACM.

J. Zhu, A. Ahmed, and E.P. Xing. 2009. MedLDA: max-
imum margin supervised topic models for regression
and classification. In ICML, pages 1257–1264. ACM.

9



Proceedings of the TextGraphs-6 Workshop, pages 10–14,
Portland, Oregon, USA, 19-24 June 2011. c©2011 Association for Computational Linguistics

Nonparametric Bayesian Word Sense Induction

Xuchen Yao1 and Benjamin Van Durme1,2

1Department of Computer Science
2Human Language Technology Center of Excellence

Johns Hopkins University

Abstract
We propose the use of a nonparametric Bayesian
model, the Hierarchical Dirichlet Process (HDP),
for the task of Word Sense Induction. Results are
shown through comparison against Latent Dirich-
let Allocation (LDA), a parametric Bayesian model
employed by Brody and Lapata (2009) for this task.
We find that the two models achieve similar levels
of induction quality, while the HDP confers the ad-
vantage of automatically inducing a variable num-
ber of senses per word, as compared to manually
fixing the number of senses a priori, as in LDA.
This flexibility allows for the model to adapt to
terms with greater or lesser polysemy, when ev-
idenced by corpus distributional statistics. When
trained on out-of-domain data, experimental results
confirm the model’s ability to make use of a re-
stricted set of topically coherent induced senses,
when then applied in a restricted domain.

1 Introduction

Word Sense Induction (WSI) is the task of automat-
ically discovering latent senses for each word type,
across a collection of that word’s tokens situated in
context. WSI differs from Word Sense Disambigua-
tion (WSD) in that the task does not assume access
to some prespecified sense inventory. This amounts
to a clustering task: instances of a word are parti-
tioned into the same bin based on whether a sys-
tem deems them to have the same underlying mean-
ing. A large body of related work can be found
in (Schütze, 1998; Pantel and Lin, 2002; Dorow
and Widdows, 2003; Purandare and Pedersen, 2004;
Bordag, 2006; Niu et al., 2007; Pedersen, 2007;
Brody and Lapata, 2009; Li et al., 2010; Klapaftis
and Manandhar, 2010).

Brody and Lapata (2009) (B&L herein) showed
that the parametric Bayesian model, Latent Dirich-

let Allocation (LDA), could be successfully em-
ployed for this task, as compared to previous re-
sults published for the WSI component of SemEval-
20071 (Agirre and Soroa, 2007). A deficiency of the
LDA model for WSI is that the number of senses
needs to be manually specified a priori, either sepa-
rately for each word type, or (as done by B&L) some
fixed value that is shared globally across all types.

Nonparametric methods instead have the flexibil-
ity of automatically deciding the number of sense
cluters (Vlachos et al., 2009; Reisinger and Mooney,
2010). In this work we first independently verify
the results of B&L, and then tackle the limitation
on fixing the number of senses through the use of
the Hierarchical Dirichlet Process (HDP) (Teh et al.,
2006), a nonparametric Bayesian model. We show
this approach leads to results of similar quality as
LDA, when using a bag-of-words context model, in
addition to allowing for variability in the number of
senses across different words and domains. When
trained on a restricted domain corpus for which
manually labeled sense data was present, we verify
that the model may be tuned to posit a similar num-
ber of senses as determined by human judges. When
trained on a broader domain collection, we show that
the number of induced senses increase, in line with
the intuition that a wider set of genres should lead
to a greater diversity in underlying meanings. Auto-
matically inducing the proper number of senses has
great practical implications, especially in areas that
require word sense disambiguation. For instance, in-
ducing more senses for bank helps to tell differ-

1Klapaftis and Manandhar (2010) and Brody and Lapata
(2009) reported the best scores so far on this dataset.
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ent word senses apart for naturally more ambigu-
ous words, and inducing less senses for job helps
to prevent assigning too fined-grained senses in case
the same words in two similar contexts are mistak-
enly regarded as carrying different senses.

2 Bayesian Word Sense Induction

wm,n

sm ,n

m

k

n∈[1,Nm]

m∈[1,M ]

k∈[1,K ]

Figure 1: Latent Dirichlet Allocation (LDA) for WSI.

As in prior work including B&L, we rely on
the intuition that the senses of words are hinted at
by their contextual information (Yarowsky, 1992).
From the perspective of a generative process, neigh-
boring words of a target are generated by the target’s
underlying sense.2

Both LDA and HDP define graphical models that
generate collections of discrete data. The sense of
a target word is first drawn from a distribution and
then the context of this word is generated according
to that distribution. But while LDA assumes a fixed,
finite set of distributions, the HDP draws from an
infinite set of distributions generated by a Dirichlet
Process. This section details the distinction.

Figure 1 shows the LDA model for word sense
induction. The conventional notion of document is
replaced by a pseudo-document, consisting of every
word in an Nm-word window centered on the target
item. wm,n is the n-th token of the m-th pseudo-
document for target word w. sm,n is the correspond-
ing sense for wm,n. Suppose there are K senses for
the target word w, then the distribution over a con-
text word wm,n is:

2For instance, given the word bank with a sense river
bank, it is more likely that the neighboring words are river,
lake and water than finance, money and loan.

wm,n

sm ,n

Gm0

n∈[1,Nm]

m∈[1,M ]

G0

H



Figure 2: Hierarchical Dirichlet Process (HDP) for WSI.

p(wm,n) =
K∑

k=1

p(wm,n | sm,n = k)p(sm,n = k).

Let the word distribution given a sense be
p(wm,n | sm,n = k) = ~ϕk, which is a vector of
length V (vocabulary size) that is generated from
a Dirichlet distribution: ~ϕk ∼ Dir(~β). Let the
sense distribution given a document be p(sm,n | d =

m) = ~θm, which is a vector of length K that is gen-
erated from a Dirichlet distribution: ~θm ∼ Dir(~α).
The generative story for the data under LDA is then:

For k ∈ (1, ...,K) senses:
Sample mixture component: ~ϕk ∼ Dir(~β).

For m ∈ (1, ...,M) pseudo-documents:
Sample topic components ~θm ∼ Dir(~α).
For n ∈ (1, ..., Nm) words in pseudo-document m:
Sample sense index sm,n ∼Mult(~θm).
Sample word wm,n ∼Mult(~ϕsm,n).

The sense distribution over a word is captured
as K mixture components. In the HDP however,
we assume the number of active components is un-
known, and should be inferred from the data. For
each pseudo-document, the sense component sm,n

for word wm,n has a nonparametric prior Gm. Gm

is nonparametric in the sense that for every new
pseudo-document m, a new Gm is sampled from a
base distribution G0. As the corpus grows, there are
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more and more Gm’s. However, the mixture com-
ponent sm,n, drawn from Gm, can be shared among
pseudo-documents. Thus the number of senses do
not simply multiply out as m grows. Both G0 and
Gm’s are distributed according to a Dirichlet Process
(DP) (Ferguson, 1973). The generative story is:

Select base distribution G0 ∼ DP (γ,H) which
provides an unlimited inventory of senses.
For m ∈ (1, ...,M) pseudo-documents:

Draw Gm ∼ DP (α0, G0).
For n ∈ (1, ..., Nm) words in pseudo-document m:
Sample sm,n ∼ Gm.
Sample wm,n ∼Mult(~ϕsm,n).

Hyperparameters γ and α0 are the concentration
parameters of the DP, controlling the variability of
the distributionsG0 andGm. In a Chinese restaurant
franchise metaphor of the HDP, multiple restaurants
(documents) share a set of dishes (senses). Then
γ controls the variability of the global sense distri-
bution and α0 controls the variability of each cus-
tomer’s (word) choice of dishes (senses).3

3 Experiment Setting

Model B&L experimented with variations to the
LDA model that allowed for generating multiple lay-
ers of features, such as smaller (5w) and larger (10w)
bag-of-word contexts, and syntactic features. The
additional complexity beyond the standard model
led to only tenuous performance gains. Normal
LDA, when trained on pseudo-documents built from
10 words of surrounding context, performed only
slightly below their best reported results.4 Espe-
cially as our goal here was to investigate the sense-
specification problem, rather than eking out further
improvements in the base WSI evaluation measure,
we chose to compare a standard LDA model to HDP,
both strictly using a 10 word context.5

Test Data Following B&L, we perform WSI on
nouns. The evaluation data comes from the WSI
task of SemEval-2007 (Agirre and Soroa, 2007). It
is derived from the Wall Street Journal portion of

3Gibbs sampling (Geman and Geman, 1990) can be applied
for inference. Specifically, Teh et al. (2006) describes the pos-
terior sampling in the Chinese restaurant franchise.

4F-score of 86.9% (10w), as compared to 87.3% (10w+5w).
5We relied on implementations of LDA and HDP respec-

tively from MALLET (McCallum, 2002), and Wang (2010).

the Penn TreeBank (Marcus et al., 1994) and con-
tains 15,852 instances of excerpts on 35 nouns. All
the nouns are hand-annotated with their OntoNotes
senses (Hovy et al., 2006), with an average of 3.9
senses per word.
Evaluation Method WSI is an unsupervised task
that results in sense clusters with no explicit map-
ping to manually annotated sense data. To derive
such a mapping, we follow the supervised evalua-
tion strategy of Agirre and Soroa (2007). Anno-
tated senses from SemEval-2007 are partitioned into
a standard mapping set (72%), a dev set (14%) and a
test set (14%). After an WSI system has tagged the
elements in the mapping set with their “cluster IDs”,
then a cluster to sense derivation is constructed by
simply assigning to each cluster the manual sense
label that has the highest in-cluster frequency. Once
such a mapping has been established, then results
on the dev or test set are reported based on treating
cluster assignment as a WSD operation.
Training Data As out-of-domain source, we ex-
tracted 930K instances of the 35 nouns from the
British National Corpus (BNC) (Clear, 1993). As
in-domain source we extracted another 930K in-
stances from WSJ in years 87/88/90/94. All pseudo-
documents use the ±10 contextual window.

4 Evaluation

We trained the LDA and HDP models on the WSJ
and BNC datasets separately. In their experiments
with LDA, B&L iteratively tried 3 up to 9 senses,
and then reported the number that led to best re-
sults in evaluation (4 senses for WSJ, 8 for BNC).
We repeated this approach for LDA, with hyper-
parameters α = 0.02 and β = 0.1. For the HDP
model, we tuned hyper-parameters on the SemEval-
2007 dev set.6 See Table 1 for results, averaged over
5 runs of LDA and 3 runs of HDP.

We report several findings based on this experi-
ment. First, for the LDA models trained on WSJ
and BNC, our F1 measures are 0.8% lower than
reported by B&L.7 Second, based on our own ex-
periment, the HDP model performance is slightly
better than that of LDA when training with BNC.

6Final parameters: H = 0.1, α0 ∼ Gamma(0.1, 0.028),
γ ∼ Gamma(1, 0.1).

7We consider this acceptable experimental deviation, given
the minor variation in respective training data.
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WSJ BNC
LDA-4s* 86.9 LDA-8s* 84.6
LDA-4s 86.1 LDA-8s 83.8
HDP 86.7 HDP 85.74

Table 1: F-measure when training with WSJ (in-domain) and
BNC (out-of-domain). Results with * are taken from B&L. 4
or 8 senses were used per word. 4: statistically significant
against LDA-8s by paired permutation test with p < 0.001.
The standard baseline, always picking the most frequent sense
observed in training, scores 80.9.

WSJ BNC
Train Test Train Test

LDA 4.0 3.9 8.0 7.4
HDP 5.8 3.9 9.4 4.6

Table 2: The average number of senses the LDA and HDP
models output when training with WSJ/BNC and testing on
SemEval-2007, which has 3.9 senses per word on average.

Third, the HDP model appears to better adapt to data
in other domains. When switching the training set
from WSJ (in-domain) to BNC (out-of-domain), we,
along with B&L, found a 2.3% drop with LDA mod-
els. However, with the HDP model, there is only a
1% drop in F1. Moreover, even trained on out-of-
domain data, HDP can still better infer the number
of senses from the test data, which is illustrated next.

Table 2 shows the number of senses induced from
each dataset. When training on WSJ and test on
SemEval-2007, HDP induced the correct number of
senses (3.9 on average) from test, while LDA did
this by assuming 4 senses from the training data.
When there is a domain mismatch between train-
ing (BNC) and test (SemEval-2007, which comes
from the 1989 WSJ), the LDA model preferred far
more than the annotated number of senses (7.4 vs.
3.9), largely due to the fact that it assumed 8 senses
during training. However, even though the HDP
model induced more senses (9.4) when training on
the broader coverage BNC set, it still inferred a
much reduced average of 4.6 senses on test.

The BNC, being a balanced corpus, covers more
diverse genres than the WSJ: we would expect it to
lead to a more inclusive model of word sense. Fig-
ure 3 illustrates this comparison through the differ-
ence between sense numbers. For the 35 human-
annotated nouns, HDP induced the number of senses
mostly within an error of ±2, whereas LDA tended
to prefer 3 − 6 more senses than recognized by an-
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Figure 3: The difference between induced number of senses
and annotated senses. The training set is BNC. The test set
is SemEval-2007, containing 35 nouns with 3.9 senses. LDA
induced 7.4 senses and HDP induced 4.6 senses on average.

WSJ BNC
LDA-5.8s 86.0 LDA-9.4s 82.7
LDA-3.9s 85.3 LDA-3.9s 81.4
HDP-5.8s 86.7 HDP-9.4s 85.74

Table 3: F1 measure when training LDA with three other set-
tings: 5.8s, 9.4s and 3.9s. 4: statistically significant against
both LDA-9.4s and LDA-3.9s (for BNC) by paired permutation
test with p < 0.001.

notators (on average the HDP model was off by 1.6
senses, as compared to 3.6 by LDA). Finally, the
F1 performance of HDP is 1.9% better than LDA
(85.7% vs. 83.8%).

We further evaluated the LDA model by training
separately for each of the 35 nouns, first setting as
the number of topics the amount induced by HDP
(on average, 5.8/9.4 senses for WSJ/BNC), then us-
ing the number of senses as used by the human anno-
tators in SemEval-2007 (an average of 3.8). As seen
in Table 3, in each of these cases HDP remained the
superior model.

5 Conclusion

We proposed the use of a nonparametric Bayesian
model (HDP) for word sense induction and com-
pared it with the parametric model by Brody and
Lapata (2009), based on LDA. The HDP model con-
fers the advantage of automatically identifying the
number of senses, besides having equivalent (or bet-
ter) performance than the LDA model, verified us-
ing the SemEval-2007 dataset. Future work includes
large scale sense induction over a larger vocabulary,
in tasks such as Paraphrase Acquisition.
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Abstract

Edges of graphs that model real data can be
seen as judgements whether pairs of objects
are in relation with each other or not. So,
one can evaluate the similarity of two graphs
with a measure of agreement between judges
classifying pairs of vertices into two cate-
gories (connected or not connected). When
applied to synonymy networks, such measures
demonstrate a surprisingly low agreement be-
tween various resources of the same language.
This seems to suggest that the judgements
on synonymy of lexemes of the same lexi-
con radically differ from one dictionary ed-
itor to another. In fact, even a strong dis-
agreement between edges does not necessarily
mean that graphs model a completely differ-
ent reality: although their edges seem to dis-
agree, synonymy resources may, at a coarser
grain level, outline similar semantics. To in-
vestigate this hypothesis, we relied on shared
common properties of real world data net-
works to look at the graphs at a more global
level by using random walks. They enabled
us to reveal a much better agreement between
dense zones than between edges of synonymy
graphs. These results suggest that although
synonymy resources may disagree at the level
of judgements on single pairs of words, they
may nevertheless convey an essentially simi-
lar semantic information.

1 Introduction

More and more resources exist, built with various
approaches and methods and with many different
aims and intended uses. A new issue raised by this

growth is that of comparing various resources. A
lexical resource is usually based on semantic judge-
ments about lexical elements (a human judgement
performed by a lexicographer, or a machine-based
judgement in the case of automatically built re-
sources). Often, two independently built resources
that describe the same linguistic reality only show a
weak agreement even when based on human judge-
ments under the same protocol (Murray and Green,
2004).

Many of such resources, such as WordNet (Fell-
baum, 1998) or Wiktionary1 (Zesch et al., 2008;
Sajous et al., 2010) can be modelled as graphs. A
graph encodes a binary relation on a set V of ver-
tices. A graph G = (V,E) is therefore defined by
a finite, non empty set of n = |V | vertices and by
a set E ⊆ V × V of m = |E| couples of vertices
(edges). In the linguistic field, vertices can be vari-
ous elements of the lexicon: lemmas, word senses,
syntactic frames... and edges can describe various
relations: synonymy, hyperonymy, translation, co-
occurrence... Edges between two vertices can be
seen as judgements that decide whether the consid-
ered relation applies to this pair. For example, in a
synonymy graph, an edge exists between two words
if they were judged to be synonyms by the lexicogra-
pher who was compiling the dictionary. So, different
graphs that model dictionaries of synonyms are built
according to the judgements of various “judges”.

We first illustrate, in section 2, how various stan-
dard synonymy resources of English and French
share common structural properties: they all are Hi-
erarchical Small Worlds (HSW). However, we then

1http://www.wiktionary.org/
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show that the synonymy judgements they describe
seem to disagree: the Kappa (Cohen, 1960) between
the edges of any two such resources remains surpris-
ingly low. In the third section, we analyse this appar-
ent disagreement and in section 4, we address it by
proposing an alternative view of the networks, based
on random walks. This more global view enables us
to assess if disagreeing synonymy networks never-
theless concord at a more global level, because they
model the same linguistic reality. Beyond the usual
Kappa agreement measure, which is based on the lo-
cal comparison of two category judgements (a pair is
or is not a pair of synonyms), we can show that syn-
onymy judgements do not essentially diverge on the
lexical semantic structure that emerges from them.
In the fifth section, we conclude by outlining possi-
ble applications and perspectives of this work.

2 Graph modelling of various synonymy
resources

In order to study the similarities and variations of
lexical resources, let us study a sample of graphs that
model several standard synonymy resources. We
analyse five standard, general purpose, paper dictio-
naries of French synonyms2: Bailly (Bai), Benac
(Ben), Bertaud du Chazaut (Ber), Larousse (Lar),
Robert (Rob). We also study synonymy relations ex-
tracted from the Princeton Word Net (PWN ) and
from the English Wiktionary (Wik). The PWN
synonymy network was built according to the fol-
lowing rule: an edge is drawn between any two
words that belong to the same synset. The Wik-
tionary synonymy network was extracted from Wik-
tionary dumps3 by methods exposed in (Sajous et
al., 2010). Each of these resources is split4 by parts
of speech (Nouns, Verbs, Adjectives) resulting in
three different synonymy graphs, designated, for ex-
ample for the Robert dictionary, as follows: RobN ,
RobV , RobA.

2Synonymy relations from each of these dictionaries were
extracted by the INALF/ATILF Research Unit and corrected by
the CRISCO Research Unit.

3http://redac.univ-tlse2.fr/lexiques/wiktionaryx.html
4Note that splitting is not necessary. The following work

would apply similarly to whole resources.

2.1 Invariants : similar structural properties
Most lexical networks, as most field networks5,
are Hierarchical Small World (HSW) Networks that
share similar properties (Watts and Strogatz, 1998;
Albert and Barabasi, 2002; Newman, 2003; Gaume
et al., 2010; Steyvers and Tenenbaum, 2005). They
exhibit a low density (not many edges), short paths
(the average number of edges L on the shortest
path between two vertices is low), a high clustering
rate C (locally densely connected subgraphs can be
found whereas the whole graph is globally sparse in
edges), and the distribution of their degrees follows
a power law. All graphs in our sample exhibit the
HSW properties. For example, Table 1 shows the
pedigrees of synonymy graphs of verbs(for space
reasons we only show results for verbs, results are
similar for the two other parts of speech). In this ta-
ble, n and m are the number of vertices and edges,
〈k〉 is the average degree of vertices, and λ is the
coefficient of the power law that fits the distribution
of degrees, with a correlation coefficient r2. nlcc
and Llcc are the number of vertices and the aver-
age path length measured on the largest connected
component. Even if n and 〈k〉 vary across dictionar-
ies, Llcc is always small, C is always higher than for
equivalent random graphs (Newman, 2003) and the
distribution of degrees remains close to a power law
with a good correlation coefficient.

Table 1: Pedigrees of seven synonymy graphs (verbs).
n m 〈k〉 nlcc mlcc C Llcc λ r2

BaiV 3082 3648 2.46 2774 3417 0.04 8.24 -2.33 0.94
BenV 3549 4680 2.73 3318 4528 0.03 6.52 -2.10 0.96
BerV 6561 25177 7.71 6524 25149 0.13 4.52 -1.88 0.93
LarV 5377 22042 8.44 5193 21926 0.17 4.61 -1.94 0.88
RobV 7357 26567 7.48 7056 26401 0.12 4.59 -2.01 0.93
PWNV 11529 23019 6.3 6534 20806 0.47 5.9 -2.4 0.90
WikV 7339 8353 2.8 4285 6093 0.11 8.9 -2.4 0.94

2.2 Variability : a low agreement between
edges

Although all these graphs are HSW, Table 1 shows
that the lexical coverage (n) and the number of syn-
onymy links (m) significantly vary across graphs.
Given two graphs G1 = (V1, E1) and G2 =

5Field networks are networks that model real data gathered
by field work, for example in sociology, linguistics or biol-
ogy. They contrast with artificial networks (deterministic or
random).
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(V2, E2), in order to compare their lexical cover-
ages, we compute the Recall (R•), Precision (P•)
and F-score (F•) of their vertex sets:

R•(G1, G2) = |V1∩V2|
|V2| P•(G1, G2) = |V1∩V2|

|V1|

F•(G1, G2) = 2. R•(G1,G2).P•(G1,G2)
R•(G1,G2)+P•(G1,G2)

F-scores of pairs of comparable graphs (same lan-
guage and same part of speech) of our sample re-
main moderate. Table 2 illustrates these measures on
the eleven pairs of graphs involving the five French
synonymy graphs (verbs) and the two English ones.
It shows that the lexical coverages of the various
synonymy graphs do not perfectly overlap.

Table 2: Precision, Recall and F-score of vertex sets of
eleven pairs of graphs. G1 in rows, G2 in cols.

BenV BerV LarV RobV WikV

BaiV

R• 0.66 0.45 0.51 0.40
P• 0.76 0.96 0.90 0.95
F• 0.71 0.61 0.65 0.56

BenV

R• 0.52 0.58 0.45
P• 0.96 0.88 0.93
F• 0.68 0.70 0.60

BerV

R• 0.85 0.73
P• 0.70 0.82
F• 0.77 0.77

LarV

R• 0.68
P• 0.92
F• 0.78

PWNV

R• 0.49
P• 0.31
F• 0.38

The value of F•(G1, G2) measures the relative
lexical coverage of G1 and G2 but does not eval-
uate the agreement between the synonymy judge-
ments modelled by the graphs’ edges. The Kappa
of Cohen (Cohen, 1960) is a common measure of
agreement between different judges who categorize
the same set of objects. In the case of graphs, the
judgements are not applied to simple entities but to
relations between pairs of entities. Two synonymy
graphs G1 = (V1, E1) and G2 = (V2, E2) give two
judgements on pairs of vertices. For example, if a
pair (u, v) ∈ V1 × V1 is judged as synonymous then
(u, v) ∈ E1, else (u, v) ∈ E1. To measure the
agreement between edges of G1 and G2, one first
has to reduce the two graphs to their common ver-
tices:

• G′1 =
(
V ′ = (V1∩V2), E′1 = E1∩ (V ′×V ′)

)
;

• G′2 =
(
V ′ = (V1∩V2), E′2 = E2∩ (V ′×V ′)

)
;

For each pair of vertices (a, b) ∈ (V ′ × V ′), four
cases are possible:

• (a, b) ∈ E′1
⋂
E′2: agreement on pair (a, b),

(a, b) is synonymous for G′1 and for G′2;

• (a, b) ∈ E′1
⋂
E′2: agreement on pair (a, b),

(a, b) is neither synonymous forG′1 nor forG′2;

• (a, b) ∈ E′1
⋂
E′2: disagreement on pair (a, b),

(a, b) is synonymous for G′1 but not for G′2;

• (a, b) ∈ E′1
⋂
E′2: disagreement on pair (a, b),

(a, b) is synonymous for G′2 but not for G′1;

The agreement between the two synonymy judge-
ments ofG1 andG2 is measured byKl(G′1, G

′
2), the

Kappa between the two sets of edges E′1 and E′2:

Kl(G
′
1, G

′
2) =

(p0 − pe)
(1− pe)

(1)

where:

p0 =
1
ω
.(|E′1 ∩ E′2|+ |E′1 ∩ E′2|) (2)

is the relative observed agreement between vertex
pairs of G′1 and vertex pairs of G′2, where ω is the
number of possible edges6 ω = 1

2 .|V
′|.(|V ′| − 1).

pe =
1
ω2
.(|E′1|.|E′2|+ |E′1|.|E′2|) (3)

is the hypothetical probability of chance agreement,
assuming that judgements are independent7.

The value of agreement on synonymy judgements
Kl(G′1, G

′
2) varies significantly across comparable

dictionary pairs of our sample, however it remains
quite low. For example: Kl(Rob′V , Lar

′
V ) = 0.518

and Kl(PWN ′V ,Wik′V ) = 0.247 (cf. Table 3). On
the whole sample studied in this work this agreement
value ranges from 0.25 to 0.63 averaging to 0.39.
This shows that, although standard dictionaries of
synonyms show similar structural properties, they
considerably disagree on which pairs of words are
synonymous.

6Here, we do not consider reflexivity edges, that link ver-
tices to themselves, as they are obviously in agreement across
graphs and are not informative synonymy judgements.

7Note that Kl(G
′
1, G

′
2) = Kl(G

′
2, G

′
1).
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3 Analysis of the disagreement between
synonymy networks

When comparing two lexical resources built by lexi-
cographers, one can be surprised to find such a level
of disagreement on synonymy relations. This diver-
gence in judgements can be explained by editorial
policies and choices (regarding, for example printed
size constraints, targeted audiences...). Furthermore,
lexicographers also have their subjectivity. Since
synonymy is more a continuous gradient than a dis-
crete choice (Edmonds and Hirst, 2002), an alterna-
tive limited to synonym/not synonym leaves ample
room for subjective interpretation. However, these
justifications do not account for such discrepancies
between resources describing the semantic relations
of words of the same language. Therefore, we ex-
pect that, if two words are deemed not synonyms
in one resource G1, but synonyms in another G2,
they will nevertheless share many neighbours in G1

and G2. In other words they will belong to the same
dense zones. Consequently the dense zones (or clus-
ters) found in G1 will be similar to those found in
G2. Random walks are an efficient way to reveal
these dense zones (Gaume et al., 2010). So, to eval-
uate the hypothesis, let us begin by studying the sim-
ilarity of random walks on various synonymy net-
works.

3.1 Random walks on synonymy networks
If G = (V,E) is a reflexive and undirected graph,
let us define dG(u) = |{v ∈ V/(u, v) ∈ E}| the
degree of vertex u in graph G, and let us imagine a
walker wandering on the graph G:

• At a time t ∈ N, the walker is on one vertex
u ∈ V ;

• At time t + 1, the walker can reach any neigh-
bouring vertex of u, with uniform probability.

This process is called a simple random walk (Bol-
lobas, 2002). It can be defined by a Markov chain
on V with a n× n transition matrix [G]:

[G] = (gu,v)u,v∈V

with gu,v =


1

dG(u)
if (u, v) ∈ E,

0 else.

Since G is reflexive, each vertex has at least one
neighbour (itself) thus [G] is well defined. Further-
more, by construction, [G] is a stochastic matrix:
∀u ∈ V,

∑
v∈V gu,v = 1.

The probability P tG(u v) of a walker starting on
vertex u to reach a vertex v after t steps is:

P tG(u v) = ([G]t)u,v (4)

One can then prove (Gaume, 2004), with the
Perron-Frobenius theorem (Stewart, 1994), that if G
is connected8 (i.e. there is always at least one path
between any two vertices), reflexive and undirected,
then ∀u, v ∈ V :

lim
t→∞

P t
G(u v) = lim

t→∞
([G]t)u,v =

dG(v)∑
x∈V dG(x)

(5)
It means that when t tends to infinity, the probability
of being on a vertex v at time t does not depend on
the starting vertex but only on the degree of v. In the
following we will refer to this limit as πG(v).

3.2 Confluence in synonymy networks
The dynamics of the convergence of random walks
towards the limit (Eq. (5)) is heavily dependent on
the starting node. Indeed, the trajectory of the ran-
dom walker is completely governed by the topology
of the graph: after t steps, any vertex v located at a
distance of t links or less can be reached. The prob-
ability of this event depends on the number of paths
between u and v, and on the structure of the graph
around the intermediary vertices along those paths.
The more interconnections between the vertices, the
higher the probability of reaching v from u.

For example, if we take G1 = RobV and
G2 = LarV , and choose the three vertices
u = éplucher (peel), r = dépecer (tear apart) and
s = sonner (ring), which are such that:

• u= éplucher (peel) and r= dépecer (tear apart)
are synonymous in RobV : (u, r) ∈ E1;

• u= éplucher (peel) and r= dépecer (tear apart)
are not synonymous in LarV : (u, r) /∈ E2;

• r= dépecer (tear apart) and s= sonner (ring)
have the same number of synonyms in G1 :
dG1(r) = dG1(s) = d1;

8The graph needs to be connected for Eq. 5 to be valid but,
in practice, the work presented here also holds on disconnected
graphs.
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• r= dépecer (tear apart) and s= sonner (ring)
have the same number of synonyms in G2 :
dG2(r) = dG2(s) = d2.

Then Equation (5) states that (P tG1
(u r))1≤t and

(P tG1
(u s))1≤t converge to the same limit:

πG1(r) = πG1(s) =
d1∑

x∈V1
dG1(x)

as do (P tG2
(u r))1≤t and (P tG2

(u s))1≤t:

πG2(r) = πG2(s) =
d2∑

x∈V2
dG2(x)

However the two series do not converge with the
same dynamics. At the beginning of the walk, for t
small, one can expect that P tG1

(u r) > P tG1
(u s)

and P tG2
(u r) > P tG2

(u s) because éplucher is
semantically closer to dépecer than to sonner. In-
deed the number of short paths between éplucher
and dépecer is much greater than between éplucher
and sonner.

Figure 1(a) shows the values of P tG1
(u r)

and P tG1
(u s) versus t, and compares them

to their common limit. Figure 1(b) shows
the values of P tG2

(u r) and P tG2
(u s) ver-

sus t, and compares them to their common limit.
These figures confirm our intuition that, since
éplucher (peel) and dépecer (tear apart) are seman-
tically close, P tG1

(u r) and P tG2
(u r) decrease to

their limit. We call this phenomenon strong con-
fluence. It is worth noting that this remains true
even if éplucher (peel) and dépecer (tear apart)
are not synonyms in LarV . Conversely, since
éplucher (peel) and sonner (ring) are semantically
distant, P tG1

(u s) and P tG2
(u s) increase to their

asymptotic value. We call this phenomenon weak
confluence.

3.3 Correlation of the confluence of
disagreeing synonymy pairs

When two graphs G1 and G2 disagree on a pair of
vertices (a, b) (a is a neighbour of b in one graph but
not in the other) there are three possible cases for the
strength of the confluence between vertices a and b:

(1) strong in both graphs (confluence agreement),
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(b) G2 = LarV

Figure 1: Confluences between éplucher (peel),
dépecer (tear apart) and éplucher (peel), sonner (ring)
in RobV and LarV .

(2) weak in both graphs (confluence agreement),

(3) strong in one graph, but weak in the other (con-
fluence disagreement).

To contrast cases (1) and (2) from case (3) we
measure the correlation between the confluences of
disagreeing pairs of two synonymy networks G′1
and G′2. We compare it to this same correlation on
two reflexive and undirected random graphs RG′1 =
(V ′, ER1 ) and RG′2 = (V ′, ER2 ) built such that:

|ER1 ∩ ER2 | = |E′1 ∩ E′2|,

|ER1 ∩ ER2 | = |E
′
1 ∩ E′2|,

|ER1 ∩ E
R
2 | = |E′1 ∩ E

′
2|,
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which means that the Kappa agreement between
RG′1 and RG′2 is the same as between G′1 and G′2.

For a given t > 1 and a set of vertex pairs X ⊆
V ′×V ′, the correlation of confluences ΓX(G′1, G

′
2)

is defined by the Pearson’s linear correlation coef-
ficient of the two value tables

(
P tG′1

(u v)
)
(u,v)∈X

and
(
P tG′2

(u v)
)
(u,v)∈X .

For all comparable pairs of our sample, we
see that disagreeing pairs tend to have a much
higher correlation of confluence than disagreeing
pairs of equivalent random networks. As an ex-
ample, for G1 = RobV , G2 = LarV and
t = 3, we have Γ

E′1
T
E′2

(G′1, G
′
2) = 0.41 and

Γ
E′1
T
E′2

(G′1, G
′
2) = 0.38, whereas in the case of

the equivalent random graphs the same figures are
close to zero.

This suggests that even if graphs disagree on the
synonymy of a significant number of pairs, they nev-
ertheless generally agree on the strength of their
confluence. In other words, occurrences of cases (1)
and (2) are the majority whereas occurrences of case
(3) are rare. We propose in the next section an exper-
iment to verify if we can rely on confluence to find a
greater agreement between two graphs that disagree
at the level of synonymy links.

4 Self mediated agreement by confluence

4.1 Hypothesis: Conciliation reveals structural
similarity beyond disagreement of local
synonymy

We saw in section 2.2 that the rate of agreement be-
tween edges of two standard synonymy networksG′1
and G′2, Kl(G′1, G

′
2), is usually low. However, we

have noticed in Section 3.3 that the confluences of
pairs on which synonymy graphs disagree are sig-
nificantly more correlated (Γ ≈ 0.4) than the conflu-
ence of equivalent random networks (Γ ≈ 0). This
suggests the following hypothesis: synonymy net-
works are in agreement at a level that is not taken
into account by the Kappa measure on edges.

To verify this hypothesis, we try to make each pair
of graphs conciliate on the basis of confluence val-
ues. We propose a conciliation process by which
a graph can accept the addition of another’s edges
if they do not contradict its structure (i.e. there
is a strong confluence value). We then assess if a

strong agreement is found between the two resulting
graphs.

Let G1 = (V1, E1) and G2 = (V2, E2) be two
synonymy networks, both reflexive, undirected, con-
nected, and a given t ∈ N∗. We define:

• G′1 =
(
V ′ = (V1 ∩V2), E′1 = E1 ∩ (V ′×V ′)

)
• G′2 =

(
V ′ = (V1 ∩V2), E′2 = E2 ∩ (V ′×V ′)

)
• G(+G2)

1 = (V ′, E+
1 = E′1 ∪ C1) where

C1 =
n

(u, r) ∈ E′1 ∩ E
′
2

›
P t

G′
1
(u r) > πG′

1
(r)
o

(6)

• G(+G1)
2 = (V ′, E+

2 = E′2 ∪ C2) where

C2 =
n

(u, r) ∈ E′1 ∩ E′2
›
P t

G′
2
(u r) > πG′

2
(r)
o

(7)

G
(+G2)
1 and G

(+G1)
2 are called accommodating

graphs. The construction of the accommodating
graphs may be metaphorically understood as a con-
ciliation protocol by which two graphs accept pro-
posals of the other that they can reconsider. For ex-
ample, G(+G2)

1 is the graph G′1 enriched by edges
(u, r) of G′2 such that there is a strong confluence
between vertices u and r in G′1

The following property is worth noticing:

Proposition 1. ∀t ∈ N∗ :

(E′1 ∩ E′2) ⊆ (E+
1 ∩ E

+
2 ) ⊆ (E′1 ∪ E′2) (8)

Proof. By definition, E+
1 = E′1 ∪ C1 and E+

2 =
E′2∪C2, thus (E′1∩E′2) ⊆ (E+

1 ∩E
+
2 ), furthermore,

by definition, C1 ⊆ E′1∩E′2 and C2 ⊆ E′1∩E′2 thus
(E+

1 ∩ E
+
2 ) ⊆ (E′1 ∪ E′2).

4.2 Experimental protocol
If, for any (G1, G2) synonymy resources of the
same language, Kl(G

(+G2)
1 , G

(+G1)
2 ) is signifi-

cantly greater than Kl(G′1, G
′
2), then the hypothe-

sis is verified. The conciliation process depends on
confluence measures that depend on a given t, the
number of steps of the random walk. For t = 1,
only vertices in the neighbourhood of the starting
vertex are reachable. Consequently only pairs of
vertices that are edges have a non null confluence.
Thus Kl(G

(+G2)
1 , G

(+G1)
2 ) = Kl(G′1, G

′
2) which

does not help us to contrast conciliated graphs from
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initial binary synonymy graphs. So we fix t = 2
the shortest walk length that still yields informative
results.

We propose a control experiment that consists
in applying the conciliation process to random net-
works that have the same Kappa as the pairs of syn-
onymy networks. The construction of these random
graphs is described above, in section 3.3. We mea-
sure the agreement after conciliation of 20 different
random graphs. With this control experiment we as-
sess that the observed results are specific to graphs
describing the same resource, and not a mere bias of
the protocol (let us imagine a protocol whereby one
would add all the disagreeing edges to the graphs:
not only the Kappa of the pseudo accommodating
synonymy graphs would be equal to one, but also the
Kappa of pseudo accommodating random graphs,
which would disqualify the protocol).

4.3 Results

Table 3 summarizes Kappa and conciliated Kappa
values on the pairs of synonymy graphs of verbs.
It shows a significant improvement of agreement
after conciliation. For example, from a moder-
ate Kappa (0.518) between graphs Rob′V and Lar′V
(constructed by experts), the conciliation process
leads to an excellent Kappa (0.852). Conversely the
random networks only increase their agreement by
0.01 (with a very low standard deviation σ < 0.001).
In English, from a poor (0.247) Kappa between
PWN ′V (constructed by experts) and Wik′V (con-
structed by the “crowds”), the conciliation process
leads to a moderate Kappa (0.530), whereas the ran-
dom networks only marginally increase their agree-
ment (0.004).

Results are similar for other parts of speech. This
means that the conciliation process significantly im-
proves the agreement between resources, even if
they are originally significantly diverge.

It is interesting to notice that the most sim-
ilar pairs in terms of edge agreement do not
necessarily produce the most agreeing pairs
of accommodating graphs. For example, the
pair(BaiV , RobV ) agrees more than the pair
(BaiV , LarV ), whereas for their accommodating
graphs, the pair(Bai(+RobV )

V , Rob(+BaiV )
V ) agrees

less than the pair (Bai(+LarV )
V , Lar(+BaiV )

V ).

Table 3: Kappa (ori.) and accommodating Kappa (acc.)
values between French and English synonymy graphs (of
verbs), compared with the Kappa values between pairs of
equivalent random graphs (“ori. r.” and “acc. r.”).

Kl BenV BerV LarV RobV WikV

BaiV

ori. 0.583 0.309 0.255 0.288
acc. 0.777 0.572 0.603 0.567

ori. r. 0.583 0.309 0.256 0.288
acc. r. 0.585 0.313 0.262 0.293

BenV

ori. 0.389 0.276 0.293
acc. 0.657 0.689 0.636

ori. r. 0.390 0.276 0.294
acc. r. 0.392 0.283 0.301

BerV

ori. 0.416 0.538
acc. 0.838 0.868

ori. r. 0.417 0.539
acc. r. 0.434 0.549

LarV

ori. 0.518
acc. 0.852

ori. r. 0.518
acc. r. 0.529

PWNV

ori. 0.247
acc. 0.540

ori. r. 0.247
acc. r. 0.251

So, when G1 and G2 are two synonymy graphs
of a given language, then they are able to address
their local synonymy disagreement and to reach a
significantly better agreement. On the other hand,
the agreement of random networks does not really
improve after conciliation. This proves that the syn-
onymy networks of the same language share specific
similar structures that can be detected with the help
of confluence measures.

5 Conclusion

Although graphs that encode synonymy judgements
of standard semantic lexical resources share simi-
lar HSW properties they diverge on their synonymy
judgements as measured by a low Kappa of edges.
So, one could wonder whether the notion of syn-
onymy is well defined, or if synonymy judgements
are really independent. Without directly address-
ing this question, we nevertheless have shown that
strong confluence measures help two synonymy
graphs accommodate each others’ conflicting edges.
They reach a much better agreement, whereas ran-
dom graphs’ divergence is maintained. Since the
graphs are HSW, they draw clusters of synonyms
in which pairs of vertices have a strong confluence.

21



This suggests two conclusions. First, different syn-
onymy resources that describe the same lexicon re-
veal dense zones that are much more similar across
graphs than the binary synonymy categorisation (the
synonym/not synonym alternative). These dense
zones convey information about the semantic organ-
isation of the lexicon. Second, random walks and
confluence measures seem an appropriate technique
to detect and compare the dense zones of various
synonymy graphs.

This theoretical work validates the random
walk/confluence approach as a potentially valid tool
for detecting semantic similarities. This opens many
perspectives for applications. For example, it can
be used to enrich resources as was done for the
Wisigoth project (Sajous et al., 2010). It may also
help to merge, or aggregate, resources. If we apply
the conciliation process to two graphs G1 and G2,
obtaining two accommodating graphs G(+G2)

1 =
(V ′, E+

1 )) and G(+G1)
2 = (V ′, E+

2 )) then the graph
G = (V ′, E′′ = (E+

1 ∩ E
+
2 )) could be a merged

resource. Indeed, G’s set of edges, E′′ seems like
a good compromise because, according to the prop-
erty 1, (E′1 ∩ E′2) ⊆ E′′ ⊆ (E′1 ∪ E′2). This new
aggregation method would need to be validated by
comparing the quality of the merged resource to the
results of the union or intersection.

Furthermore, this work is a first step for defin-
ing a similarity measure between graphs, that could
take into account the structural agreement rather
than a simple edge-to-edge disagreement. Subse-
quent work should generalise the conciliation pro-
cess along several axes:

• The number of steps t was chosen as the short-
est possible for the confluence measures. It
would be worthwhile to investigate the effect
of the length of the walks on the agreement of
the accommodating graphs.

• Another line of research would be to alter the
conciliation ability of graphs, by increasing or
decreasing the criterion for strong confluence.
One can for example introduce a k parameter in
the definition of C1 (resp. C2), in Equation 6:

P tG′1
(u r) > k.πG′1(r) (9)

• The conciliation process seems unbalanced in-
sofar as graphs only accept to add edges. It
should be extended to a negotiating process
where a graph could also accept to remove one
edge if the other does not have it and its conflu-
ence is weak.

• The conciliation process could also be gen-
eralised to graphs that have different vertices,
such as two synonymy networks of different
languages. In that case the issue is not anymore
to reveal a deeper similarity, beyond a local
disagreement, because one can not compare
the graphs vertex by vertex or edge by edge.
However, questioning whether the semantic
structures revealed by dense zones are similar
from one lexicon to another is an interesting
line of research. One approach to compare two
synonymy graphs of two different languages
would be to draw edges between vertices that
are translations of each other. Random walks
could then reach vertices of the two lexicons,
so that the conciliation process could be
generalised to accommodating two synonymy
graphs via translation links.
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Abstract

Word Sense Induction (WSI) is an unsu-
pervised approach for learning the multiple
senses of a word. Graph-based approaches to
WSI frequently represent word co-occurrence
as a graph and use the statistical properties
of the graph to identify the senses. We rein-
terpret graph-based WSI as community detec-
tion, a well studied problem in network sci-
ence. The relations in the co-occurrence graph
give rise to word communities, which distin-
guish senses. Our results show competitive
performance on the SemEval-2010 WSI Task.

1 Introduction

Many words have several distinct meanings. For ex-
ample, “law” may refer to legislation, a rule, or po-
lice depending on the context. Word Sense Induc-
tion (WSI) discovers the different senses of a word,
such as “law,” by examining its contextual uses. By
deriving the senses of a word directly from a corpus,
WSI is able to identify specialized, topical meanings
in domains such as medicine or law, which prede-
fined sense inventories may not include.

aWe consider graph-based approaches to WSI,
which typically construct a graph from word occur-
rences or collocations. The core problem is how to
identify sense-specific information within the graph
in order to perform sense induction. Current ap-
proaches have used clustering (Dorow and Wid-
dows, 2003; Klapaftis and Manandhar, 2008) or
statistical graph models (Klapaftis and Manandhar,
2010) to identify sense-specific subgraphs.

We reinterpret the challenge of identifying sense-
specific information in a co-occurrence graph as one
of community detection, where a community is de-

fined as a group of connected nodes that are more
connected to each other than to the rest of the graph
(Fortunato, 2010). Within the co-occurrence graph,
we hypothesize that communities identify sense-
specific contexts for each of the terms. Community
detection identifies groups of contextual cues that
constrain each of the words in a community to a sin-
gle sense.

To test our hypothesis, we require a community
detection algorithm with two key properties: (1) a
word may belong to multiple, overlapping commu-
nities, which is necessary for discovering multiple
senses, and (2) the community detection may be hi-
erarchically tuned, which corresponds to sense gran-
ularity. Therefore, we adapt a recent, state of the art
approach, Link Clustering (Ahn et al., 2010). Our
initial study suggests that community detection of-
fers competitive performance and sense quality.

2 Word Sense Induction

A co-occurrence graph is fundamental to our ap-
proach; terms are represented as nodes and an
edge between two nodes indicates the terms’ co-
occurrence, with a weight proportional to frequency.
While prior work has focused on clustering the
nodes to induce senses, using Link Clustering (Ahn
et al., 2010), we cluster theedges, which is equiv-
alent to grouping the word collocations to iden-
tify sense-specific contexts. We summarize our ap-
proach as four steps: (1) selecting the contextual
cues, (2) building a co-occurrence graph, (3) per-
forming community detection on the graph, and (4)
sense labeling new contexts using the discovered
communities.

Context Refinement Representing the co-
occurrence graph for all terms in a context is
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prohibitively expensive. Moreover, often only a
subset of the terms in a context constrain the sense
of an ambiguous word. Therefore, we refine a
word’s context to include only a subset of the terms
present. Following previous work (Véronis, 2004),
we select only nouns in the context.

Early experiments indicated that including infre-
quent terms in the co-occurrence graph yielded poor
performance, which we attribute to having too few
connecting edges to identify meaningful community
structure. Therefore, we include only those nouns
occurring in the most frequent 5000 tokens, which
are likely to be representative the largest communi-
ties in which a term takes part. Last, we include all
the nouns and verbs used in the SemEval 2010 WSI
Task (Manandhar et al., 2010), which are used in
our evaluation. The selected context terms are then
stemmed using the Porter stemmer.

Building the Co-occurrence Graph The graph is
iteratively constructed by adding edges between the
terms from a context. For each pair-wise combi-
nation of terms, an edge is added and its weight
is increased by 1. This step effectively embeds a
clique if it did not exist before, connecting all of
the context’s words within the graph. Once all con-
texts have been seen, the graph is then pruned to re-
move all edges with weight below a thresholdτ =
25. This step removes edges form infrequent collo-
cations, which may not contribute sufficient graph
structure for community detection, and as a practi-
cal consideration, greatly speeds up the community
detection process. However, we note that parameter
was largely unoptimized and future work may see a
benefit from accounting for edge weight.

Community Detection Within the co-occurrence
graph, communities may have partial overlap. For
example, Figure 1 illustrates a part of the local graph
for “mouse.” Two clear senses emerge from the
neighbors: one for the input device and another for
the animal. However, the terms that correspond
to one sense also co-occur with terms correspond-
ing to the other sense, e.g., “information,” which
hinders finding communities directly from discon-
nected components in the local neighborhood. Find-
ing sense-specific communities requires recognizing
that the co-occurring terms may be shared by mul-
tiple communities. Therefore, to identify communi-
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Figure 1: A portion of the local co-occurrence graph
for “mouse” from the SemEval-2010 Task 14 corpus

ties we selected the approach of Ahn et al. (2010),
summarized next, which performs well for overlap-
ping community structure.

First, the edges are clustered using an unweighted
similarity function based on the neighbors of two
edges,ei,j andei,k: sim(ei,j , ei,k) =

nj∩nk

nj∪nk
, where

ni denotes the nodei and its neighbors. This simi-
larity reflects the percentage of terms that co-occur
in common with the term for nodesj andk, inde-
pendent of the terms that co-occur with the shared
term for i. For example, in Figure 1, the similarity
for the edges connecting “mouse” with “user” and
“software,” 2

5 , measures the overlap in the neighbors
of “user” and “software” independent of the neigh-
bors for “mouse,” such as “cell” and “size.”

Using this similarity function, the edges are ag-
glomeratively clustered into a dendrogram. We use
the single-link criteria which iteratively merges the
two clusters connected by the edge pair with the
highest similarity. The dendrogram may then be cut
at different levels to reveal different cluster granu-
larities; cuts near the bottom of the dendrogram cre-
ate a larger number of small groups of collocations,
whereas cuts near the top create fewer, larger groups
of collocations. To select the specific partitioning
of the dendrogram into clusters, we select the solu-
tion that maximizes the partition density, which Ahn
et al. (2010) define asD = 2

M

∑
c mc

mc−(nc−1)
(nc−2)(nc−1) ,

whereM is the number of edges in the graph,c de-
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notes a specific cluster, andnc andmc are the num-
ber of nodes and edges in clusterc, respectively.

The final set of communities is derived from these
partitions: a node is a member of each community in
which one of its edges occurs. Last, we remove all
communities of size 3 and below, which we interpret
as having too few semantic constraints to reliably
disambiguate each of its terms.

Sense Induction from Communities Each term
in a community is treated as having a specific sense,
with one sense per community. To label a contextual
usage, we identify the community that best maps to
the context. For a given context, made of the set of
wordsW , we score each communityi, consisting of
wordsC, using the Jaccard index weighted by com-
munity size: score(Ci,W ) = |Ci| · |Ci∩W |

|Ci∪W | . This
similarity function favors mapping contexts to larger
communities, which we interpret as having more se-
mantic constraints. The final sense labeling consists
of the scores for all overlapping communities.

3 Evaluation

We use the SemEval-2 Task 14 evaluation (Manand-
har et al., 2010) to measure the quality of induced
senses. We summarize the evaluation as follows.
Systems are provided with an unlabeled training cor-
pus consisting of 879,807 multi-sentence contexts
for 100 polysemous words, comprised of 50 nouns
and 50 verbs. Systems induce sense representations
for target words from the training corpus and then
use those representations to label the senses of the
target words in unseen contexts from a test corpus.
We use the entire multi-sentence context for build-
ing the co-occurrence graph.

The induced sense labeling is scored using two
unsupervised and one supervised methods. The un-
supervised scores consists of two contrasting mea-
sures: the paired FScore (Artiles et al., 2009) and
the V-Measure (Rosenberg and Hirschberg, 2007).
Briefly, the V-Measure rates the homogeneity and
completeness of a clustering solution. Solutions that
have word clusters formed from one gold-standard
sense are homogeneous; completeness measures the
degree to which a gold-standard sense’s instances
are assigned to a single cluster. The paired FScore
reflects the overlap of the solution and the gold stan-
dard in cluster assignments for all pair-wise combi-

FScore V-Meas. S80/20 S60/40

SPD 61.1 (3) 3.6 (18) 57.64 (18) 57.64 (16)
SV 56.16 (9) 8.7 (6) 57.90 (18) 57.36 (17)
SF 63.4 (1) 0 (26) 56.18 (21) 56.20 (21)

BestF 63.3 (1) 0 (26) 58.69 (14) 58.24 (13)
BestV 26.7 (25) 16.2 (1) 58.34 (16) 57.27 (17)
BestS 49.8 (15) 15.7 (2) 62.44 (1) 61.96 (1)
MFS 63.4 0 58.67 58.95

Table 1: Performance results on the SemEval-2010
WSI Task, with rank shown in parentheses. Refer-
ence scores of the best submitted systems are shown
in the bottom.
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Figure 2: V-Measure and paired FScore results
for different partitionings of the dendrogram. The
dashed vertical line indicatesSPD

nation of instances. The supervised evaluation trans-
forms the induced sense clusters of a portion of the
corpus into a word sense classifier, which is then
tested on the remaining corpus. An 80/20 train-test
split, S80/20, and 60/40 split, S60/40, are both used.

Results As a first measure of the quality of the in-
duced senses, we evaluated both the solution that
maximized the partition density, referred to asSPD,
and an additional 5,000 solutions, evenly distributed
among the possible dendrogram partitionings. Fig-
ure 2 shows the score distribution for V-Measure and
paired FScore. Table 1 lists the scores and rank for
SPD and the solutions that optimize the V-Measure,
SV , and FScore,SF , among the 26 participating
Task-14 systems. For comparison, we include the
highest performing systems on each measure and the
Most Frequent Sense (MFS) baseline.
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Discussion Optimizing the partition density re-
sults in high performance only for the FScore; how-
ever, optimizing for the V-Measure yields competi-
tive performance on both measures. The behavior is
encouraging as most approaches submitted to Task
14 favor only one measure.

Figure 2 indicates a relationship between the V-
Measure and community memberships. Therefore,
usingSV , we calculated the Pearson correlation be-
tween a term’s scores and the number of community
memberships within a single solution. The corre-
lation with the paired FScore,r = -0.167, was not
statistically significant atp < .05, while correlation
with the V-Measure,r = 0.417 is significant with
p < 1.6e-5. This suggests that at a specific com-
munity granularity, additional communities enable
the WSI mapping process to make better sense dis-
tinctions between contexts. However, we note that
V-Measure begins to drop as the average commu-
nity membership increases in solutions afterSV , as
shown in Figure 2. We suspect that as the agglomer-
ative merge process continues, communities repre-
senting different senses become merged, leading to
a loss of purity.

The lower performance ofSPD and the impact of
community memberships raises the important ques-
tion of how to best select the communities. While
co-occurrence graphs have been shown to exhibit
small-world network patterns (Véronis, 2004), op-
timizing for the general criterion of partition density
that has performed well on such networks does not
result in communities that map well to sense-specific
contexts. We believe that this behavior is due to
impact of the sense inventory; selecting a commu-
nity solution purely based on the graph’s structure
may not capture the correct sense distinctions, ei-
ther having communities with too few members to
distinguish between senses or too many members,
which conflates senses. However, a promising fu-
ture direction is to examine whether the there exist
features of the graph structure that would allow for
recognizing the specific community solutions that
correspond directly to different sense granularities
without the need for an external evaluation metric.

4 Related Work

We highlight those related works with connections
to community detection. Véronis (2004) demon-

strated that word co-occurrence graphs follow a
small-world network pattern. In his scheme, word
senses are discovered by iteratively deleting the
more connected portions of the subgraph to reveal
the different senses’ network structure. Our work
capitalizes on this intuition of discovering sense-
related subgraphs, but leverages formalized methods
for community detection to identify them.

Dorow and Widdows (2003) identify sense-
related subgraphs in a similar method to commu-
nity detection for local region of the co-occurrence
graph. They use a random walk approach to identify
regions of the graph that are sense-specific. Though
not identical, we note that the random walk model
has been successfully applied to community detec-
tion (Rosvall et al., 2009). Furthermore, Dorow and
Widdows (2003) performs graph clustering on a per-
word basis; in contrast, the proposed approach iden-
tifies communities for the entire graph, effectively
performing an all-word WSI.

Klapaftis and Manandhar (2010) capture hierar-
chical relations between collocations using a Hi-
erarchical Random Graph model where nodes are
collocations and edges indicate their co-occurrence,
which improved performance over non-hierarchical
models. Our community detection approach also
captures the hierarchical structure of the collocation
graph, but uses a much simpler graphical representa-
tion that forn terms requiresO(n) nodes andO(n2)
edges, compared toO(n2) nodes andO(n3) edges
for the above approach, which allows it to build the
collocation graph from a larger set of terms.

5 Conclusion

We have proposed a new graph-based method for
WSI based on finding sense-specific word commu-
nities within a co-occurrence graph, which are then
identify distinguish senses in new contexts. An
initial analysis using the SemEval-2010 WSI task
demonstrates competitive performance. Future re-
search will address two potential avenues: (1) the
impact of word frequency on community size and
memberships and (2) identifying both graph proper-
ties and semantic relations within hierarchical com-
munities that distinguish between sense granulari-
ties. Software for the WSI model and for Link Clus-
tering is available as a part of the S-Space Package
(Jurgens and Stevens, 2010).
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Abstract

A graph-based distance between Wikipedia ar-
ticles is defined using a random walk model,
which estimates visiting probability (VP) be-
tween articles using two types of links: hy-
perlinks and lexical similarity relations. The
VP to and from a set of articles is then com-
puted, and approximations are proposed to
make tractable the computation of semantic
relatedness between every two texts in a large
data set. The model is applied to document
clustering on the 20 Newsgroups data set. Pre-
cision and recall are improved in comparison
with previous textual distance algorithms.

1 Introduction

Many approaches have been proposed to compute
similarity between texts, from lexical overlap mea-
sures to statistical topic models that are learned from
large corpora. In this paper, we propose a method for
using knowledge from a structured, collaborative re-
source – the Wikipedia hypertext encyclopedia – in
order to build a measure of semantic relatedness that
we test on a text clustering task.

The paper first describes the document graph de-
rived from Wikipedia (Section 2), and then defines
a network-based distance using visiting probability
(Section 3), along with algorithms for its applica-
tion to text clustering (Section 4). Results over the
20 Newsgroups dataset are shown to be competitive
(Section 5), and the relative contributions of cosine
lexical similarity and visiting probability are ana-
lyzed. Our proposal is discussed in the light of pre-
vious work in Section 6.

2 The Document Network

In the present proposal, knowledge about seman-
tic relatedness is embodied into a document net-
work, whose nodes are intended to represent con-
cepts, while the links between nodes stand for var-
ious relations between concepts. The nodes of the
network correspond to articles from the Wikipedia
hypertext encyclopedia, and are derived as follows.

The network was built from Wikipedia, using the
WEX dataset (Metaweb Technologies, 2010). All
articles from the following categories were removed,
as they do not correspond to proper concepts: Talk,
File, Image, Template, Category, Portal, and List.
Moreover, disambiguation pages and articles shorter
than 100 non-stopwords were filtered out as well.
Out of 4,327,482 articles in WEX, 1,264,611 articles
were kept, forming the nodes of our network.

The first type of links in our document network
are the hyperlinks between articles, because, in prin-
ciple, each link between two articles indicates some
form of relatedness between them. There are more
than 35 million such links in our network.

The second type of links is derived from the sim-
ilarity of lexical content between articles. This is
computed using cosine similarity between the lexi-
cal vectors corresponding to the articles’ texts, after
stopword removal and stemming. Then, links are
created by connecting every article to the 10 arti-
cles that are most similar to it, each link receiving
a weight which is the normalized lexical similarity
score. The number 10 was chosen to ensure compu-
tational tractability, and is in the same range as the
average number of hyperlinks per node (30).
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Computing semantic relatedness between two
texts requires: (1) to estimate relatedness between
two sets of nodes in the network, as described in
Sections 3 and 4; and (2) to project each text onto
a set of nodes, as we briefly explain here. The pro-
jection of a text onto the network is found by com-
puting the text’s lexical similarity with all articles,
again using cosine distance over stemmed words,
without stopwords. The text is mapped to the 10
closest articles, resulting in a probability distribution
over the 10 corresponding nodes. Again, this value
was chosen to be similar to the number of hyperlinks
and content links per node, and to keep computation
tractable. In fact, the numerous Wikipedia articles
are scattered in the space of words, therefore tuning
these values does not seem to bring crucial changes.

3 Computing Relatedness in the Network
Using Visiting Probability (VP)

We have previously defined a random walk model
(Yazdani and Popescu-Belis, 2010) to compute re-
latedness of sets of nodes as the visiting probability
(VP ) of a random walker from one set to another
one, and we will review the model in this section. In
the next section, we will explain how the model was
extended for application to document clustering.

3.1 Notations

Let S = {si|1 ≤ i ≤ n} be the set of n nodes
in the graph. Any two nodes si and sj can be con-
nected by one or more directed and weighted links,
which can be of L different types (L = 2 in our
case: hyperlinks and lexical similarity links). Links
between nodes can thus be represented by L matri-
ces Al (1 ≤ l ≤ L) of size n × n, where Al(i, j)
is the weight of the link of type l between si and sj .
The transition matrix Cl gives the probability of a
direct transition between nodes si and sj , using only
links of type l. This matrix can be built from the Al
matrix as follows:

Cl(i, j) =
Al(i, j)∑n
k=1Al(i, k)

.

In the random walk process using all link types
(1 ≤ l ≤ L), let the weight wl denote the impor-
tance of link type l. Then, the overall transition ma-
trix C giving the transition probability Ci,j between

nodes si and sj is : C =
∑L

l=1wlCl.
One of the main parameters in this computation

is the relative weight of the two types of links (lex-
ical similarity and hyperlinks) in the random walk
over the network. The settings for the experiments
on document clustering (0.6 vs. 0.4) are explained in
Section 5.1 below.

3.2 VP from a Set of Nodes to a Node

Let us consider a probability distribution ~r over
nodes, corresponding to the projection of a text frag-
ment onto the network of articles (Section 2). Given
a new node sj in the network, our model first esti-
mates the probability of visiting sj for the first time
when a random walker starts from ~r in the graph.
The model considers the state St of the random
walker (its position node) and provides a procedure
which, executed until termination, yields the value
of VP . Namely, the initial state is chosen at random
with probability P (S0 = si|~r) = ri (where the ri
are the components of ~r). Then, from state St−1, ei-
ther St−1 = sj and the procedure is finished, or the
next node is chosen using the transition matrix C.
Moreover, it is also possible to ‘fail’ the walk with
a small probability, called ‘absorption probability’,
which makes longer paths less probable.

3.3 Differences between VP and PageRank or
Hitting Time

The VP of sj starting from the distribution ~r, as
computed here, is different from the probability as-
signed to sj after running Personalized PageRank
(Haveliwala, 2003) with a teleport vector equal to ~r.
In the computation of VP , the loops starting from sj
and ending to the same sj do not have any effect on
the final score, unlike for PPR, for which such loops
boost the probability of sj . If some pages have this
type of loops (typically, very “popular” pages), then
after using PPR they will have high probability al-
though they might not be very close to the teleport
vector ~r.

The VP of sj is also different from the hitting
time to sj , defined as the average number of steps
a random walker would take to visit sj for the first
time in the graph starting from ~r. Hitting time is
more sensitive to long paths in comparison to VP ,
a fact that might introduce more noise.The perfor-
mance of these three algorithms in computing se-
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mantic similarity has been compared in (Yazdani
and Popescu-Belis, 2010).

3.4 VP between Sets of Nodes

Generalizing now to the computation of VP from
a weighted set of nodes ~r1 (a probability distribu-
tion) to another set ~r2, the model first constructs a
virtual node representing ~r2 in the network, named
by convention sR, and then connects all nodes si to
sR according to their weights in ~r2. The transition
matrix for the random walk is updated accordingly.

To compute relatedness of two texts projected
onto the network as ~r1 and ~r2, the VP of ~r1 given
~r2 is averaged with the converse probability, of ~r2
given ~r1 – a larger probability indicating closer se-
mantic relatedness.

3.5 Truncated VP

The computation of VP can be done iteratively and
can be truncated after a number of steps, as the im-
portance of longer paths grows smaller due to the
absorption probability, leading thus to a T -truncated
visiting probability noted VPT . Besides making
computation more tractable, truncation reduces the
effect of longer paths, which seem to be less reliable
indicators of relatedness.

We have computed an upper bound on the trun-
cation error, which helps to control and minimize
the number of steps actually computed in a random
walk. To compute the upper bound of the truncation
error we compute the probability of returning neither
success (reaching sj) nor failure (absorption) in first
t steps, which can be computed as

∑n
i 6=j α

t(~rC ′t)i.
This is in fact the probability mass at time t at all
nodes except sj , the targeted node. C ′ is the transi-
tion matrix that gives the probability of a transition
between two nodes, modified to include the virtual
node sR in the network, and 1− α is the absorption
probability.

If pt(success) denotes the probability of success
(reaching sj) considering paths of length at most t,
and εt the error made by truncating after step t, then
we have:

εt = p(success)− pt(success) ≤
∑n

i 6=j α
t(~rC ′t)i

So, if pt(success) is used as an approximation for
p(success) then an upper bound for this approxima-
tion error εt is the right term of the above inequality.

4 Application of VP to Text Clustering

In this section, we describe the additional modeling
that was done so that semantic relatedness based on
VP could be applied efficiently to text clustering.
Indeed, it is not tractable to individually compute
the average VP between any two texts in the set of
documents to be clustered, because the numbers of
pairs is very large – e.g., 20,000 documents in the
experiments in Section 5. Instead, we propose two
solutions for computing, respectively, VP to a set of
nodes (from all documents in the network), and re-
spectively VP from a set of nodes to all documents.

4.1 Computing VP from All Nodes to a Subset

To compute the T -truncated visiting probability
(noted VPT ) from all nodes in the network to a node
sR at the same time, the following recursive pro-
cedure is defined. Here, T is the number of steps
before truncation, and sR is a virtual node repre-
senting a probability distribution ~r from a text. The
procedure is based on the definition of VP between
nodes in Section 3 and uses the transition matrix C ′

that gives the probability of a transition between two
nodes, modified to include the virtual node sR in the
network. If 1− α is the absorption probability, then
the recursive definition of VPT from a node si to
the virtual node sR is:

VPT (si, sR) = α
∑

k C
′(si, sk)VPT−1(sk, sR)

Using dynamic programming, it is possible to
compute VPT from all nodes to sR inO(ET ) steps,
where E is the number of links in the network.
The initialization of the procedure is done using
VPT (sR, sR) = 1 and VP0(si, sR) = 0 for any
i 6= R.

4.2 Computing VP from a Subset to All Nodes

To compute the truncated VP from ~r to all nodes
in the network, the total computation time using
the definition of VPT from Section 3 is O(ETN ),
where N is the number of nodes in the network, be-
cause VPT must be computed for each node sepa-
rately. For a large data set, this is not tractable.

The proposed solution is based on a sampling
method over the random walks to approximate
VPT . The sampling involves running M indepen-
dent random walks of length T from ~r. For a given
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node sj and a sample walk m, the first time (if any)
when sj is visited on each random walk starting
from ~r is noted tjm . Then, VPT can be estimated
by the following average over sample walks, where
1− α is again the absorption probability:

ˆVPT (~r, sj) = (
∑

m α
tjm )/M.

As a result, the estimate of VPT can be computed
in O(MT ) steps, where M is the number of sample
paths.

Moreover, it is possible to compute a bound on the
error of the estimation, |VPT− ˆVPT |, depending on
the number of sample paths M . It can be shown that
the error is lower than ε, with a probability larger
than 1 − δ, on condition that the number of sample
paths is greater than α2 ln(2/δ)/2ε2.

To prove this bound, we use inspiration from a
proof by Sarkar et al. (2008). If the estimation of a
variableX is noted X̂ , let us suppose that concept sj
has been visited for the first time at {tj1 , · · · , tjm}
time steps in the M sample walks. We define the
random variable X l by αtjl/M , where tjl indicates
the time step at which sj was visited for the first
time in lth sampling. If sj was not visited at all,
then X l = 0 by convention. The l random variables
X l (j1 ≤ l ≤ jm) are independent and bounded by
0 and 1 (0 ≤ X l ≤ 1). We have:

ˆVPT (~r, sj) =
∑

lX
l = (

∑
l α

tjl )/M and

E( ˆVPT (~r, sj)) = VPT (~r, sj).

So, by applying Hoeffding’s inequality, we have:

P (| ˆVPT − E( ˆVPT )| ≥ ε) ≤ 2exp(−2Mε2

α2 ).

If the probability of error must be at most δ, then
setting the right side lower than δ gives the bound
for M that is stated in our theorem.

As a consequence, we have the following lower
bound forM if we want ε-approximation for all pos-
sible sj with probability at least 1− δ. We use union
bound and Hoeffding’s inequality:

P (∃j ∈ {1, . . . , n}, | ˆVPT − E( ˆVPT )| ≥ ε) ≤ 2n×
exp(−2Mε2

α2 )

which gives the lower bound M ≥ α2 ln(2n/δ)
2ε2

.

5 Document Clustering

This section describes the experimental setting and
the results of applying the text relatedness measure
defined above to the problem of document cluster-
ing over the 20 Newsgroups dataset.1 The dataset
contains about 20,000 postings to 20 news groups,
hence 20 document classes, with about 1,000 docu-
ments per class. We aim here at finding these classes
automatically, using for testing the entire data set
without using any part of it as a training set. The
knowledge of our system comes entirely from the
document network and the techniques for comput-
ing distances between two texts projected onto it.

5.1 Setup of the Experiment
We first compute a similarity matrix for the entire 20
Newsgroups data set, with the relatedness score be-
tween any two documents being VPT . For tractabil-
ity, we fixed T = 5 that gives sufficient precision; a
larger value only increased computation time. In-
stead of computing VPT between all possible pairs
separately, we fill one row of the matrix at a time
using the approximations above.

We set the absorption probability of the random
walk 1 − α = 0.2 for this experiment. Given α
and T by using the formula in section 3.5, it is pos-
sible to compute the error bound of the truncation,
and noting that for a smaller α, fewer steps (T ) are
needed to achieve the same approximation precision
because of the penalty set to longer paths. Con-
versely, a larger α decreases the penalty for longer
paths and requires more computation.2

For comparison purposes, four similarity matri-
ces were computed. Indeed, the theoretical appara-
tus described above can be applied to various types
of links in the document network. In Section 2, we
introduced two types of links, namely lexical simi-
larity and actual hyperlinks, and these can be used
separately in the model, or as a weighted combina-
tion. The following similarities will be compared:

1. VP over hyperlinks only (noted VPHyp);

2. VP over lexical similarity links (VPLex);
1Distributed at http://www.cs.cmu.edu/afs/cs.

cmu.edu/project/theo-20/www/data/news20.
html, see also (Mitchell, 1997, Chapter 6).

2Note that in the extreme case when α = 0, similarity to all
nodes except the node itself is zero.
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3. VP over a combination of hyperlinks (0.4) and
lexical links (0.6) (noted VPComb) – these val-
ues gave the best results in our previous appli-
cations to word and document similarity tasks
(Yazdani and Popescu-Belis, 2010);

4. no random walk, only cosine similarity be-
tween the tf-idf vectors of the documents to be
clustered (noted LS , for lexical similarity).

5.2 Clustering Performance

Clustering is performed using a k-means algorithm
over each of the four similarity matrices.3 The qual-
ity of the clustering is first measured using the Rand
Index (RI), which counts the proportion of pairs of
documents that are similarly grouped, i.e. either in
the same, or in different clusters, in the reference
vs. candidate clusterings. Other methods exist (Pan-
tel and Lin, 2002), including a Rand Index adjusted
for chance (Vinh et al., 2009), but the RI suffices
for comparative judgments in this subsection. How-
ever, in Subsection 5.3, we will also look at preci-
sion and recall, and in Subsection 5.4 we will use
purity. As the clustering is performed over the entire
data set, because there is no training vs. test data,
confidence intervals are not available, though they
could be computed by splitting the data. As a result,
comparison with other scores on the same test set is
absolute.

The scores in terms of Rand Index are, in decreas-
ing order:

1. 90.8% for VPComb

2. 90.6% for VPHyp

3. 90.4% for VPLex

4. and only 86.1% for the LS cosine similarity.

The random walk model thus clearly outperforms
the baseline LS approach. If counting only wrongly
clustered document pairs, VPComb has 6.6% of such
pairs, while VPLex has 8.4%, confirming the lower
performance of the model using only lexical similar-
ity links, i.e. the utility of hyperlinks.

3The semantic relatedness measure proposed here could be
used with other clustering algorithms, such as the committee-
based method proposed by Pantel and Lin (2002).

5.3 Comparison to Other Methods

To obtain a better understanding of the performance
of the proposed method, we computed the clustering
precision and recall of several well-known methods
for statistical text representation, shown in Table 1.
For Latent Dirichlet Allocation (LDA) (Blei et al.,
2003) and Latent Semantic Analysis (LSA) (Deer-
wester et al., 1990), we first mapped the documents
in the latent space and then computed the cosine
similarity between the documents in the latent space.
The number of topics for LSA and LDA is set to 100
to make the computation tractable. Precision and re-
call are used, rather than the Rand Index, to show in
more detail the performance of each method. The
use of VP over our document network clearly in-
creases both precision and recall in comparison to
other tested approaches.

Similarity method Precision Recall
LS 7.50 18.38
LSA 8.63 9.99
LDA 19.93 31.50

VPComb 23.81 35.32

Table 1: Precision and Recall for k-means clustering over
the 20 Newsgroups using several well-known methods to
compute text similarity, in comparison to the present pro-
posal.

5.4 Analysis of the Impact of VP with Respect
to Cosine Similarity

To find out in which cases the proposed method im-
proves over a simple cosine similarity measure, we
considered a linear combination of the cosine simi-
larity and VP , noted w×VPComb+(1−w)×LS ,
and varied the weight w from 0 to 1. Considering
the k-nearest neighbors of every document accord-
ing to this combined similarity, we define k-purity
as the number of documents with the correct label
over the total number of documents k in the com-
puted neighborhood. The variation of k-purity with
w, for several values of k, is shown in Figure 1.

The best purity appears to be obtained for a com-
bination of the two methods, for all values of k that
were tested. This shows that VPComb brings valu-
able additional information about document relat-
edness that cannot be found in LS only. Further-
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Figure 1: Values of k-purity (vertical axis) averaged over all documents, for neighborhoods of different sizes k. The
horizontal axis indicates the weightw of visiting probability vs. cosine lexical similarity in the formula: w×VPComb+
(1− w)× LS .

more, when the size of the examined neighborhood
k increases (lower curves in Figure 1), the effect of
VPComb becomes more important, i.e. its weight in
the optimal combination increases. For very small
neighborhoods, LS is almost sufficient to ensure op-
timal purity, but for larger ones (k = 10 or 15),
VPComb used alone (w = 1) outperforms LS used
alone (w = 0). Their optimal combination leads to
scores that are higher than those obtained for each
of them used separately, and, as noted, the weight of
VPComb in the optimal combination increases for
larger neighborhoods.

These results can be explained as follows. For
very small neighborhoods, the cosine lexical simi-
larity score with the nearest 1–5 documents is very
high, as they have many words in common, so LS is
a good measure of text relatedness. However, when
looking at larger neighborhoods, for which related-
ness is less based on identical words, then VPComb

becomes more effective, and LS performs poorly.
Therefore, we can predict that VPComb will be most
relevant when looking for larger neighborhoods, or

in order to increase recall. VPComb should also be
relevant when there is low diversity among docu-
ment words, for instance when all documents are
very short.

6 Related Work

Many attempts have been made to improve the
overlap-based lexical similarity distance, for various
applications to HLT. One approach is to construct
a taxonomy of concepts and relations (manually or
automatically) and to map the text fragments to be
compared onto the taxonomy. For instance, Word-
net (Fellbaum, 1998) and Cyc (Lenat, 1995) are two
well-known knowledge bases that can be used for
enriching pure lexical matching. However, building
and maintaining such resources requires consider-
able effort, and they might cover only a fraction of
the vocabulary of a language, as they usually include
few proper names or technical terminology.

Another approach makes use of unsupervised
methods to construct a semantic representation of
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documents by analyzing mainly co-occurrence rela-
tionships between words in a corpus. Latent Seman-
tic Analysis (Deerwester et al., 1990), Probabilistic
LSA (Hofmann, 1999) and Latent Dirichlet Alloca-
tion (Blei et al., 2003) are unsupervised methods that
construct a low-dimensional feature representation
or concept space, in which words are no longer sup-
posed to be independent.

Mihalcea et al. (2006) compared knowledge-
based and corpus-based methods, using word sim-
ilarity and word specificity to define one general
measure of text semantic similarity. Because it com-
putes word similarity values between all word pairs,
the proposed method appears to be suitable mainly
to compute similarity between short fragments, oth-
erwise the computation becomes intractable.

WikiRelate! (Strube and Ponzetto, 2006) com-
putes semantic relatedness between two words by
using Wikipedia. Each word is mapped to the corre-
sponding Wikipedia article by using article titles. To
compute relatedness, several methods are proposed,
namely, using paths in the Wikipedia category struc-
ture or the articles’ content. Our method, by compar-
ison, also uses the knowledge embedded in the hy-
perlinks between articles, as well as the entire con-
tents of articles, but unlike WikiRelate! it has been
extended to texts of arbitrary lengths.

Explicit Semantic Analysis (Gabrilovich and
Markovitch, 2007), instead of mapping a text to a
node or a small group of nodes in a taxonomy, maps
the text to the entire collection of available con-
cepts, by computing the degree of affinity of each
concept to the input text. Similarity is measured
in the new concept space. ESA does not use the
link structure or other structured knowledge from
Wikipedia. Moreover, by walking over a content
similarity graph, our method benefits from a non-
linear distance measure according to the paths con-
sisting of small neighborhoods.

In the work of Yeh et al. (2009), a graph of docu-
ments and hyperlinks is computed from Wikipedia,
then a Personalized PageRank (Haveliwala, 2003) is
computed for each text fragment, with the teleport
vector being the one resulting from the ESA algo-
rithm cited above. To compute semantic relatedness
between two texts, Yeh et al. (2009) simply compare
their personalized page rank vectors. By compari-
son, in our method, we also consider in addition to

hyperlinks the effect of word co-occurrence between
article contents. The use of visiting probability also
gives different results over personalized page rank,
as it measures different properties of the network.

There are many studies on measuring distances
between vertices in a graph. Two measures that are
close to the visiting probability proposed here are
hitting time and Personalized PageRank mentioned
in Section 3.3. Hitting time has been used in var-
ious studies as a distance measure in graphs, e.g.
for dimensionality reduction (Saerens et al., 2004)
or for collaborative filtering in a recommender sys-
tem (Brand, 2005). Hitting time was also used for
link prediction in social networks along with other
distances (Liben-Nowell and Kleinberg, 2003), or
for semantic query suggestion using a query/URL
bipartite graph (Mei et al., 2008). As for Personal-
ized PageRank, it was used for word sense disam-
biguation (Agirre and Soroa, 2009), and for measur-
ing lexical relatedness of words in a graph built from
WordNet (Hughes and Ramage, 2007).

7 Conclusion

We proposed a model for measuring text seman-
tic relatedness based on knowledge embodied in
Wikipedia, seen here as document network with two
types of links – hyperlinks and lexical similarity
ones. We have used visiting probability to mea-
sure proximity between weighted sets of nodes, and
have proposed approximation algorithms to make
computation efficient for large graphs (more than
one million nodes and 40 million links) and large
text clustering datasets (20,000 documents in 20
Newsgroups). Results on the document clustering
task showed an improvement using both word co-
occurrence information and user-defined hyperlinks
between articles over other methods for text repre-
sentation.
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Abstract

In this paper, we present GrawlTCQ, a new
bootstrapping algorithm for building special-
ized terminology, corpora and queries, based
on a graph model. We model links be-
tween documents, terms and queries, and use
a random walk with restart algorithm to com-
pute relevance propagation. We have evalu-
ated GrawlTCQ on an AFP English corpus of
57,441 news over 10 categories. For corpora
building, GrawlTCQ outperforms the Boot-
CaT tool, which is vastly used in the domain.
For 1,000 documents retrieved, we improve
mean precision by 25%. GrawlTCQ has also
shown to be faster and more robust than Boot-
CaT over iterations.

1 Introduction

Specialized terminology and corpora are key re-
sources in applications such as machine translation
or lexicon-based classification, but they are expen-
sive to develop because of the manual validation re-
quired. Bootstrapping is a powerful technique for
minimizing the cost of building these resources.

In this paper, we present GrawlTCQ1, a bootstrap-
ping algorithm for building specialized terminol-
ogy, corpora and queries: from a small set of user-
provided terms, GrawlTCQ builds the resources via
automated queries to a search engine. The algorithm
relies on a graph that encodes the three kinds of enti-
ties involved in the procedure (terms, documents and
queries) and relations between them. We model the

1GrawlTCQ stands for Graph RAndom WaLk for Terminol-
ogy, Corpora and Queries.

relevance propagation in our graph by using a ran-
dom walk with restart algorithm.

We use BootCaT (Baroni and Bernardini, 2004)
as our baseline because it is a similar algorithm that
has been vastly used and validated experimentally
in the domain. We have evaluated GrawlTCQ and
BootCaT on an AFP (Agence France Presse) En-
glish corpus of 57,441 news over 10 categories. Re-
sults show that, for corpora building, GrawlTCQ
significantly outperforms the BootCaT algorithm.
As this is an on-going work, further work is needed
to evaluate terminology and query results.

The article is structured as follows: in Section 2,
we review the related work in terminology and cor-
pora construction using bootstrapping techniques, as
well as random walk applications. In Section 3,
we describe GrawlTCQ. In Section 4, we evaluate
GrawlTCQ and compare its results with those pro-
vided by BootCaT. We conclude in Section 5.

2 Related Work

Several works using bootstrapping techniques have
been carried out in terminology and corpora cre-
ation. For example, (Ghani et al., 2005) has built mi-
nority language corpora from the web. The Web-as-
Corpus WaCky initiative (Baroni et al., 2009; Fer-
raresi et al., 2008; Sharoff, 2006) has built very large
web-derived corpus in various languages. They used
previously mentioned BootCaT tool to do this. As
the quality of the results is strongly dependent on
the quality of seed terms and the underlying search
engine, manual filtering is usually mandatory to en-
hance performance. GrawlTCQ uses a graph to au-
tomatically filter out erroneous terms and documents
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Figure 1: Components of the GrawlTCQ algorithm.

and improve the system’s overall performance. The
manual filtering cost is therefore drastically reduced.

Graph modeling and random walks have been
applied with success to many different domains
of NLP, such as keyword and sentence extraction
(Mihalcea and Tarau, 2004), computer-science arti-
cles ranking (Nie et al., 2005), web pages ranking
(Haveliwala, 2002; Page et al., 1999; Richardson
and Domingos, 2002), WordNet-based word sense
disambiguation (Agirre and Soroa, 2009) and lexical
semantic relatedness (Hughes and Ramage, 2007),
or set expansion (Wang and Cohen, 2007). In this
paper, we confirm the relevance of this approach to
terminology and corpora bootstrapping.

3 Ranking simultaneously Terms, Queries
and Documents

3.1 The GrawlTCQ bootstrapping algorithm

Figure 1 shows the components of the GrawlTCQ
algorithm. Starting from user provided seed terms2,
GrawlTCQ iteratively creates queries, finds docu-
ments and extracts new terms. We model this boot-
strapping procedure with a graph that keeps all links
between documents, terms and queries. Our hypoth-

2These terms may be easily computed from a list of seed urls
or documents, using terminology extraction techniques.

Boxoffice Grammys BBC

Boxoffice
AND

Grammys

Grammys
AND
BBC

DOC 1 DOC 2

Jackson Beatles Album

in query
(-1)

leads to
(-1)

contains
(-1)

Terms

Queries

Documents

Figure 2: Sample subgraph using ”boxoffice”, ”Gram-
mys” and ”BBC” as seed terms.

esis is that the information added will increase the
procedure’s robustness and overall performances.
The graph model (see figure 2) is built online. As
common terms will occur in many documents and
thus have high centrality, they will end with high
scores. In order to avoid this effect, document-
term edges are weighted with a TermHood measure
(Kageura and Umino, 1996) such as tfidf or log odds
ratio.

By using a random walk with restart algorithm,
also known as personalized PageRank (Haveliwala,
2002), terms, queries and documents are weighted
globally and simultaneously. At the end of each it-
eration of GrawlTCQ, a random walk is computed
and the resulting stationary distribution is used to
rank documents and terms3. If more documents are
needed, then the algorithm executes one more step.

Several parameters can be specified by the user,
such as the number of seed terms, the number of
terms composing a query, as well as the number of
documents retrieved for each query. In addition, the
algorithm may use the Internet (with search engines
as Google, Yahoo! or Bing), an Intranet, or both,
as data sources. When using the web as source, spe-
cific algorithms must be used to remove HTML boil-
erplate (Finn et al., 2001) and filter un-useful docu-
ments (duplicates (Broder, 2000), webspam and er-
ror pages (Fletcher, 2004)).

3As an additional result, we also obtain a ranked list of
queries.
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3.2 Graph Walk

Considering a directed graph G = (V,E), the score
of a vertex Vi is defined as

PR(Vi) = (1− α)λ0 + α×
∑

j∈In(Vi)

PR(Vj)

|Out(Vj)|

where In(Vi) (resp. Out(Vi)) are Vi predecessors
(resp. successors). In the original PageRank algo-
rithm, a damping factor α of 0.85 has been used and
the personalization vector (or teleportation vector)
λ0 is distributed uniformly over V . On the contrary,
(Richardson and Domingos, 2002) and (Haveliwala,
2002) have proposed to personalize the PageRank
according to a user query or a chosen topic. Follow-
ing previous work (Page et al., 1999; Mihalcea and
Tarau, 2004), we have fixed the damping factor to
0.854 and the convergence threshold to 10−8.

As we have different types of edges carrying dif-
ferent relations, we slightly modify the PageRank
formula, as in (Wang and Cohen, 2007): when walk-
ing away from a node, the random surfer first picks
randomly a relation type and then chooses uniformly
between all edges of the chosen relation type. Bias-
ing the algorithm to insist more on seed terms is a
legitimate lead as these nodes represent the strong
base of our model. We thus use a custom λ0 distri-
bution that spreads weights uniformly over the seed
terms instead of the whole set of vertices.

4 Evaluation

Evaluating the proposed method on the web can
hardly be done without laborious manual annota-
tion. Moreover, web-based evaluations are not re-
producible as search engines index and ranking
functions change over time. This is especially a
problem when evaluating the impact of different pa-
rameters of our algorithm. In this article, we have
chosen to carry out an objective and reproducible
evaluation based on a stable and annotated document
collection.

The AFP has provided us an English corpus com-
posed of 57,441 news documents written between
January 1st and March 31, 2010. We have con-
sidered the 17 top-level categories from the IPTC

4During our experiments, we haven’t observed any signifi-
cant change when modifying this parameter.

Id Category #docs
01 Arts, culture and entertainment 3074
02 Crime, law and justice 5675
03 Disaster and accident 4602
04 Economy, business and finance 13321
08 Human interest 1300
11 Politics 17848
12 Religion and belief 1491
14 Social issue 1764
15 Sport 15089
16 Unrest, conflicts and war 8589

Table 1: AFP corpus categories distribution.

standard (http://www.iptc.org). Documents are cat-
egorized in one or more of those categories and are
annotated with various metadata, such as keywords.
As some categories contained too few documents,
we have only kept the 10 largest ones (see table 1).
The corpus was then indexed using Apache Lucene
(http://lucene.apache.org) in order to create a basic
search engine5. This setup has several advantages:
first, the document collection is stable and quantifi-
able. Documents are clean text written in a journal-
istic style. As they are already annotated, several
automatic evaluations can be run with different pa-
rameters. Finally, querying the search engine and
retrieving documents can be done efficiently. How-
ever, note that, as the document collection is lim-
ited, queries might return few or no results (which is
rarely the case on the web).

We have used the BootCaT algorithm as our base-
line. To the best of our knowledge this is the first at-
tempt to rigorously evaluate BootCaT performances.
We have compared both algorithms in exactly the
same conditions, on a task-based experiment: to re-
trieve 50, 100, 300, 500 and 1000 documents for
each category, independently of the number of itera-
tions done.

To be as close as possible to the original BootCaT
algorithm, we have weighted document-term edges
by log odds ratio. This measure allows us to dis-
tinguish common terms by using a reference back-
ground corpus. In all our experiments, we have used
the ukWac corpus (Ferraresi et al., 2008), a very
large web-derived corpus, for this purpose.

In order to select initial seed terms we have used
documents’ metadata. We have computed the fre-

5All normalization features except lower-casing were dis-
abled to allow ease of reproducibility.
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and 1000 documents (inset: Mean number of documents
/ number of iterations)

quency of occurrences of a keyword in a category
and have then divided this score by the sum of oc-
currences in all other categories. This strategy leads
to relevant seed terms that are not necessarily ex-
clusive to a category. For instance, selected seeds
for the 4th category are: economics, summary, rate,
opec, distress, recession, zain, jal, gold, and spyker.

We have fixed a number of parameters for our ex-
periments: at each iteration, the top-10 seeds are se-
lected (either from the initial set or from newly ex-
tracted terms). Queries are composed of 2 seeds, all
45 possible combinations6 are used and a total of 10
documents are retrieved for each query.

All scores are averaged over the 10 categories.
As can be seen in figure 3, GrawlTCQ shows much
more robustness and outperforms BootCaT by 25%
precision at 1000 documents. Detailed results for
each category are shown in table 2 and confirm the
relevance of our approach. Interestingly, BootCaT
and GrawlTCQ have very low precisions for the 14th
category (Social issue). Documents found in this
category are often ambiguous and both algorithms
fail to extract the domain terminology. We have also
plotted the number of documents in function of the
number of iterations as shown in figure 3 (inset).
The curve clearly shows that GrawlTCQ yields more

6When running the same experiment with randomly selected
tuples several times, we have found similar results when aver-
aging all runs output.

CatId P@50 P@100 P@300 P@500 P@1000
GR BC GR BC GR BC GR BC GR BC

01 0.58 0.50 0.57 0.30 0.43 0.12 0.35 0.08 0.23 0.05
02 0.44 0.60 0.45 0.33 0.46 0.17 0.44 0.10 0.34 0.07
03 0.82 0.82 0.99 0.81 0.89 0.41 0.66 0.26 0.54 0.14
04 0.86 0.80 0.82 0.85 0.84 0.55 0.78 0.34 0.79 0.19
08 0.79 0.79 0.44 0.48 0.23 0.42 0.17 0.40 0.20 0.39
11 0.76 0.78 0.79 0.81 0.87 0.71 0.57 0.64 0.57 0.56
12 0.46 0.54 0.35 0.27 0.20 0.10 0.17 0.06 0.15 0.03
14 0.08 0.24 0.13 0.10 0.06 0.04 0.04 0.02 0.04 0.02
15 1.0 1.0 1.0 1.0 0.92 0.78 0.87 0.67 0.81 0.39
16 0.82 0.56 0.81 0.49 0.71 0.21 0.72 0.15 0.70 0.13

Table 2: Precision at various cutoffs by category

documents at a faster rate. This is due to the seed se-
lection process: GrawlTCQ’s queries lead to many
documents while BootCaT queries often lead to few
or no documents. Moreover, as we can see in figure
3, while fetching more documents faster, the mean
precision of GrawlTCQ is still higher than the Boot-
CaT one which shows that selected seeds are, at the
same time, more prolific and more relevant.

5 Conclusion

In this paper, we have tackled the problem of ter-
minology and corpora bootstrapping. We have pro-
posed GrawlTCQ, an algorithm that relies on a
graph model including terms, queries, and docu-
ments to track each entity origin. We have used a
random walk algorithm over our graph in order to
globally and simultaneously compute a ranking for
each entity type. We have evaluated GrawlTCQ on a
large news dataset and have shown interesting gain
over the BootCaT baseline. We have especially ob-
tained better results without any human intervention,
reducing radically the cost of manual filtering. We
are considering several leads for future work. First,
we must evaluate GrawlTCQ for query and term
ranking. Then, while preliminary experiments have
shown very promising results on the web, we would
like to setup a large scale rigorous evaluation. Fi-
nally, we will conduct further experiments on edges
weighting and seed terms selection strategies.
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Abstract

A key problem in document classification and
clustering is learning the similarity between
documents. Traditional approaches include
estimating similarity between feature vectors
of documents where the vectors are computed
using TF-IDF in the bag-of-words model.
However, these approaches do not work well
when either similar documents do not use the
same vocabulary or the feature vectors are not
estimated correctly.

In this paper, we represent documents and
keywords using multiple layers of connected
graphs. We pose the problem of simultane-
ously learning similarity between documents
and keyword weights as an edge-weight regu-
larization problem over the different layers of
graphs. Unlike most feature weight learning
algorithms, we propose an unsupervised algo-
rithm in the proposed framework to simulta-
neously optimize similarity and the keyword
weights. We extrinsically evaluate the perfor-
mance of the proposed similarity measure on
two different tasks, clustering and classifica-
tion. The proposed similarity measure out-
performs the similarity measure proposed by
(Muthukrishnan et al., 2010), a state-of-the-
art classification algorithm (Zhou and Burges,
2007) and three different baselines on a vari-
ety of standard, large data sets.

1 Introduction

The recent upsurge in the amount of text available
due to the widespread growth of the Internet has led
to the need for large scale, efficient Machine Learn-
ing (ML), Information Retrieval (IR) tools for text

mining. At the heart of many of the ML, IR algo-
rithms is the need for a good similarity measure be-
tween documents. For example, a better similarity
measure almost always leads to better performance
in tasks like document classification, clustering, etc.

Traditional approaches represent documents with
many keywords using a simple feature vector de-
scription. Then, similarity between two documents
is estimated using the dot product between their
corresponding vectors. However, such similarity
measures do not use all the keywords together and
hence, suffer from problems due to sparsity. There
are two major issues in computing similarity be-
tween documents

• Similar documents may not use the same vo-
cabulary.

• Estimating feature weights or weight of a key-
word to the document it is contained in.

For example, consider two publications, X and
Y , in the field of Machine Learning. Let X be a
paper on clustering while Y is on classification. Al-
though the two publications use very different vo-
cabulary, they are semantically similar. Keyword
weights are mostly estimated using the frequency of
the keyword in the document. For example, TF-IDF
based scoring is the most commonly used approach
to compute keyword weights to compute similarity
between documents. However, suppose publications
X and Y mention the keyword ”‘Machine Learn-
ing”’ only once. Although, they are mentioned only
once in the text of the document, for the purposes
of computing semantic similarity between the docu-
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ments, it would be beneficial to give it a high key-
word weight.

A commonly used approach to estimate seman-
tic similarity between documents is to use an ex-
ternal knowledge source like WordNet (Pedersen
et al., 2004). However, these approaches are do-
main dependent and language dependent. If docu-
ment similarity can not be estimated accurately us-
ing just the text, there have been approaches incor-
porating multiple sources of similarity like link sim-
ilarity, authorship similarity between publications
(Bach et al., 2004; Cortes et al., 2009). (Muthukr-
ishnan et al., 2010) also uses multiple sources of
similarity. In addition to improving similarity es-
timates between documents, it also improves sim-
ilarity estimates between keywords. Co-clustering
(Dhillon et al., 2003) based approaches are used
to alleviate problems due to the sparsity and high-
dimensionality of the data. In co-clustering, the key-
words and the documents are simultaneously clus-
tered by exploiting the duality between them. How-
ever, the approach relies solely on the keyword dis-
tributions to cluster the documents and vice-versa.
It does not take into account the inherent similar-
ity between the keywords (documents) when cluster-
ing the documents (keywords). Also, co-clustering
takes as input the weight of all keywords to corre-
sponding documents.

2 Motivation

First, we explain how similarity learning and fea-
ture weight learning can mutually benefit from each
other using an example. For example, consider the
following three publications in the field of Machine
Translation, (Brown et al., 1990; Gale and Church,
1991; Marcu and Wong, 2002)

Clearly, all the papers belong to the field of Ma-
chine Translation but (Gale and Church, 1991) con-
tains the phrase ”‘Machine Translation”’ only once
in the entire text. However, we can learn to attribute
some similarity between (Brown et al., 1990) and
the second publication using the text in (Marcu and
Wong, 2002). The keywords ”‘Bilingual Corpora”’
and ”‘Machine Translation”’ co-occur in the text in
(Marcu and Wong, 2002) which makes the keywords
themselves similar. Now we can attribute some sim-
ilarity between the (Brown et al., 1990) and (Marcu

and Wong, 2002) publication since they contain sim-
ilar keywords. This shows how similarity learning
can benefit from important keywords.

Now, assume that ”‘Machine Translation”’ is an
important keyword (high keyword weight) for the
first and third publication while ”‘Bilingual Cor-
pora”’ is an important keyword for the second pub-
lication. We explained how to infer similarity be-
tween the first and second publication using the third
publication as a bridge. Using the newly learned
similarity measure, we can infer that ”‘Bilingual
Corpora”’ is an important keyword for the sec-
ond publication since a similar keyword (”‘Machine
Translation”’) is an important keyword for similar
publications.

Let documents Di and Dj contain keywords Kik

and Kjl. Then intuitively, the similarity between
two documents should be jointly proportional to

• The similarity between keywords Kik and Kjl

• The weights of Kik to Di and Kjl to Dj .

Similarly the weight of a keyword Kik to docu-
ment Di should be jointly proportional to

• The similarity between documents Di and Dj .

• The similarity between keyphrases Kik and
Kjl and weight of Kjl to Dj .

The major contributions of the paper are given be-
low,

• A rich representation model for representing
documents with associated keywords for effi-
ciently estimating document similarity..

• A regularization framework for joint feature
weight (keyword weight) learning and similar-
ity learning.

• An unsupervised algorithm in the proposed
framework to efficiently learn similarity be-
tween documents and the weights of keywords
for each document in a set of documents.

In the next two sections, we formalize and ex-
ploit this observation to jointly optimize similarity
between documents and weight of keywords to doc-
uments in a principled way.
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3 Problem Formulation

We assume that a set of keywords have been ex-
tracted for the set of documents to be analyzed. The
setup is very general: Documents are represented
by the set of candidate keywords. In addition to
that, we have crude initial similarities estimated
between documents and also between keywords
and the weights of keywords to documents. The
similarities and keyword weights are represented
using two layers of graphs. We formally define the
necessary concepts,

Definition 1: Documents and corresponding
keywords
We have a set of N documents D =
{d1, d2, . . . , dN}. Each document, di has a set
of mi keywords Ki = {ki1, ki2, . . . , kimi}

Definition 2: Document Similarity Graph
The document similarity graph, G1 = (V1, E1),
consists of the set of documents as nodes and the
edge weights represent the initial similarity between
the documents.

Definition 3: Keyword Similarity Graph
The keyword similarity graph, G2 = (V2, E2), con-
sists of the set of keywords as nodes and the edge
weights represent the initial similarity between the
keywords.

The document similarity graph and the keyword
similarity graph can be considered as two layers of
graphs which are connected by the function defined
below

Definition 4: keyword Weights (KW)
There exists an edge between di and kij for 1 ≤ j ≤
mi. Let Z represent the keyword weighting func-
tion, i.e, Zdi,kij

represents the weight of keyword
kij t document di.

4 Regularization Framework

Ω(w,Z) = α0 ∗ ISC(w,w∗) + α1 ∗ IKC(Z, Z∗)
+α2 ∗KS(w, Z) + α3 ∗ SK(Z,w) (1)

where α0 + α1 + α2 + α3 = 1.
ISC refers to Initial Similarity Criterion and IKC

refers to Initial Keyword weight Criterion. They are

defined as follows

ISC(w, w∗) =
∑

u,v∈G1

(wu,v − w∗
u,v)

2 (2)

IKC(Z, Z∗) =
∑

u∈G1,v∈G2

(Zu,v − Z∗
u,v)

2 (3)

KS refers to Keyword based Similarity and SK refers
to Similarity induced Keyword weight. They are de-
fined as follows

KS(w,Z) =
∑

u1,v1∈G1

∑
u2,v2∈G2

Zu1,u2Zv1,v2

(wu1,v1 − wu2,v2)
2 (4)

and

SK(w, Z) =
∑

u1,v1∈G1

∑
u2,v2∈G2

wu1,v1wu2,v2

(Zu1,u2 − Zv1,v2)
2 (5)

Then the task is to minimize the objective function.
The objective function consists of four parts. The
first and second parts are initial similarity criterion
and initial keyword criterion. They ensure that the
optimized edge weights are close to the initial edge
weights. The weights α0 and α1 ensure that the op-
timized weights are close to the initial weights, in
other words, they represent the confidence level in
initial weights.

The significance of the third and the fourth parts
of the objective function are best explained by a sim-
ple example. Consider two graphs, G1 and G2. Let
G1 be the graph containing publications as nodes
and edge weights representing initial similarity val-
ues. Let G2 be the graph corresponding to keywords
and edge weights represent similarity between key-
words. There is an edge from a node u1 in G1 to a
node v1 in G2 if the publication corresponding to u1

contains the keyword corresponding to v1.
According to this example, minimizing the key-

word weight induced similarity part corresponds to
updating similarity values between keywords in pro-
portion to weights of the keywords to the respective
documents they are contained in and the similarity
between the documents. keyword weight induced
similarity part also helps updating similarity values
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between documents in proportion to weights of key-
words they contain and the similarity between the
contained keywords.

Minimizing the similarity induced keyword part
corresponds to updating keyword weights in propor-
tion to the following

• Similarity between v1 and other keywords v2 ∈
G2

• Keyword weight of v2 to documents u2 ∈ G1

• Similarity between u1 and u2

Therefore, even if frequency of a keyword such
as ”‘Machine Translation”’ in a publication is not
high, it can achieve a high keyword weight if it con-
tains many other similar keywords such as ”‘Bilin-
gual Corpora”’ and ”‘Word alignment”’.

5 Efficient Algorithm

We seek to minimize the objective function using
Alternating Optimization (AO) (Bezdek and Hath-
away, 2002), an approximate optimization method.
Alternating optimization is an iterative procedure for
minimizing (or maximizing) the function f(x) =
f(X1, X2, . . . , Xt) jointly over all variables by al-
ternating restricted minimizations over the individ-
ual subsets of variables X1, . . . , Xt.

In this optimization method, we partition the set
of variables into a set of mutually exclusive, exhaus-
tive subsets. We iteratively perform minimizations
over each subset of variables while maintaining the
other subsets of variables fixed. Formally, let the set
of real-valued variables be X = {X1, X2, . . . , XN}
be partitioned into m subsets, {Y1, Y2, . . . , Ym}.
Also, let si = |Yi|. Then we begin with the ini-
tial set of values {Y 0

1 , Y2
0, . . . , Ym

0} and make re-
stricted minimizations of the following form,

min
Yi∈Rsi

{f(Y1
r+1, . . . , Yi−1

r+1, Yi, Yi+1
r, . . . , Ym

r)}
(6)

where i = 1, 2, . . . , m. The underline notation Yj

indicates that the subset of variables Yj are fixed
with respect to Yi. In the context of our prob-
lem, we update each edge weight while maintaining
other edge weights to be a constant. Then the prob-
lem boils down to the minimization problem over a
single edge weight. For example, let us solve the

minimization problem for edge weight correspond-
ing to (ui, vj) where ui, vj ∈ G1 (The case where
ui, vj ∈ G2 is analogous). Clearly the objective
function is a convex function in w(ui, vj). The par-
tial derivative of the objective function with respect
to the edge weight is given below,

∂Ω(w, Z)

∂wui,vj

= 2α0(wui,vj − w∗
ui,vj

)

+2α2 ∗
∑

u2,v2∈G2

(wui,vj − wu2,v2)Zu1,u2Zvj ,v2

+α3 ∗
∑

u2,v2∈G2

(Zui,u2 − Zvj ,v2)
2wui,vjwu2,v2

. (7)

To minimize the above function, we set the partial
derivative to zero which gives us the following ex-
pression,

wuj ,vk
=

1

C1
(α0w

∗
ui,vj

+

α2

∑
u2,v2∈G2

Zui,u2 wu2,v2 Zvj ,v2)(8)

where

C1 = α0 + α2

∑
u2,v2∈G2

Zui,u2 Zvj ,v2

+
α3

2

∑
u2,v2∈G2

(Zui,u2 − Zvj ,v2)
2wu2,v2

Similarly, we can derive the update equation for
keyword weights, Zui,uj as below,

Zui,uj =
1

C2
(α1Z

∗
ui,uj

+

α3

∑
v1∈G1

∑
v2∈G2

wui,v1 wuj ,v2 Zv1,v2)

(9)

where,

C2 = α1 + α3

∑
v1∈G1

∑
v2∈G2

wui,v1 wuj ,v2

+
α2

2

∑
v1∈G1

∑
v2∈G2

(wui,v1 − wuj ,v2)
2Zv1,v2
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The similarity score between two nodes is propor-
tional to the similarity between nodes in the other
layer. For example, the similarity between two doc-
uments (keywords) is proportional to the similarity
between the keywords the documents they contain
(the documents they are contained in). C plays the
role of a normalization constant. Therefore, for sim-
ilarity between two nodes to be high, it is required
that they not only contain a lot of similar nodes in
the other graph but the similar nodes need to be im-
portant to the two target nodes.

Similarly, a particular keyword will have a high
weight to a document if similar keywords have high
weights to similar documents. Also, it is neces-
sary that the similarity between the keywords and
the documents are high.

It can be shown that equations 8 and 9 converge
q− linearly since the minimization problem is con-
vex in each of the variables individually and hence
has a global and unique minimizer (Bezdek and
Hathaway, 2002).

5.1 Layered Random Walk Interpretation
The above algorithm has a very nice intuitive inter-
preation in terms of random walks over the two dif-
ferent graphs. Assume the initial weights are transi-
tion probability values after the graphs are normal-
ized so that each row of the adjacency matrices sums
to 1. Then the similarity between two nodes u and v
in the same graph is computed as sum of two parts.
The first part is α0 times the initial similarity. This
is necessary so that the optimized similarity values
are not too far away from the initial similarity val-
ues. The second part corresponds to the probability
of a random walk of length 3 starting at u and reach-
ing v through two intermediate nodes from the other
graph.

The semantics of the random walk depends on
whether u, v are documents or keywords. For exam-
ple, if the two nodes are documents, then the simi-
larity between two documents d1 and d2 is the prob-
ability of random walk starting at document d1 and
then moving to a keyword k1 and then moving to
keyword k2 and then to document d2. Note that key-
words k1 and k2 can be the same keyword which
accounts for similarity between documents because
they contain the same keyword.

Also, note that second and higher order depen-

dencies are also taken into account by this algo-
rithm. That is, two papers may become similar be-
cause they contain two keywords which are con-
nected by a path in the keyword graph, whose length
is greater than 1. This is due to the iterative nature
of the algorithm. For example, keywords ”‘Machine
Translation”’ and ”‘Bilingual corpora”’ occur often
together and hence any co-occurrence based simi-
larity measure will assign a high initial similarity
value. Hence two publications which contain these
words will be assigned a non-zero similarity value
after a single iteration. Also, ”‘Bilingual corpora”’
and ”‘SMT”’ (abbreviation for Statistical Machine
Translation) can have a high initial similarity value
which enables assiging a high similarity value be-
tween ”‘Machine Translation”’ and ”‘SMT”’. This
leads to a chain effect as the number of iterations in-
creases which helps assign non-zero similarity val-
ues between semantically similar documents even if
they do not contain common keywords.

6 Experiments

It is very hard to evaluate similarity measures in iso-
lation. Thus, most of the algorithms to compute sim-
ilarity scores are evaluated extrinsically, i.e, the sim-
ilarity scores are used for an external task like clus-
tering or classification and the performance in the
external task is used as the performance measure for
the similarity scores. This also helps demonstrate
the different applications of the computed similar-
ity measure. Thus, we perform a variety of differ-
ent experiments on standard data sets to illustrate
the improved performance of the proposed similar-
ity measure. There are three natural variants of the
algorithm,

• Unified: We compare against the edge-weight
regularization algorithm proposed in (Muthukr-
ishnan et al., 2010). The algorithm has the
same representation as our algorithm but the
optimization is strictly defined over the edge
weights in the two layers of the graph, wij

′s
and not on the keyword weights. Therefore,
Zij are maintained constant throughout the al-
gorithm.

• Unified-binary: In this variant, we initialize the
keyword weights to 1, i.e, Zij = 1 whenever
document i contains the keyword j.
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ACL-ID Paper Title Research Topic
W05-0812 Improved HMM Alignment Models for Languages With Scarce

Resources
Machine Translation

P07-1111 A Re-Examination of Machine Learning Approaches for Sentence-
Level MT Evaluation

Machine Translation

P03-1054 Accurate Unlexicalized Parsing Dependency Parsing
P07-1050 K-Best Spanning Tree Parsing Dependency Parsing
P88-1020 Planning Coherent Multi-Sentential Text Summarization

Table 1: Details of a few sample papers classified according to research topic

• Unified-TFIDF: We initialize the keyword
weights to the TFIDF scores, Zij is set to the
TFIDF score of keyword j for document i.

Experiment Set I: We compare our similarity mea-
sure against other similarity measures in the context
of classification. We also compare against a state
of the art classification algorithm which uses differ-
ent similarity measures due to different feature types
without integrating them into one single similarity
measure. Specifically, we compare our algorithm
against three other similarity baselines in the context
of classification which are listed below.

• Content Similarity: Similarity is computed us-
ing just the feature vector representation using
just the text. We use cosine similarity after pre-
processing each document into a tf.idf vector
for the AAN data set. For all other data sets,
we use the cosine similarity on the binary fea-
ture vector representation that is available.

• Link Similarity: Similarity is computed using
only the links (citations, in the case of publica-
tions). To compute link similarity, we use the
node similarity algorithm proposed by (Harel
and Koren, 2001) using a random walk of
length 3 on the link graph.

• Linear combination: The content similarity
(CS) and link similarity (LS) between docu-
ments x and y are combined in a linear fashion
as αCS(x, y)+(1−α)LS(x, y). We tried dif-
ferent values of α and report only the best accu-
racy that can be achieved using linear combina-
tion of similarity measures. Note that this is an
upper bound on the accuracy of Multiple Ker-
nel Learning with the restriction of the combi-
nation being affine.

We also compare our algorithm against the follow-
ing algorithms SC-MV: We compare our algorithm
against the spectral classification algorithm for data
with multiple views (Zhou and Burges, 2007). The
algorithm tries to classify data when multiple views
of the data are available. The multiple views are rep-
resented using multiple homogeneous graphs with a
common vertex set. In each graph, the edge weights
represent similarity between the nodes computed us-
ing a single feature type. For our experiments, we
used the link similarity graph and the content simi-
larity graph as described above as the two views of
the same data

We use a semi-supervised graph classification al-
gorithm (Zhu et al., 2003) to perform the classifica-
tion.

Experiment Set II: We illustrate the improved
performance of our similarity measure in the con-
text of clustering. We compare our similarity mea-
sure against the three similarity baselines mentioned
above. We use a spectral graph clustering algorithm
proposed in (Dhillon et al., 2007) to perform the
clustering.

We performed our experiments on three different
data sets. The three data sets are explained below.

• AAN Data: The ACL Anthology is a collec-
tion of papers from the Computational Lin-
guistics journal as well as proceedings from
ACL conferences and workshops and includes
15, 160 papers. To build the ACL Anthology
Network (AAN), (Radev et al., 2009) manu-
ally performed some preprocessing tasks in-
cluding parsing references and building the net-
work metadata, the citation, and the author col-
laboration networks. The full AAN includes
the raw text of all the papers in addition to full
citation and collaboration networks.

We chose a subset of papers in 3 topics (Ma-
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Figure 1: Classification Accuracy on the different data sets. The number of points labeled is plotted along
the x-axis and the y-axis shows the classification accuracy on the unlabeled data.

chine Translation, Dependency Parsing, Sum-
marization) from the ACL anthology. These
topics are three main research areas in Natural
Language Processing (NLP). Specifically, we
collected all papers which were cited by pa-

pers whose titles contain any of the following
phrases, ”‘Dependency Parsing”’, ”‘Machine
Translation”’, ”‘Summarization”’. From this
list, we removed all the papers which contained
any of the above phrases in their title because
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this would make the clustering task easy. The
pruned list contains 1190 papers. We manually
classified each paper into four classes (Depen-
dency Parsing, Machine Translation, Summa-
rization, Other) by considering the full text of
the paper. The manually cleaned data set con-
sists of 275 Machine Translation papers, 73 De-
pendency Parsing papers and 32 Summariza-
tion papers. Table 1 lists a few sample papers
from each class.

WebKB(Sen et al., 2008): The data set con-
sists of a subset of the original WebKB data set.
The corpus consists of 877 web pages collected
from four different universities. Each web page
is represented by a 0/1-valued word vector with
1703 unique words after stemming and remov-
ing stopwords. All words with document fre-
quency less than 10 were removed.

Cora(Sen et al., 2008): The Cora dataset con-
sists of 2708 scientific publications classified
into one of seven classes. The citation network
consists of 5429 links. Each publication in the
dataset is described by a 0/1-valued word vec-
tor indicating the absence/presence of the cor-
responding word from the dictionary. The dic-
tionary consists of 1433 unique words.

For all the data sets, we constructed two graphs,
the kewyord feature graph and the link similarity
graph. The keyword feature layer graph, Gf =
(Vf , Ef , wf ) is a weighted graph where Vf is the
set of all features. The edge weight between key-
words fi and fj represents the similarity between
the features. The edge weights are initialized to the
cosine similarity between their corresponding doc-
ument vectors. The link similarity graph, Go =
(Vo, Eo, wo) is another weighted graph where Vo

is the set of objects. The edge weight represents
the similarity between the documents and is initial-
ized to the similarity between the documents due to
the link structure. The link similarity between two
documents is computed using the similarity mea-
sure proposed by (Harel and Koren, 2001) on the
citation graph. We also performed experiments by
initializing the similarity between documents to the
keyword similarity. Although, our algorithm still
outperforms other algorithms and the baselines (not

shown due to space restrictions), the accuracy using
citation similarity is higher.

7 Results and Discussion

Figure 1 shows the accuracy of the classification ob-
tained using different similarity measures. It can be
seen that the proposed algorithm (both the variants)
performs much better than other similarity measures
by a large margin. The algorithm performs much
better when more information is provided in the
form of TF-IDF scores. We attribute this to the
rich representation of the data. In our algorithm, the
data is represented as a set of heterogeneous graphs
(layers) which are connected together instead of the
normal feature vector representation. Thus, we can
leverage on the similarity between the keywords and
the objects (documents) to iteratively improve sim-
ilarity in both layers. Whereas, in the case of the
algorithm in (Zhou and Burges, 2007) all the graphs
are isolated homogeneous graphs. Hence there is no
information transfer across the different graphs.

For the clustering task, we use Normalized Mu-
tual Information (NMI) (Strehl and Ghosh, 2002)
between the ground truth clusters and the outputted
clustering as the measure of clustering accuracy.

Table 2 shows the Normalized Mutual Informa-
tion scores obtained by the different similarity mea-
sures on the different data sets.

8 Conclusion

In this paper, we have proposed a novel approach
to compute similarity between documents and key-
words iteratively. We formalized the problem of
similarity estimation as an optimization problem in-
duced by a regularization framework over edges in
multiple graphs. We propose an efficient, iterative
algorithm based on Alternating Optimization (AO)
which has a neat, intuitive interpretation in terms
of random walks over multiple graphs. We demon-
strated the improved performance of the proposed
algorithm over many different baselines and a state-
of-the-art classifcation algorithm and a similarity
measure which uses the same information as given
to our algorithm.
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Similarity Measure AAN Texas Wisconsin Washington Cornell Cora
Content Similarity (Cosine) 0.66 0.34 0.42 0.59 0.63 0.48
Link Similarity 0.45 0.49 0.39 0.52 0.56 0.52
Linear Combination 0.69 0.54 0.46 0.54 0.68 0.54
Unified Similarity 0.78 0.69 0.54 0.66 0.72 0.64
Unified Similarity-Binary 0.80 0.68 0.56 0.69 0.74 0.66
Unified Similarity-TFIDF 0.84 0.70 0.60 0.72 0.78 0.70

Table 2: Normalized Mutual Information scores of the different similarity measures on the different data
sets
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Abstract 

We present the first work on applying sta-
tistical techniques to unrestricted Quanti-
fier Scope Disambiguation (QSD), where 
there is no restriction on the type or the 
number of quantifiers in the sentence. We 
formulate unrestricted QSD as learning to 
build a Directed Acyclic Graph (DAG) and 
define evaluation metrics based on the 
properties of DAGs. Previous work on sta-
tistical scope disambiguation is very lim-
ited, only considering sentences with two 
explicitly quantified noun phrases (NPs). In 
addition, they only handle a restricted list 
of quantifiers. In our system, all NPs, ex-
plicitly quantified or not (e.g. definites, 
bare singulars/plurals, etc.), are considered 
for possible scope interactions. We present 
early results on applying a simple model to 
a small corpus. The preliminary results are 
encouraging, and we hope will motivate 
further research in this area. 

1 Introduction 

There are at least two interpretations for the fol-
lowing sentence: 
(1) Every line ends with a digit. 

In one reading, there is a unique digit (say 2) at the 
end of all lines. This is the case where the quanti-
fier A outscopes (aka having wide-scope over) the 
quantifier Every. The other case is the one in which 

Every has wide-scope (or alternatively A has nar-
row-scope), and represents the reading in which 
different lines could possibly end with distinct dig-
its. This phenomenon is known as quantifier scope 
ambiguity.  

Shortly after the first efforts to build natural lan-
guage understanding systems, Quantifier Scope 
Disambiguation (QSD) was realized to be very 
difficult. Woods (1978) was one of the first to sug-
gest a way to get around this problem. He pre-
sented a framework for scope-underspecified 
semantic representation. He suggests representing 
the Logical Form (LF) of the above sentence as: 
(2) <Every x Line> 

<A y Digit> 
Ends-with(x, y) 

in which, the relative scope of the quantifiers is 
underspecified. Since then scope underspecifica-
tion has been the most popular way to deal with 
quantifier scope ambiguity in deep language 
understanding systems (e.g. Boxer (Bos 2004), 
TRAINS (Allen et al. 2007), BLUE (Clark and 
Harrison 2008), and DELPH-IN1). Scope under-
specification works in practice, only because many 
NLP applications (e.g. machine translation) could 
be achieved without quantifier scope disambigua-
tion. QSD on the other hand, is critical for many 
other NLP tasks such as question answering sys-
tems, dialogue systems and computing entailment. 

Almost all efforts in the 80s and 90s on QSD 
adopt heuristics based on the lexical properties of 
the quantifiers, syntactic/semantic properties of the 
sentences, and discourse/pragmatic cues (VanLehn 
                                                             
1 http://www.delph-in.net/ 
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1978, Moran 1988, Alshawi 1992). For example, it 
is widely known that in English, the quantifier 
each tends to have the widest scope. Also, the sub-
ject of a sentence often outscopes the direct ob-
ject. 2  In cases where these heuristics conflict, 
(manually) weighted preference rules are adopted 
to resolve the conflict (Hurum 1988, , Pafel 1997). 

In the last decade there has been some effort to 
apply statistical and machine learning (ML) tech-
niques to QSD. All the previous efforts, however, 
suffer from the following two limitations (see sec-
tion 2 for details): 
• They only allow scoping two NPs per sentence. 
• The NPs must be explicitly quantified (e.g. they 

ignore definites or bare singulars/plurals), and 
the quantifiers are restricted to a predefined list. 

In this paper, we present the first work on applying 
statistical techniques to unrestricted QSD, where 
we put no restriction on the type or the number of 
NPs to be scoped in a sentence. In fact, every two 
NPs, explicitly quantified or not (including defi-
nites, indefinites, bare singulars/plurals, pronouns, 
etc.), are examined for possible scope interactions. 
Scoping only two quantifiers per sentence, the pre-
vious work defines QSD as a single classification 
task (e.g. 0 where the first quantifier has wide-
scope, and 1 otherwise). As a result standard met-
rics for classification tasks are used for evaluation 
purposes. We formalize the unrestricted form of 
QSD as learning to build a DAG over the set of NP 
chunks in the sentence. We define accuracy, preci-
sion and recall metrics based on the properties of 
DAGs for evaluation purposes. 

We report the application of our model to a 
small corpus. As seen later, the early results are 
promising and shall motivate further research on 
applying ML techniques to unrestricted QSD. In 
fact, they set a baseline for future work in this area.  

The structure of this paper is as follows. Section 
(2) reviews the related work. In (3) we briefly de-
scribe our corpus. We formalize the problem of 
quantifier scope disambiguation for multiple quan-
tifiers in section (4) and define some evaluation 
metrics in (5). (6) presents our model including the 
kinds of features we have used. We present our 
experiments in (7) and give a discussion of the re-
sults in (8). (9) summarizes the current work and 
gives some directions for the future work. 

                                                             
2 Allen (1995) discusses some of these heuristics and gives an 
algorithm to incorporate those for scoping while parsing.  

2 Related work 

Earlier we mentioned that a standard approach to 
deal with quantifier scope ambiguity is scope un-
derspecification. More recent underspecification 
formalisms such as Hole Semantics (Bos 1996), 
Minimal Recursion Semantics (Copestake et al. 
2001), and Dominance Constraints (Egg et al. 
2001), present constraint-based frameworks. Every 
constraint forces one term to be in the scope of 
another, hence filters out some of the possible 
readings. For example, one may add a constraint to 
an underspecified representation (UR) to force is-
land constraints. Constraints can be added incre-
mentally to the UR as the sentence processing goes 
deeper (e.g. at the discourse and/or pragmatic 
level). The main drawback with these formalisms 
is that they only allow for hard constraints; that is 
every scope-resolved representation must satisfy 
all the constraints in order to be a valid interpreta-
tion of the sentence.  In practice, however, most 
constraints that can be drawn from discourse or 
pragmatic knowledge have a soft nature; that is, 
they describe a scope preference that is allowed to 
be violated, though at a cost.  

Motivated by the above problem, Koller et al. 
(2008) define an underspecified scope representa-
tion based on regular tree grammars, which allows 
for both hard constraints and weighted soft con-
straints. They present a PCFG-style algorithm that 
computes the reading, which satisfies all the hard 
constraints and has the maximum product of the 
weights. However, they assume that the weights 
are already given. Their algorithm, for example, 
can be used in traditional QSD approaches with 
weighted heuristics to systematically compute the 
best reading. The main question though is how to 
automatically learn those weights. One solution is 
using corpus-based methods to learn soft con-
straints and the cost associated with their violation, 
in terms of features and their weights. 

To the best of our knowledge, there have been 
three major efforts on statistical scope disambigua-
tion for English. Higgins and Sadock (2003), hence 
HS03, is the first work among these systems. They 
define a list of quantifiers that they consider for 
scope disambiguation. This list does not include 
definites, indefinites, and many other challenging 
scope phenomena. They extract all sentences from 
the Wall Street journal section of the Penn Tree-
bank, containing exactly two quantifiers from this 
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list. This forms a corpus of 890 sentences, each 
labeled with the relative scope of the two quantifi-
ers, with the possibility of no scope interaction. 
The no scope interaction case happens to be the 
majority class in their corpus and includes more 
than 61% of the sentences, defining a baseline for 
their QSD system. They achieve the inter-
annotator agreement of only 52% on this task. 

They treat QSD as a classification task with 
three possible classes (wide scope, narrow scope, 
and no scope interaction). Three forms of feature 
are incorporated into the classifier: part-of-speech 
(POS) tags, lexical features, and syntactic proper-
ties. Several classification models including naïve 
Bayes classifier, maximum entropy classifier, and 
single-layer perceptron are tested, among which 
the single-layer perceptron performs the best, with 
the accuracy of 77%. 

Galen and MacCartney (2004), hence GM04, 
build a corpus of 305 sentences from LSAT and 
GRE logic games, each containing exactly two 
quantifiers from an even more restricted list of 
quantifiers. They use an additional label for the 
case where the two scopings are equivalent (as in 
the case of two existentials). In around 70% of the 
sentences in their corpus, the first quantifier has 
wide scope, defining a majority class baseline of 
70% for their QSD system.3 Three classifiers are 
tried: naïve Bayes, logistics regression, and support 
vector machine (SVM), among which SVM per-
forms the best and achieves the accuracy of 94%. 

In a recent work, Srinivasan and Yates (2009) 
study the usage of pragmatic knowledge in finding 
the preferred scoping of natural language sen-
tences. The sentences are all extracted from 5-
grams in Web1Tgram (from Google, Inc) and 
share the same syntactic structure: an active voice 
English sentence of the form (S (NP (V (NP | 
PP)))). For the task of finding the most preferred 
reading, they annotate 46 sentences, each contain-
ing two quantifiers: Every and A, where the first 
quantifier is always A. Each sentence is annotated 
with one of the two labels (Every has wide scope 
or not). They use a totally different approach for 
finding the preferred reading. The n-grams in 
Web1Tgram are used to extract relations such as 
Live(Person, City), and to estimate the expected 
cardinality of the two classes, which form the ar-
guments of the relation, that is Person and City. 
                                                             
3 They do not report any inter-annotator agreement. 

They decide on the preferred scoping by compar-
ing the size of the two classes, achieving the accu-
racy of 74% on their test set. The main advantage 
of this work is that it is open domain. 

3 Our corpus  

The fact that HS03, in spite of ignoring challeng-
ing scope phenomena and scoping only two quanti-
fiers per sentence, achieve the IAA of 52% shows 
how hard scope disambiguation could be for hu-
mans. It becomes enormously more challenging 
when there is no restriction on the type or the 
number of quantifiers in the sentence, especially 
when NPs without explicit quantifiers such as de-
finites, indefinites, and bare singulars/plurals are 
taken into account. As a matter of fact, our own 
early effort to annotate part of the Penn Treebank 
with full scope information soon proved to be too 
ambitious. Instead, we picked a domain that covers 
most challenging phenomena in scope disambigua-
tion, while keeping the scope disambiguation fairly 
intuitive. This made building the first corpus of 
English text with full quantifier scope information 
feasible. Our domain of choice is the description of 
tasks about editing plain text files, in other words, 
a natural language interface for text editors such as 
SED, AWK, or EMACS. Figure (1) gives some 
sentences from the corpus. The reason behind 
scoping in this domain being fairly intuitive is that 
given any of these sentences, a conscious knowl-
edge of scoping is critical in order to be able to 
accomplish the explained task. 

Our corpus consists of 500 sentences manually 
extracted from the web. The sentences have been 
labeled with gold standard NP chunks, where each 
NP chunk has been indexed with a number 1 
through n (n is the number of chunks in the sen-
tence). The annotators are asked to use outscoping 
relations represented by ‘>’ to specify the relative 
scope of every pair 1≤i,j≤n, with an option to leave 

1. Print [1/ every line] of [2/ the file] that starts 
with [3/ a digit] followed by [4/ punctuation]. 
QSD: {2>1, 2>3, 1>3, 2>4, 1>4} 

2. Delete [1/ the first character] of [2/ every word] 
and [3/ the first word] of  [4/ every line] in [5/ 
the file]. 
QSD: {5>4, 5>3, 4>3, 5>2, 5>1, 2>1} 

Figure 1. Two NP-chunked sentences with QSDs 
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the pair unscoped. For example a relation (2>3) 
states that the second NP in the sentence outscopes 
(aka dominates) the third NP. Since outscoping 
relation is transitive, for the convenience of the 
annotation, the outscoping relations are allowed to 
be cascaded forming dominance chains. For exam-
ple, the scoping for the sentence 2 in figure (1) can 
alternatively be represented as shown in (3). 
(3) (5>2>1 ; 5>4>3) 

As a result, every pair <i,j> (1≤i<j≤n) is implicitly 
labeled with one of the three labels: 

i. Wide scope: either explicitly given by the 
annotator as i>j or implied using the transi-
tive property of outscoping4 

ii. Narrow scope: either explicitly given by the 
annotator as j>i or implied using the transi-
tive property of outscoping 

iii. No interaction: where neither wide scope nor 
narrow scope could be inferred from the 
given scoping.5 

We achieved the IAA of 75% (based on Cohen’s 
kappa score) on this corpus, significantly better 
than the 52% IAA of HS03, especially considering 
the fact that we put no restriction on the type of the 
quantification. Our sentence-level IAA is around 
66%. The details of the corpus, and the annotation 
scheme are beyond the scope of this paper and can 
be found in Manshadi et al. (2011). 

4 Formalization  

Outscoping is an anti-symmetric transitive relation, 
so it defines an order over the chunks. Since we do 
not force every two chunks to be involved in an 
outscoping relation, QSD defines a partial order 
over the NP chunks. Formally, 
Definition 1: Given a sentence S with NP chunks 
1..n, a relation P over {1..n} is called a QSD for S, 
if and only if P is a partial order. 

Definition 2: Given a sentence S with NP chunks 
1..n, and the QSD P, we say (chunk) i outscopes 
(chunk) j if and only if  (i>j)  ∈ P. 
                                                             
4 That is if i outscopes j and j outscopes k then i outscopes k. 
5 The no interaction class includes two cases: no scope interac-
tion and logical equivalence which means we follow the three-
label scheme of HS03 as opposed to the four-label scheme of 
GM04. This is because when there is a logical equivalence, 
except for trivial cases, there are no clear criteria based on 
which one can decide whether there is a scope interaction or 
not. Furthermore, distinguishing these two cases does not 
make much difference in practice. 

Definition 3: Given a sentence S with NP chunks 
1..n, and the QSD P, chunk i is said to be disjoint 
with chunk j if and only if   

(i>j) ∉ P ∧ (j>i) ∉ P. 

4.1 QSD and directed acyclic graphs 

Partial orders can be represented using Directed 
Acyclic Graphs (DAGs) in which dominance (aka 
reachability) determines the order. More precisely, 
every DAG G over n nodes v1..vn defines a partial 
order PG over the set {v1..vn} in which, vi precedes 
vj in PG if and only if vi dominates6 vj in G.  

Definition 4: Given a sentence S with NP chunks 
1..n, every DAG G over n nodes (labeled 1…n) 
defines a QSD PG for S, such that 

(i>j)  ∈ PG ⇔ i dominates j in G 

For example figure (2a,b) represent the DAGs cor-
responding to the QSD of sentence 2 in figure (1) 
and the QSD in (3) respectively. Following defini-
tion 3 and 4, the no interaction relation defined in 
section (3) translates to corresponding nodes in the 
DAG being disjoint7. Therefore the three types of 
scope interaction defined in i, ii, and iii (section 3), 
translate to the following relations in a DAG. 
(4) Wide Scope (WS): i dominates j 

Narrow Scope (NS): j dominates i 
No Interaction (NI): i and j are disjoint. 

5 Evaluation metrics  

Intuitively the similarity of two QSDs, given for a 
sentence S, can be defined as the ratio of the chunk 
pairs that have the same label in both QSDs to the 
total number of pairs. For example, consider the 

                                                             
6 Given a DAG G=(V, E), node u is said to immediately 
dominate node v if and only if (u,v)  ∈ E. “dominates” is the 
reflexive transitive closure of “immediately dominates”. 
7 The nodes u and v of the DAG G are said to be disjoint if 
neither u dominates v nor v dominates u. 

                      
       (a)             (b) 

Figure 2. Scopings represented as DAGs 
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two DAGs in figure (2). Although looking differ-
ent, both DAGs define the same partial order (i.e. 
QSD). This is because the partial order represented 
by a DAG G corresponds to the transitive closure 
(TC) of G. 

5.1 Transitive closure 

The transitive closure of G, shown as G+, is de-
fined as follows: 
(5) G+= {(i,j) | i dominates j in G} 

For example, figure (2a) is the transitive closure of 
the DAG in figure (2b). Given this, the similarity 
metric mentioned above can be formally defined as 
the number of (unordered) pairs of node that match 
between G1

+ and G2
+ divided by the total number 

of (unordered) pairs. 

Definition 5: Similarity measure or σ. 
Given sentence S with n NP chunks and two scop-
ings represented by DAGs G1 and G2, we define: 

M(G1, G2)= { {i,j} |    
((i,j) ∈ G1

+ ∧ (i,j) ∈ G2
+) ∨ 

((j,i) ∈ G1
+ ∧ (j,i) ∈ G2

+) ∨   
((i,j),(j,i) ∉ G1

+ ∧ (i,j),(j,i) ∉ G2
+) } 

σ(G1, G2) = 2|M(G1, G2)|/ [n(n-1)] 

Where |.| represents the cardinality of a set. σ is a 
value between 0 and 1 (inclusive) where 1 means 
that the QSDs are equivalent and 0 means that they 
do not agree on the label of any pair. σ is useful for 
measuring the similarity of two scope annotations 
when calculating IAA. It can also be used as an 
accuracy metric for evaluating an automatic scope 
disambiguation system where the similarity of a 
predicted QSD is calculated respect to a gold stan-
dard QSD. In fact, if n =2, σ is equivalent to the 
metric that HS03 use to evaluate their system.  

The similarity metric defined above has some 
disadvantages. For example, HS03 report that more 
than 61% of the scope relations in their corpus are 
of type no interaction. Using this metric, a model 
that leaves everything unscoped has more than 
61% percent accuracy on their corpus! In fact, the 
output of a QSD system on pairs with no interac-
tion is not practically important. 8 What is more 

                                                             
8 In practice the target language is often first order logic or a 
variant of that. When a pair is labeled NI in gold standard data, 
if there exist valid interpretations (satisfying hard constraints) 
in which either of the two quantifiers can be in the scope of 

important is to recover the pairs with scope interac-
tion correctly. The standard way to address this is 
to define precision/recall metrics. 

Definition 6: Precision and Recall (TC version) 
Given the gold standard DAG Gg and the predicted 
DAG Gp, we define the precision (P) and the recall 
(R) as follows: 

TP = | { (i,j) |  (i,j) ∈ Gp
+ ∧ (i,j) ∈ Gg

+} | 
N = | { (i,j) |  (i,j) ∈ Gp

+} | 

M = | { (i,j) | (i,j) ∈ Gg
+} | 

P = TP / N 
R = TP / M 

5.2 Transitive reduction 

The TC-based metrics implicitly count some 
matching pairs more than once. For example, if in 
both QSDs we have 1>2 and 2>3, then 1>3 is im-
plied, so counting it as another match is redundant 
and favors toward higher accuracies. Naturally, 
there are so many redundancies in TC. To address 
this issue, we define another set of metrics based 
on the concept of transitive reduction (TR). Given 
a directed graph G, the transitive reduction of G, 
represented as G 

-, is intuitively a graph with the 
same reachability (i.e. dominance) relation but 
with no redundant edges. More formally, the tran-
sitive reduction of G is a graph G 

- such that  
• (G -)+ = G+  
• ∀ G′,    (G′)+ = G+  ⇒   |G -| ≤ |G′ | 

For example, figure (2b) represents the transitive 
reduction of the DAG in figure (2a). Fortunately if 
a directed graph is acyclic, its transitive reduction 
is unique (Aho et al., 1972). Therefore, defining 
TR-based precision/recall metrics is valid. 

Definition 7: Precision and Recall (TR version) 
Simply replace every ‘+’ in definition 6 with a ‘-‘. 

6 The model 

We extend HS03’s approach for scoping two NPs 
per sentence to the general case of n NPs. Every 
pair of chunks <i,j> (where  1≤i<j≤n) is treated as 
an independent sample to be classified as one of 
the three classes defined in (3), that is WS, NS, or 
NI. Therefore a sentence with n NP chunks con-
sists of C(n, 2)=n(n-1)/2 samples. The average 
                                                                                                
the other, then the ordering of this pair does not matter; that is 
switching the order of such pairs result in equivalent formulas. 
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number of NPs per sentence in the corpus is 3.7, so 
the corpus provides 1850 samples. Since the scop-
ing of each pair is predicted independent of the 
other pairs in the sentence, it may result in an ill-
formed scoping, i.e. a scoping with cycles. As ex-
plained later, this case did not happen in our cor-
pus. A MultiClass SVM (Crammer et al. 2001), 
referred to as SVM-MC in the rest of the paper, is 
used as the classifier. We provide more supervision 
by annotating data with the following labels.  

I. Determiner features 
For every NP chunk, we tag pre-determiner (/PD), 
determiner (/D), possessive determiner (/POS), and 
number (/CD) (if they exist) as part of the deter-
miner (see figure 3). Given the pair <i,j>, for ei-
ther of the chunks i and j, and every tag mentioned 
above, we use a binary feature, which shows 
whether this tag exists in that chunk or not. For 
tags that do exist (except /CD) the lexical word is 
also used as a feature. 

II. Semantic head features  
We tag the semantic head of the NP and use its 
lexical word as feature. Also the plurality of the 
NP (/S tag for plurals) is used as a binary feature.  

III. 3. Dependency features 
The above two sets of feature are about the indi-
vidual properties of the chunks. But this last cate-
gory represents how each NP contributes to the 
semantics of the whole sentence. We borrow from 
Manshadi et al. (2009) the concept of Dependency 
Graph (DG), which encodes this information in a 
compact way. DG represents the argument struc-
ture of the predicates that form the logical form of 
a sentence. The DG of a sentence with n NP 
chunks contains n+1 nodes labeled 0..n. Node i 
(i>0) represents the predicate or the conjunction of 
the predicates that describes the NP chunk i, and 
node 0 represents the main predicate (or conjunc-
tion of predicates) of the sentence. An edge from i 

to j shows that chunk i is an argument of a predi-
cate represented by node j.  

For example, in sentence (1) of figure (3), 
chunk 1 is clearly the argument of the verb Print 
(the main predicate of the sentence), therefore 
there is an edge from 1 to 0 in the DG of this sen-
tence as shown in figure (4a). Also, chunks 2..4 are 
part of the description of chunk 1, so they are the 
arguments of the predicate(s) describing chunk 1. 
This means that there must be edges from nodes 
2..4 to node 1 in the DG. Similarly for sentence 2 
in figure (3), chunk 5 is part of the description 
(hence an argument of the predicates) of chunks 2 
and 4; chunks 2 and 4 are part of the description of 
1 and 3 respectively; and 1 and 3 are both argu-
ments of the verb Delete, the main predicate of the 
sentence, resulting in the DG given in figure (4b). 

The following features are extracted from the 
DG for every sample <i,j>(1≤i<j≤n): 

- Does i (or j) immediately dominate 0? 
- Does i (or j) immediately dominate j (or i)? 
- Does i (or j) dominate j (or i)? 
- Are i,j siblings ? 
- Do i,j share the same child? 

Note that DG has a close relationship with the de-
pendency tree of a sentence; for example, it shows 
the dependency relation(s) between a noun or verb 
and their modifier(s). Therefore it actually encodes 
some syntactic properties of a sentence. 

7 Experiments 

100 sentences from the corpus were picked at ran-
dom as the development set, in order to study the 
relevant features and their contribution to QSD. 
The rest of the corpus (400 sentences) was then 
used to do a 5 fold cross validation. We used 
SVMMulticlass from SVM-light toolkit (Joachims 
1999) as the classifier.  

            
    (a)                (b) 

Figure 4. Dependency Graphs for figure (3) sentences 
 

1. Print [1/ every/D line/H] of [2/ the/D file/H] that 
starts with [3/ two/CD digits/H/S] followed by [4/ 
punctuation/H]. 

2. Delete [1/ the/D first character/H] of [2/ every/D 
word/H] and [3/ the/D first word/H] of  [4/ 
every/D line/H] in [5/ the/D file/H]. 

Figure 3. Labeling determiners and head nouns 
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Before giving the results, we define a baseline. 
HS03 use the most frequent label as the baseline 
and the similarity metric given in definition (5) to 
evaluate the performance. Since more than 61% of 
the labels in their corpus is NI, the baseline system 
(that leaves every sentence unscoped) has the accu-
racy above 61%. In our corpus, the majority class 
is WS containing around 35% of the samples. NS 
and NI each contain 34% and 31% of the samples 
respectively. This means that there is a slight ten-
dency for having scope preference in chronological 
order. Therefore, the linear order of the chunks (i.e. 
from left to right) defines a reasonable baseline.  
The results of our experiments are shown in table 
1. The table lists the parameters P, R, and F-score9 
for our SVM-MC model vs. the baseline system. 
For each system, two sets of metrics have been 
reported: TC-based and TR-based.  

Table 2 lists the sentence-level accuracy of the 
system. We computed two metrics for sentence-
level accuracy: Acc and Acc-EZ. In calculating Acc, 
a sentence is considered correct if all the labels 
(including NI) exactly match the gold standard la-
bels. However, this is an unnecessarily tough met-
ric. As mentioned before (footnote 8), in practice 
the output of the system for the samples labeled NI 
is not important; all we care is that all outscoping 
(i.e. WS/NS) relations are recovered correctly. In 
other words, in practice, the system’s recall is the 
most important parameter. Regarding this fact, we 
define Acc-EZ as the percentage of sentences with 
100% recall (ignoring the value of precision). 

In order to compare our system with that of 
HS03, we applied our model unmodified to their 
corpus using the same set-up, a 10-fold cross vali-
dation. However, since their corpus is not anno-
tated with DG, we translated our dependency 
features to the properties of the Penn Treebank’s 
phrase structure trees. Table (3) lists the accuracy 

                                                             
9 F-score is defined as F=2PR/(P+R). 

of their best model, their baseline, and our SVM-
MC model. As seen in this table, their model out-
performs ours. This, however, is not surprising. 
First, although we trained our model on their cor-
pus, the feature engineering of our model was done 
based on our own development set. Second, since 
our corpus is not annotated with phrase structure 
trees, our model does not use any of their features 
that can only be extracted from phrase structure 
trees. It remains for future work to incorporate the 
features extracted from phrase structure trees 
(which is not already encoded in DG) and evaluate 
the performance of the model on either corpus. 

8 Discussion 

As seen in tables 1 and 2, for a first effort at full 
quantifier scope disambiguation, the results are 
promising. The constraint-based F-score of 78% is 
already higher than the inter-annotator agreement, 
which is 75% (measured using the TC-based simi-
larity metric; see definition 5). Furthermore, our 
system outperforms the baseline, by more than 
40% (judging by the constraint-based F-score). 
This is significant, comparing to the work of HS03, 
which outperforms the baseline by 16%.  

We mentioned before that in our corpus in aver-
age there are around 4 NPs per sentence resulting 
in 6 samples per sentence. Therefore the chance of 
predicting all the labels correctly is very slim. 
However, the baseline (i.e. the left to right order) 
does a good job and predicts the correct QSD for 
27% of the sentences. At the sentence level, our 
model does not reach the IAA, but the performance 
(62%) is not much lower than the IAA (66%). 

A question may arise that since the model treats 

 σ 

Baseline  61.1% 
HS04 77.0% 

Our Model 73.3% 

Table 3. Comparison with HS04 system on their dataset 

 P R F 

Baseline (TC) 31.8% 49.7% 38.8% 

Baseline (TR) 27.4% 33.9% 30.3% 

SVM-MC (TC) 73.0% 84.7% 78.4% 

SVM-MC (TR) 70.6% 76.2% 73.2% 

Table 1. Constraint-level results 

 Acc Acc-EZ 

Baseline 27.0% 43.8% 
SVM-MC 62.3% 78.0% 

Table 2. Sentence level accuracy 
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the pairs of NP independently, what guarantees 
that the scopings are valid; that is the predicted 
directed graphs are in fact DAGs. For example, for 
a sentence with 3 NP chunks, the classifier may 
predict that 1>2, 2>3, and 3>1, which results in a 
loop! As a matter of fact, there is nothing in the 
model that guarantees the validness of the pre-
dicted scopings. In spite of that, surprisingly all 
generated graphs in our tests were in fact DAGs! 
In order to explain this fact, we run two experi-
ments. In the first experiment, corresponding to 
every sentence S in the corpus with n chunks, we 
generated a random directed graph over n nodes. 
Only 10% of the graphs had cycles. It means that 
more than 90% of randomly generated directed 
graphs with n nodes (where the distribution of n is 
its distribution in our corpus) are acyclic. In the 
second experiment, for every sentence with n 
chunks, we created the samples <i,j> by randomly 
selecting values for all the features. We then tested 
the classifier in our original set-up, a 5-fold cross 
validation. In this case, only 4% of the sentences 
were assigned inconsistent labeling. This means 
that chances of having a loop in the scoping are 
small even when the classifier is trained on sam-
ples with randomly valued features, therefore it is 
not surprising that a classifier trained on the actual 
data learns some useful structures which make the 
chance of assigning inconsistent labels very slim.  

In general, if the classifier predicts such incon-
sistent scopings, the PCFG-style algorithm of 
Koller et al. (2008) comes handy in order to find a 
valid scoping with the highest weight. 

9 Summary and future work 

We presented the first work on unrestricted statis-
tical scope disambiguation in which all NP chunks 
in a sentence are considered for possible scope in-
teractions. We defined the task of full scope dis-
ambiguation as assigning a directed acyclic graph 
over n nodes to a sentence with n NP chunks. We 
then defined some metrics for evaluation purposes 
based on the two well-known concepts for DAGs: 
transitive closure and transitive reduction.  

We use a simple model for automatic QSD. Our 
model treats QSD as a ternary classification task 
on every pair of NP chunks. A multiclass SVM 
together with some POS, lexical and dependency 
features is used to do the classification. We apply 
this model to a corpus of English text in the do-

main of editing plain text files, which has been 
annotated with full scope information. The pre-
liminary results reach the F-score of 73% (based 
on transitive reduction metrics) at the constraint 
level and the accuracy of 62% at the sentence 
level. The system outperforms the baseline by a 
high margin (43% at the constraint level and 35% 
at the sentence level).  

Our ternary SVM-based classification model is 
a preliminary model, used for justification of our 
theoretical framework. Many improvements are 
possible, for example, directly predicting the whole 
DAG as a structured output. Also, the features that 
we use are rather basic. There are other linguisti-
cally motivated features that can be incorporated, 
e.g. some properties of the phrase structure trees, 
not already encoded in dependency graphs. 

Another problem with the current system is that 
the extra supervision has been provided by manu-
ally labeling the data (e.g. with dependency 
graphs). This could be done automatically by ap-
plying off the shelf parsers or POS taggers, possi-
bly by adapting them to our domain.  

Although we consider all NPs for scope resolu-
tion, scopal operators such as negation, mo-
dal/logical operators have been ignored in this 
work. We also do not distinguish distributive vs. 
collective reading of plurals in the current sys-
tem.10 Incorporating scopal operators and handling 
distributivity vs. collectivity would be the next step 
in expanding this work. 

Finally, since hand annotation of scope infor-
mation is very challenging, applying semi-
supervised or even unsupervised techniques to 
QSD is very demanding. In fact, leveraging unla-
beled data to do QSD seems quite promising. This 
is because domain dependent knowledge plays a 
critical role in scope disambiguation and this 
knowledge can be learned from unlabeled data us-
ing unsupervised methods. 

Acknowledgement  
We would like to thank Derrick Higgins for pro-
viding us with the HS03’s corpus. This work was 
supported in part by grants from the National Sci-
ence Foundation (IIS-1012205) and The Office of 
Naval Research (N000141110417).  

                                                             
10 The corpus has already been annotated with all this informa-
tion, but our QSD model is not designed for such a compre-
hensive scope disambiguation. 

58



References  
Aho, A., Garey, M., Ullman, J. (1972). The Transitive 

Reduction of a Directed Graph. SIAM Journal on 
Computing 1 (2): 131–137. 

Allen, J. (1995) Natural Langue Understanding, Ben-
jamin-Cummings Publishing Co., Inc.  

Allen, J., Dzikovska, M., Manshadi, M., Swift, M. 
(2007) Deep linguistic processing for spoken dia-
logue systems. Proceedings of the ACL-07 Workshop 
on Deep Linguistic Processing, pp. 49-56. 

Alshawi, H.  (ed.)  (1992) The core language Engine. 
Cambridge, MA, MIT Press.  

Bos, J., S. Clark, M. Steedman, J. R. Curran, and J. 
Hockenmaier (2004). Wide-coverage semantic repre-
sentations from a CCG parser. In Proceedings of 
COLING 2004, Geneva, Switzerland, pp. 1240– 
1246. 

Bos, J. (1996) Predicate logic unplugged. In Proc. 10th 
Amsterdam Colloquium, pages 133–143. 

Clark P., Harrison, P. (2008) Boeing's NLP system and 
the challenges of semantic representation, Semantics 
in Text Processing. STEP 2008. 

Copestake, A., Lascarides, A. and Flickinger, D. (2001) 
An Algebra for Semantic Construction in Constraint-
Based Grammars. ACL-01. Toulouse, France. 

Crammer, K., Y. Singer, N. Cristianini ,  J. Shawe-
taylor,  B. Williamson (2001). On the Algorithmic 
Implementation of Multi-class SVMs, Journal of Ma-
chine Learning Research. 

Egg M., Koller A., and Niehren J. (2001) The constraint 
language for lambda structures. Journal of Logic, 
Language, and Information, 10:457–485. 

Galen, A. and MacCartney, B. (2004). Statistical resolu-
tion of scope ambiguity in Natural language. 
http://nlp.stanford.edu/nlkr/scoper.pdf. 

Higgins, D. and Sadock, J. (2003). A machine learning 
approach to modeling scope preferences. Computa-
tional Linguistics, 29(1).  

Hurum, S. O. (1988) Handling scope ambiguities in 
English. In Proceeding of the second conference on 
Applied Natural Language Processing (ANLC '88). 

Koller, A., Michaela, R., Thater, S. (2008) Regular Tree 
Grammars as a Formalism for Scope Underspecifi-
cation. ACL-08, Columbus, USA. 

Joachims, T. (1999) Making Large-Scale SVM Learning 
Practical. Advances in Kernel Methods - Support 
Vector Learning, B. Schölkopf and C. Burges and A. 
Smola (ed.), MIT Press.  

Manshadi, M., Allen J., and Swift, M. (2009) An Effi-
cient Enumeration Algorithm for Canonical Form 
Underspecified Semantic Representations. Proceed-
ings of the 14th Conference on Formal Grammar (FG 
2009), Bordeaux, France July 25-26. 

Moran, D. B. (1988). Quantifier scoping in the SRI core 
language engine. In Proceedings of the 26th Annual 
Meeting of the Association for Computational Lin-
guistics. 

Pafel, J. (1997). Skopus und logische Struktur. Studien 
zum Quantorenskopus im Deutschen. PHD thesis, 
University of Tübingen. 

Srinivasan, P., and Yates, A. (2009). Quantifier scope 
disambiguation using extracted pragmatic knowl-
edge: Preliminary results. In Proceedings of the Con-
ference on Empirical Methods in Natural Language 
Processing (EMNLP). 

VanLehn, K. (1988) Determining the scope of English 
quantifiers, TR AI-TR-483, AI Lab, MIT. 

Woods, W. A.  (1978) Semantics and quantification in 
natural language question answering, Advances in. 
Computers, vol. 17, pp 1-87. 

 

59



Proceedings of the TextGraphs-6 Workshop, pages 60–68,
Portland, Oregon, USA, 19-24 June 2011. c©2011 Association for Computational Linguistics

From ranked words to dependency trees: two-stage unsupervised
non-projective dependency parsing

Anders Søgaard
Center for Language Technology

University of Copenhagen
soegaard@hum.ku.dk

Abstract

Usually unsupervised dependency parsing
tries to optimize the probability of a corpus
by modifying the dependency model that was
presumably used to generate the corpus. In
this article we explore a different view in
which a dependency structure is among other
things a partial order on the nodes in terms of
centrality or saliency. Under this assumption
we model the partial order directly and derive
dependency trees from this order. The result is
an approach to unsupervised dependency pars-
ing that is very different from standard ones in
that it requires no training data. Each sentence
induces a model from which the parse is read
off. Our approach is evaluated on data from 12
different languages. Two scenarios are consid-
ered: a scenario in which information about
part-of-speech is available, and a scenario in
which parsing relies only on word forms and
distributional clusters. Our approach is com-
petitive to state-of-the-art in both scenarios.

1 Introduction

Unsupervised dependency parsers do not achieve
the same quality as supervised or semi-supervised
parsers, but in some situations precision may be less
important compared to the cost of producing manu-
ally annotated data. Moreover, unsupervised depen-
dency parsing is attractive from a theoretical point
of view as it does not rely on a particular style of an-
notation and may potentially provide insights about
the difficulties of human language learning.

Unsupervised dependency parsing has seen rapid
progress recently, with error reductions on English

(Marcus et al., 1993) of about 15% in six years
(Klein and Manning, 2004; Spitkovsky et al., 2010),
and better and better results for other languages
(Gillenwater et al., 2010; Naseem et al., 2010),
but results are still far from what can be achieved
with small seeds, language-specific rules (Druck et
al., 2009) or using cross-language adaptation (Smith
and Eisner, 2009; Spreyer et al., 2010).

The standard method in unsupervised dependency
parsing is to optimize the overall probability of the
corpus by assigning trees to its sentences that cap-
ture general patterns in the distribution of part-of-
speech (POS). This happens in several iterations
over the corpus. This method requires clever initial-
ization, which can be seen as a kind of minimal su-
pervision. State-of-the-art unsupervised dependency
parsers, except Seginer (2007), also rely on manu-
ally annotated text or text processed by supervised
POS taggers. Since there is an intimate relationship
between POS tagging and dependency parsing, the
POS tags can also be seen as a seed or as partial an-
notation. Inducing a model from the corpus is typi-
cally a very slow process.

This paper presents a new and very different ap-
proach to unsupervised dependency parsing. The
parser does not induce a model from a big corpus,
but with a few exceptions only considers the sen-
tence in question. Itdoesuse a larger corpus to
induce distributional clusters and a ranking of key
words in terms of frequency and centrality, but this
is computationally efficient and is only indirectly re-
lated to the subsequent assignment of dependency
structures to sentences. The obvious advantage of
not relying on training data is that we do not have to
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worry about whether the test data reflects the same
distribution as the target data (domain adaptation),
and since our models are much smaller, parsing will
be very fast.

The parser assigns a dependency structure to a se-
quence of words in two stages. It first decorates
the n nodes of what will become our dependency
structure with word forms and distributional clus-
ters, constructs a directed acyclic graph from the
nodes inO(n2), and ranks the nodes using iterative
graph-based ranking (Page and Brin, 1998). Subse-
quently, it constructs a tree from the ranked list of
words using a simpleO(n log n) parsing algorithm.

Our parser is evaluated on the selection of 12
dependency treebanks also used in Gillenwater et
al. (2010). We consider two cases: parsing raw text
and parsing text with information about POS.

Strictly unsupervised dependency parsing is of
course a more difficult problem than unsupervised
dependency parsing of manually annotated POS se-
quences. Nevertheless ourstrictly unsupervised
parser, which only sees word forms, performs signif-
icantly better than structural baselines, and it outper-
forms the standard POS-informed DMV-EM model
(Klein and Manning, 2004) on 3/12 languages. The
full parser, which sees manually annotated text, is
competitive to state-of-the-art models such as E-
DMV PR AS 140 (Gillenwater et al., 2010).1

1.1 Preliminaries

The observed variables in unsupervised dependency
parsing are a corpus of sentencess = s1, . . . , sn
where each wordwj in si is associated with a POS
tagpj. The hidden variables are dependency struc-
turest = t1, . . . , tn wheresi labels the vertices of
ti. Each vertex has a single incoming edge, possibly
except one called the root of the tree. In this work
and in most other work in dependency parsing, we
introduce an artificial root node so that all vertices
decorated by word forms have an incoming edge.

A dependency structure such as the one in Fig-
ure 1 is thus a tree decorated with labels and aug-
mented with a linear order on the nodes. Each edge
(i, j) is referred to as a dependency between a head
word wi and a dependent wordwj and sometimes

1Naseem et al. (2010) obtain slightly better results, but only
evaluate on six languages. They made their code public, though:
http://groups.csail.mit.edu/rbg/code/dependency/

written wi → wj . Let w0 be the artificial root of
the dependency structure. We use→+ to denote the
transitive closure on the set of edges. Both nodes
and edges are typically labeled. Since a dependency
structure is a tree, it satisfies the following three
constraints: A dependency structure over a sentence
s : w1, . . . , wn is connected, i.e.:

∀wi ∈ s.w0 →
+ wi

A dependency structure is alsoacyclic, i.e.:

¬∃wi ∈ s.wi →
+ wi

Finally, a dependency structure issingle-headed,
i.e.:

∀wi.∀wj.(w0 → wi ∧ w0 → wj)⇒ wi = wj

If we also require that each vertex other than the
artificial root node has an incoming edge we have a
complete characterization of dependency structures.
In sum, a dependency structure is a tree with a lin-
ear order on the leaves where the root of the tree
for practical reasons is attached to an artificial root
node. The artificial root node makes it easier to im-
plement parsing algorithms.

Finally, we defineprojectivity, i.e. whether the
linear order is projective wrt. the dependency tree,
as the property of dependency trees that ifwi → wj

it also holds that all words in betweenwi and wj

are dominated bywi, i.e. wi →
+ wk. Intuitively,

a projective dependency structure contains no cross-
ing edges. Projectivity is not a necessary property
of dependency structures. Some dependency struc-
tures are projective, others are not. Most if not
all previous work in unsupervised dependency pars-
ing has focused on projective dependency parsing,
building on work in context-free parsing, but our
parser is guaranteed to produce well-formed non-
projective dependency trees. Non-projective pars-
ing algorithms for supervised dependency parsing
have, for example, been presented in McDonald et
al. (2005) and Nivre (2009).

1.2 Related work

Dependency Model with Valence (DMV) by Klein
and Manning (2004) was the first unsupervised de-
pendency parser to achieve an accuracy for manually
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POS-tagged English above a right-branching base-
line.

DMV is a generative model in which the sentence
root is generated and then each head recursively gen-
erates its left and right dependents. For eachsi ∈ s,
ti is assumed to have been built the following way:
The arguments of a headh in direction d are gen-
erated one after another with the probability that no
more arguments ofh should be generated in direc-
tion d conditioned onh, d and whether this would be
the first argument ofh in directiond. The POS tag of
the argument ofh is generated givenh andd. Klein
and Manning (2004) use expectation maximization
(EM) to estimate probabilities with manually tuned
linguistically-biased priors.

Smith and Eisner (2005) use contrastive es-
timation instead of EM, while Smith and Eis-
ner (2006) use structural annealing which penal-
izes long-distance dependencies initially, gradually
weakening the penalty during training. Cohen et
al. (2008) use Bayesian priors (Dirichlet and Logis-
tic Normal) with DMV. All of the above approaches
to unsupervised dependency parsing build on the
linguistically-biased priors introduced by Klein and
Manning (2004).

In a similar way Gillenwater et al. (2010) try
to penalize models with a large number of dis-
tinct dependency types by using sparse posteriors.
They evaluate their system on 11 treebanks from the
CoNLL 2006 Shared Task and the Penn-III treebank
and achieve state-of-the-art performance.

An exception to using linguistically-biased priors
is Spitkovsky et al. (2009) who use predictions on
sentences of lengthn to initialize search on sen-
tences of lengthn + 1. In other words, their method
requires no manual tuning and bootstraps itself on
increasingly longer sentences.

A very different, but interesting, approach is taken
in Brody (2010) who use methods from unsuper-
vised word alignment for unsupervised dependency
parsing. In particular, he sees dependency parsing
as directional alignment from a sentence (possible
dependents) to itself (possible heads) with the mod-
ification that words cannot align to themselves; fol-
lowing Klein and Manning (2004) and the subse-
quent papers mentioned above, Brody (2010) con-
siders sequences of POS tags rather than raw text.
Results are below state-of-the-art, but in some cases

better than the DMV model.

2 Ranking dependency tree nodes

The main intuition behind our approach to unsuper-
vised dependency parsing is that the nodes near the
root in a dependency structure are in some sense the
most important ones. Semantically, the nodes near
the root typically express the main predicate and
its arguments. Iterative graph-based ranking (Page
and Brin, 1998) was first used to rank webpages
according to their centrality, but the technique has
found wide application in natural language process-
ing. Variations of the algorithm presented in Page
and Brin (1998) have been used in keyword extrac-
tion and extractive summarization (Mihalcea and Ta-
rau, 2004), word sense disambiguation (Agirre and
Soroa, 2009), and abstractive summarization (Gane-
san et al., 2010). In this paper, we use it as the first
step in a two-step unsupervised dependency parsing
procedure.

The parser assigns a dependency structure to a se-
quence of words in two stages. It first decorates
the n nodes of what will become our dependency
structure with word forms and distributional clus-
ters, constructs a directed acyclic graph from the
nodes inO(n2), and ranks the nodes using iterative
graph-based ranking. Subsequently, it constructs
a tree from the ranked list of words using a sim-
pleO(n log n) parsing algorithm. This section de-
scribes the graph construction step in some detail
and briefly describes the iterative graph-based rank-
ing algorithm used.

The first step, however, is assigning distributional
clusters to the words in the sentence. We use a hi-
erarchical clustering algorithm to induce 500 clus-
ters from the treebanks using publicly available soft-
ware.2 This procedure is quadratic in the number of
clusters, but linear in the size of the corpus. The
cluster names are bitvectors (see Figure 1).

2.1 Edges

The text graph is now constructed by adding dif-
ferent kinds of directed edges between nodes. The
edges are not weighted, but multiple edges between
nodes will make transitions between these nodes in

2http://www.cs.berkeley.edu/∼pliang/software/brown-
cluster-1.2.zip

62



iterative graph-based ranking more likely. The dif-
ferent kinds of edges play the same role in our model
as the rule templates in the DMV model, and they
are motivated below.

Some of the edge assignments discussed below
may seem rather heuristic. The edge template was
developed on development data from the English
Penn-III treebank (Marcus et al., 1993). Our edge
selection was incremental considering first an ex-
tended set of candidate edges with arbitrary param-
eters and then considering each edge type at a time.
If the edge type was helpful, we optimized any pos-
sible parameters (say context windows) and went on
to the next edge type: otherwise we disregarded it.3

Following data set et al. (2010), we apply the best
setting for English to all other languages.
Vine edges.Eisner and Smith (2005) motivate a vine
parsing approach to supervised dependency parsing
arguing that language users have a strong prefer-
ence for short dependencies. Reflecting preference
for short dependencies, we first add links between
all words and their neighbors and neighbors’ neigh-
bors. This also guarantees that the final graph is con-
nected.
Keywords and closed class words.We use a key-
word extraction algorithm without stop word lists to
extract non-content words and the most important
content words, typically nouns. The algorithm is a
crude simplification of TextRank (Mihalcea and Ta-
rau, 2004) that does not rely on linguistic resources,
so that we can easily apply it to low-resource lan-
guages. Since we do not use stop word lists, highly
ranked words will typically be non-content words,
followed by what is more commonly thought of as
keywords. Immediate neighbors to top-100 words
are linked to these words. The idea is that non-
content words may take neighboring words as ar-
guments, but dependencies are typically very local.
The genuine keywords, ranked 100–1000, may be
heads of dependents further away, and we therefore
add edges between these wordswi and their neigh-
boring wordswj if |i− j| ≤ 4.
Head-initial/head-final. It is standard in unsuper-
vised dependency parsing to compare against a

3The search was simplified considerably. For example, we
only considered symmetric context windows, where left context
length equals length of right context, and we binned this length
considering only values 1, 2, 4, 8 and all.

structural baseline; either left-attach, i.e. all words
attach to their left neighbor, or right-attach. Which
structural baseline is used depends on the language
in question. It is thus assumed that we know enough
about the language to know what structural baseline
performs best. It is therefore safe to incorporate this
knowledge in our unsupervised parsers; our parsers
are still as ”unsupervised” as our baselines. If a lan-
guage has a strong left-attach baseline, like Bulgar-
ian, the first word in the sentence is likely to be very
central for reasons of economy of processing. The
language is likely to be head-initial. On the other
hand, if a language has a strong right-attach base-
line, like Turkish, the last word is likely to be cen-
tral. The language is likely to be head-final. Some
languages like Slovene have strong (< 20%) left-
attachand right-attach baselines, however. We in-
corporate the knowledge that a language has a strong
left-attach or right-attach baseline if more than one
third of the dependencies are attachments to a im-
mediate left, resp. right, neighbor. Specifically, we
add edges from all nodes to the first element in the
sentence if a language has a strong left-attach base-
line; and from all edges to the last (non-punctuation)
element in the sentence if a language has a strong
right-attach baseline.

Word inequality. An edge is added between two
words if they have different word forms. It is not
very likely that a dependent and a head have the
same word form.

Cluster equality. An edge is added between two
words if they are neighbors or neighbors’ neighbors
and belong to the same clusters. If so, the two words
may be conjoined.

Morphological inequality. If two words wi, wj in
the same context (|i − j| ≤ 4) share prefix or suf-
fix, i.e. the first or last three letters, we add an edge
between them.

2.2 Edges using POS

Verb edges.All words are attached to all words with
a POS tag beginning with ”V. . . ”.

Finally, when we have access to POS information,
we do not rely on vine edges besides left-attach, and
we do not rely on keyword edges or suffix edges ei-
ther.
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2.3 Ranking

Given the constructed graph we rank the nodes using
the algorithm in Page and Brin (1998), also known
as PageRank. The input to this algorithm is any di-
rected graphG = 〈E,V 〉 and the output is an as-
signmentPR : V → R of a score, also referred to
as PageRank, to each vertex in the graph such that all
scores sum to 1. A simplified version of PageRank
can be defined recursively as:

PR(v) = Σw∈Bv

PR(w)

L(w)

whereBv is the set of vertices such that(w, v) ∈
E, andL(w) is the number of outgoing links from
w, i.e. |{(u, u′)|(u, u′) ∈ E, u = w}|. In addi-
tion to this, Page and Brin (1998) introduces a so-
called damping factor to reflect that fact that Internet
users do not continue crawling web sites forever, but
restart, returning to random web sites. This influ-
ences centrality judgments and therefore should be
reflected in the probability assignment. Since there
is no obvious analogue of this in our case, we sim-
plify the PageRank algorithm and do not incorpo-
rate damping (or equivalent, set the damping factor
to 1.0).

Note, by the way, that although our graphs are
non-weighted and directed, like a graph of web
pages and hyperlinks (and unlike the text graphs in
Mihalcea and Tarau (2004), for example), several
pairs of nodes may be connected by multiple edges,
making a transition between them more probable.
Multiple edges provide a coarse weighting of the un-
derlying minimal graph.

2.4 Example

In Figure 1, we see an example graph of word nodes,
represented as a matrix, and a derived dependency
structure.4 We see that there are four edges from
The to market and six fromThe to crumbles, for
example. We then compute the PageRank of each
node using the algorithm described in Page and
Brin (1998); see also Figure 1. The PageRank val-
ues rank the nodes or the words. In Sect. 3, we de-
scribe a method for building a dependency tree from

4The dependency structure in Figure 1 contains dependency
labels such as ’SBJ’ and ’ROOT’. These are just included for
readability. We follow the literature on unsupervised depen-
dency parsing and focus only on unlabeled dependency parsing.

from/to The market crumbled .
The 0 4 6 3
market 4 0 5 3
crumbled 4 4 0 4
. 3 4 6 0
PR(%) 22.8 24.1 30.3 22.7

Figure 1: Graph, pagerank (PR) and predicted depen-
dency structure for sentence 5, PTB-III Sect. 23.

a ranking of the nodes. This method will produce
the correct analysis of this sentence; see Figure 1.
This is because the PageRank scores reflect syntac-
tic superiority; the root of the sentence typically has
the highest rank, and the least important nodes are
ranked lowly.

3 From ranking of nodes to dependency
trees

Consider the example in Figure 1 again. Once we
have ranked the nodes in our dependency structure,
we build a dependency structure from it using the
parsing algorithm in Figure 2. The input of the
graph is a list of ranked wordsπ = 〈n1, . . . , nm〉,
where each nodeni corresponds to a sentence posi-
tion npr2ind(i) decorated by a word formwpr2ind(i),
where pr2ind : {1, . . . ,m} → {1, . . . ,m} is a
mapping from rank to sentence position.

The interesting step in the algorithm is the head
selection step. Each word is assigned a head taken
from all the previously used heads and the word to
which a head was just assigned. Of these words,
we simply select the closest head. If two possible
heads are equally close, we select the one with high-
est PageRank.

Our parsing algorithm runs inO(n log n), since
it runs over the ranked words in a single pass con-
sidering only previously stored words as possible
heads, and guarantees connectivity, acyclicity and
single-headedness, and thus produces well-formed
non-projective dependency trees. To see this, re-
member that wellformed dependency trees are such
that all nodes but the artificial root nodes have a sin-
gle incoming edge. This follows immediately from
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1: π = 〈n1, . . . , nm〉 # the ranking of nodes
2: H = 〈n0〉 # possible heads
3: D = ∅ # dependency structure
4: pr2ind : {1, . . . ,m} → {1, . . . ,m} # a mapping from rank to sentence position
5: for ni ∈ π do
6: if |H|=1 then
7: c = 0 # used to ensure single-headedness
8: else
9: c = 1

10: end if
11: nj′ = arg minnj∈H[c:] |pr2ind(i)− pr2ind(j)| # select head ofwj

12: H = ni ∪H # makeni a possible head
13: D = {(wpr2ind (i) ← wpr2ind(j′))} ∪D # add new edge toD
14: end for
15: return D

Figure 2: Parsing algorithm.

the fact that each node is assigned a head (line 11).
Furthermore, the dependency tree must be acyclic.
This follows immediately from the fact that a word
can only attach to a word with higher rank than it-
self. Connectivity follows from the fact that there
is an artificial root node and that all words attach to
this node or to nodes dominated by the root node.
Finally, we ensure single-headedness by explicitly
disregarding the root node once we have attached the
node with highest rank to it (line 6–7). Our parsing
algorithm does not guarantee projectivity, since the
iterative graph-based ranking of nodes can permute
the nodes in any order.

4 Experiments

We use exactly the same experimental set-up as
Gillenwater et al. (2010). The edge model was
developed on development data from the English
Penn-III treebank (Marcus et al., 1993), and we eval-
uate on Sect. 23 of the English treebanks and the test
sections of the remaining 11 treebanks, which were
all used in the CoNLL-X Shared Task (Buchholz and
Marsi, 2006). Gillenwater et al. (2010) for some
reason did not evaluate on the Arabic and Chinese
treebanks also used in the shared task. We also fol-
low Gillenwater et al. (2010) in only evaluating our
parser on sentences of at most 10 non-punctuation
words and in reporting unlabeled attachment scores
excluding punctuation.

4.1 Strictly unsupervised dependency parsing

We first evaluate the strictly unsupervised parsing
model that has no access to POS information. Since
we are not aware of other work in strictly unsuper-
vised multi-lingual dependency parsing, so we com-
pare against the best structural baseline (left-attach
or right-attach) and the standard DMV-EM model
of Klein and Manning (2004). The latter, however,
has access to POS information and should not be
thought of as a baseline. Results are presented in
Figure 3.

It is interesting that we actually outperform DMV-
EM on some languages. On average our scores are
significantly better (p < 0.01) than the best struc-
tural baselines (3.8%), but DMV-EM with POS tags
is still 3.0% better than our strictly unsupervised
model. For English, our system performs a lot worse
than Seginer (2007).

4.2 Unsupervised dependency parsing
(standard)

We then evaluate our unsupervised dependency
parser in the more standard scenario of parsing sen-
tences annotated with POS. We now compare our-
selves to two state-of-the-art models, namely DMV
PR-AS 140 and E-DMV PR-AS 140 (Gillenwater et
al., 2010). Finally, we also report results of the IBM
model 3 proposed by Brody (2010) for unsupervised
dependency parsing, since this is the only recent pro-
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baseline EM ours
Bulgarian 37.7 37.8 41.9
Czech 32.5 29.6 28.7
Danish 43.7 47.2 43.7
Dutch 38.7 37.1 33.1
English 33.9 45.8 36.1
German 27.2 35.7 36.9
Japanese 44.7 52.8 56.5
Portuguese 35.5 35.7 35.2
Slovene 25.5 42.3 30.0
Spanish 27.0 45.8 38.4
Swedish 30.6 39.4 34.5
Turkish 36.6 46.8 45.9
AV 34.5 41.3 38.3

Figure 3: Unlabeled attachment scores (in %) on raw text.
(EM baseline has access to POS.)

posal we are aware of that departs significantly from
the DMV model. The results are presented in Fig-
ure 4.

Our results are on average significantly better than
DMV PR-AS 140 (2.5%), and better than DMV PR-
AS 140 on 8/12 languages. E-DMV PR-AS 140 is
slightly better than our model on average (1.3%),
but we still obtain better results on 6/12 languages.
Our results are a lot better than IBM-M3. Naseem
et al. (2010) report better results than ours on Por-
tuguese, Slovene, Spanish and Swedish, but worse
on Danish.

5 Error analysis

In our error analysis, we focus on the results for
German and Turkish. We first compare the results
of the strictly unsupervised model on German with
the results on German text annotated with POS. The
main difference between the two models is that more
links to verbs are added to the sentence graph prior
to ranking nodes when parsing text annotated with
POS. For this reason, the latter model improves con-
siderably in attaching verbs compared to the strictly
unsupervised model:

acc strict-unsup unsup
NN 43% 48%
NE 41% 39%
VVFIN 31% 100%
VAFIN 9% 86%
VVPP 13% 53%

While the strictly unsupervised model is about as

Figure 5: Predicted dependency structures for sentence 4
in the German test section; strictly unsupervised (above)
and standard (below) approach. Red arcs show wrong
decisions.

good at attaching nouns as the model with POS, it
is much worse attaching verbs. Since more links
to verbs are added, verbs receive higher rank, and
this improves f-scores for attachments to the artifi-
cial root node:

f-score strict-unsup unsup
to root 39.5% 74.0%
1 62.3% 69.6%
2 7.4% 24.4%
3–6 0 22.4%
7 0 0

This is also what helps the model with POS when
parsing the example sentence in Figure 5. The POS-
informed parser also predicts longer dependencies.

The same pattern is observed in the Turkish data,
but perhaps less dramatically so:

acc strict-unsup unsup
Noun 43% 42%
Verb 41% 51%

The increase in accuracy is again higher with
verbs than with nouns, but the error reduction was
higher for German.

f-score strict-unsup unsup
to root 57.4% 90.4%
1 65.7% 69.6%
2 32.1% 26.5%
3–6 11.6% 24.7%
7 0 12.5%

The parsers predict more long dependencies for
Turkish than for German; precision is generally
good, but recall is very low.

6 Conclusion

We have presented a new approach to unsupervised
dependency parsing. The key idea is that a depen-
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DMV PR-AS 140 E-DMV PR-AS 140 ours IBM-M3
Bulgarian 54.0 59.8 52.5
Czech 32.0 54.6 42.8
Danish 42.4 47.2 55.2 41.9
Dutch 37.9 46.6 49.4 35.3
English 61.9 64.4 50.2 39.3
German 39.6 35.7 50.4
Japanese 60.2 59.4 58.3
Portuguese 47.8 49.5 52.8
Slovene 50.3 51.2 44.1
Spanish 62.4 57.9 52.1
Swedish 38.7 41.4 45.5
Turkish 53.4 56.9 57.9
AV 48.4 52.2 50.9

Figure 4: Unlabeled attachment scores (in %) on text annotated with POS.

dency structure also expresses centrality or saliency,
so by modeling centrality directly, we obtain infor-
mation that we can use to build dependency struc-
tures. Our unsupervised dependency parser thus
works in two stages; it first uses iterative graph-
based ranking to rank words in terms of central-
ity and then constructs a dependency tree from the
ranking. Our parser was shown to be competitive to
state-of-the-art unsupervised dependency parsers.

References

Eneko Agirre and Aitor Soroa. 2009. Personalizing
pagerank for word sense disambiguation. InEACL.

Samuel Brody. 2010. It depends on the translation: un-
supervised dependency parsing via word alignment. In
EMNLP.

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X
shared task on multilingual dependency parsing. In
CoNLL.

Shay Cohen, Kevin Gimpel, and Noah Smith. 2008. Un-
supervised bayesian parameter estimation for depen-
dency parsing. InNIPS.

Gregory Druck, Gideon Mann, and Andrew McCal-
lum. 2009. Semi-supervised learning of dependency
parsers using generalized expectation criteria. InACL-
IJCNLP.

Jason Eisner and Noah A. Smith. 2005. Parsing with soft
and hard constraints on dependency length. InIWPT.

K Ganesan, C Zhai, and J Han. 2010. Opinosis: a graph-
based approach to abstractive summarization of highly
redudant opinions. InCOLING.

Jennifer Gillenwater, Kuzman Ganchev, Joao Graca, Fer-
nando Pereira, and Ben Taskar. 2010. Sparsity in de-
pendency grammar induction. InACL.

Dan Klein and Christopher Manning. 2004. Corpus-
based induction of syntactic structure: models of de-
pendency and constituency. InACL.

Mitchell Marcus, Mary Marcinkiewicz, and Beatrice
Santorini. 1993. Building a large annotated corpus
of English: the Penn Treebank.Computational Lin-
guistics, 19(2):313–330.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
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