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Abstract

In Natural Language Processing (NLP), research re-
sults from software engineering and software tech-
nology have often been neglected.

This paper describes some factors that add complex-
ity to the task of engineering reusable NLP systems
(beyond conventional software systems). Current
work in the area of design patterns and composi-
tion languages is described and claimed relevant for
natural language processing. The benefits of NLP
componentware and barriers to reuse are outlined,
and the dichotomies “system versus experiment” and
“toolkit versus framework” are discussed.

It is argued that in order to live up to its name lan-
guage engineering must not neglect component qual-
ity and architectural evaluation when reporting new
NLP research.

1 Introduction

It is notoriously difficult to construct conven-
tional software systems systematically and timely
(Sommerville, 2001), with up to 20% of industrial
development projects failing. For Natural Language
Processing (NLP) applications, the author is not aware
of any studies that estimate project failure rate. The risks
of failure seem even higher in this area, because the
language engineer faces additional complexity (Figure
1):

Accuracy. A fundamental difference between NLP
systems and conventional software is the incompleteness
property: since current language processing techniques
can never guarantee to provide all and only the correct
results, the whole system design is affected by having
to take this into account and providing appropriate fall-
backs.

Efficiency. Human users are very demanding:
(Shneiderman, 1997) reports that system response times

� 4s can render a system unacceptable. It is also debated

Figure 1: Dimensions of Language Engineering Com-
plexity.

in which scenarios natural language interaction with ma-
chines is superior to menus, keyboard commands or other
means. To date, it unclear how efficiently NLP systems
can be, since efficiency is not a top priority in research
and many questions related to software design and tech-
nology are often considered a mere “implementation de-
tail”. This is in contrast to other areas of computing,
where data structures and algorithms are often carefully
selected and customized to be of maximum gain for a do-
main, and learning how to partition a problem into classes
is seen as part of the knowledge acquisition process of at-
tacking a problem.

Productivity. Time is a very scarce resource. Research
environments often produce prototypes that demonstrate
the feasibility of a method and leave efficient and
more complete implementation to industrial exploitation.
However, because in industry time is even more press-
ing, the re-implementation (from prototype to “produc-
tion system”) often doesn’t happen. In research, produc-
tivity loss occurs because of lack of knowledge of exist-
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ing resources, lack of trust in non-in-house components,
or the inability to install or integrate existing software.
Price or licensing concerns also play a role. It is argued
here that software engineering techniques can improve
overall productivity of researchers after some little initial
investment. Section 3 relates short-term productivity to
long-term gains to the choice between building a frame-
work and carrying out an experiment.

Flexibility. Like any software, NLP systems need to
be flexible: a parser developed primarily to analyze writ-
ten online newspaper text might well be employed tomor-
row to process business e-mails. Different data formats
have to be handled, so representational and input/output
knowledge needs to be factored out from core linguis-
tic processing knowledge. Section 2.7 describes how de-
sign patterns can help NLP in this regard, and Section 2.2
gives an example of how componentization leads to more
flexibility.

Robustness. In engineering, robustness refers to a de-
vice’s ability to work even under varying conditions. In
language engineering, the terms robustness and portabil-
ity have obtained a more narrow meaning: both are typi-
cally used to describe the viability of a linguistic method
when applied across different text types or domains (in
terms of precision/recall).1 But a decrease in robustness
in the latter sense often means a “soft” degradation rather
than complete system failure. This is the type of fail-
ure that needs to be handled even in a working system
( � accuracy above), but decreases in overall performance
are also more subtle and therefore difficult to detect.

Scalability. If an NLP system is to be deployed, it
usually needs to be run in a distributed fashion to cope
with a large number of users or documents. However, of-
ten complexity and observed runtime and memory results
are not reported. In an engineering scenario, space and
runtime limits are specified in advance by product man-
agement or lead architects and techniques are selected
according to whether their properties are consistent with
the requirements. Often NLP components rely on other
components, and overall resource demands are high com-
pared to the system the NLP component is part of (e.g. a
text editor).

Multimodality. A language engineer applying the
same parser to investigate the discourse structure of 18th
century novels does not encounter the same challenges
as her colleague trying to apply it to speech dialogs (e.g.
absence of letter case information). Different modalities
have their own idiosyncrasies, and it is difficult to fac-
tor out all of them, but this is necessary because there
is a trend toward multi-modal systems, and intra-system
reuse requires a high degree of adaptability.

Data Sparseness. Current NLP methods are often

1 cf. the forthcoming Special Issue on Natural Language Ro-
bustness of the journal Natural Language Engineering.

data-driven, which means they rely on the availability of
a potentially large number of training examples to learn
from. Such training corpora are typically expensive or
virtually non-existent (data resource bottleneck). This
holds even more so in a multilingual scenario. Insuffi-
cient training data yields unacceptable accuracy.

Multilinguality. In a globalized world, users want to
work with a system in multiple languages. This is already
an issue in conventional software: independence of char-
acter encodings, different lexicographic sorting orders,
display of numbers, dates etc. (internationalization, or
“I18N”) need to be ensured and translations of iconic and
textual messages into the user’s currently preferred lan-
guage of interaction (localization, or “L10N”) have to be
provided (Tuthill-Smallberg, 1997; Lunde, 1999). NLP
applications are more complex, because grammars, lex-
icons, rule-sets, statistical models are language-specific,
and need to be re-created for each new target language,
often at a cost that is a significant proportion of the total
NLP sub-system’s budget. Often, heterogeneous compo-
nents from different suppliers and following incompati-
ble linguistic or software paradigms must be integrated.
(Maynard et al., forthcoming) argue convincingly that ar-
chitectural support can improve the predictability of the
construction process.

2 Reuse

2.1 The need for reuse

In NLP, the global amount of reuse is low, and currently,
activities of the community en large focus on reuse of
data resources (via annotation standards or data reposi-
tories like LDC and ELRA). On the software side, de-
spite similar efforts (Declerck et al., 2000), reuse rate is
low, partially because the difficulty of integration is high
(and often underestimated), for instance because devel-
opers use different implementation languages, deprecated
environments or diverse paradigms. Especially, “Far too
often developers of language engineering components do
not put enough effort in designing and defining the API.”
(Gambäck and Olsson, 2000). Thus, re-implementation
and integration cause major productivity loss.

2.2 Properties that lead to reuse

How can productivity loss be avoided? Researchers
should build their prototypes around sound Application
Programming Interfaces (APIs); all input/output should
be separated from the core functionality. Then not only
will the workings of the algorithms become clearer, also
the re-usability will be increased, since most applications
make different assumptions about data formats. Potential
sloppiness (e.g. lack of error-handling) caused by time
pressure can then be restricted to the prototype applica-
tion shell without impairing the core code. The main



LTG MUC-7 Hybrid MUC-7 Named Entity Recognizer
based on maximum entropy classification
and DFSTs

ltchunk DFST-based English chunk parser
ltpos HMM-based English POS tagger
ltstop Maximum entropy-based English sentence

splitter
lttok DFST-based tokenizer for English text
LT TTT Suite of XML/SGML-aware tools for

building DFSTs
fsgmatch Deterministic Finite-State Transducer

(DFST) construction toolkit
sgdelmarkup Remove SGML markup from text
sgtr SGML replacement tool
sgsed SGML stream editor
LT XML LTG’s XML API

Table 1: The SGML-Aware NLP Tools of the University
of Edinburgh’s Language Technology Group.

principle behind good design is to dissect the problem
domain into a set of highly cohesive components that in-
teract in a loosely coupled fashion (Sommerville, 2001).

2.3 Barriers to reuse

Reuse of software components can be blocked by sev-
eral factors, including the lack of knowledge of existing
components, lack of trust in component quality, a mis-
match between component properties and project require-
ments, unacceptable licensing policies or patent/cost is-
sues. Political issues include the investment needed to
make and package reusable components, for which there
might not be any budget provided. Technical issues con-
tain software-platform incompatibility and dependencies,
installation difficulties, lack of documentation or support,
and inconsistencies with other modules.

Considering NLP components in specific, formalisms
might not be linguistically compatible. Components
might differ in language coverage, accuracy and effi-
ciency. With linguistic components, a black box in-
tegration is particularly tricky, since if the technique
used internally is unknown, the component might break
down in case the domain is changed (domain-specific
rules/training). A further problem is posed by the fact that
different paradigms perform sub-tasks on different levels
(e.g. disambiguation). Case-sensitivity/case-awareness
can also be problematic.

2.4 Code reuse: toolkits

The Edinburgh Language Technology Group’s SGML-
aware NLP tools (Mikheev et al., 1999) comprise a set
of programs that rely on the common LT XML API2 to
annotate text using cascading (deterministic) Finite-State
Transducers (Table 1).

2 http://www.ltg.ed.ac.uk/software/xml/
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Figure 2: Some Global Architectural Choices.

The tools are typically used in a sequential UNIX
pipeline (Figure 2, top). An integrated query language
allows selective processing of parts of the XML/SGML
document instance tree.

A major advantage of the LTG pipeline toolkit ap-
proach over frameworks (described below) is the maxi-
mal decoupling of its components (communication only
by means data exchange in a “fat XML pipe”), so no
toolkit-specific “glue” code needs to be developed and
developers can work in their programming language of
choice. A disadvantage is that repeated XML parsing be-
tween components may be too time-consuming in a pro-
duction scenario.

2.5 Code and design reuse: frameworks

A framework is a collection of pre-defined services that
embody a certain, given organization, within which the
user can extend the functionality provided; frameworks
impose certain organizational principles on the developer
(Griffel, 1998).

The General Architecture for Text Engineer-
ing (GATE)3 is a theory-neutral framework for
the management and integration of NLP com-
ponents and documents on which they operate
(Cunningham et al., 1996; Cunningham, 2000;
Bontcheva et al., 2002; Cunningham et al., 2002;
Maynard et al., forthcoming). GATE 2 is compliant with
the TIPSTER architecture (Grishman, 1995), contains
the example IE system ANNIE and is freely available
including source (in Java, which makes it also open for
all languages due to the underlying use of UNICODE).
A data type for annotating text spans is provided, which
allows for generic visualization and editing components
and a graphical plug-and-play development environment.

3 http://gate.ac.uk/

http://www.ltg.ed.ac.uk/software/xml/
http://gate.ac.uk/


Developers can make use of a sample component
toolbox.

(Zajac et al., 1997) present Corelli, another TIP-
STER compliant architecture implemented in Java (see
(Basili et al., 1999) for a comparison). The WHITE-
BOARD project (Crysmann et al., 2002) uses monotonic
XML annotation to integrate deep and shallow process-
ing (Figure 2, middle). Finally, the closest coupling takes
place in architectures where most or all components are
allowed to talk to each other, such as the German Verb-
mobil speech translation system (Görz et al., 1996).

ALEP, the Advanced Language Engineer-
ing Platform (Simpkins and Groenendijk, 1994;
Bredenkamp et al., 1997) is an early framework that
focused on multilinguality. It offers an HPSG like, typed
AVM-based unification formalism (and parsers for it) as
well as some infrastructural support. In the LS-GRAM
project, it has been used to build analyzers for nine
languages. However, it has been criticized for being
“too committed to a particular approach to linguistic
analysis and representation” ( Cunningham et al., 1997).
ALEP’s Text Handling component (Declerck, 1997) uses
a particular SGML-based annotation that can be enriched
with user-defined tags. Some standard components are
provided, and rules allow the mapping of SGML tags to
AVMs (“lifting”). SRI’s Open Agent Architecture (OAA) 4

(Martin et al., 1999; Cheyer and Martin, 2001) is a soft-
ware platform that offers a library for distributed agent
implementation with bindings for several programming
languages (C/C++, Java, LISP, PROLOG etc.). Agents
request services from service agents via facilitation, a
coordinating service procedure of transparent delegation,
whereby facilitators can consider strategic knowledge
provided by requesting agents, trying to distribute and
optimize goal completion. Control is specified in a
PROLOG-like Interagent Communication Language
(ICL), which contains, but separates, declarative and
procedural knowledge (how to do and what to do).

2.6 Discussion

Framework or Toolkit? The disadvantage of frame-
works is that any such infrastructure is bound to have
a steep learning curve (how to write wrapper/glue code,
understand control) and developers are often reluctant to
adopt existing frameworks. Using one frameworks also
often excludes using another (due to the inherited “de-
sign dogma”).
Toolkits, on the other hand, are typically smaller and eas-
ier to adopt than frameworks and allow for more free-
dom with respect to architectural choices, but of course
the flip-side of this coin is that toolkits offer less guid-
ance and reuse of architecture and infrastructure. See

4 http://www.ai.sri.com/ oaa/

(Menzel, 2002) for a further discussion of architectural
issues in NLP.

2.7 Design reuse with design patterns

Design patterns (Gamma et al., 1994;
Harrison et al., 2000) are reusable units of software
architecture design that have emerged from object-
oriented software development research, where certain
collaborative object configurations were found to
re-occur in different contexts.

Finite-State Automata (FSAs) were historically the
first devices that have received a software engineer-
ing treatment (Watson, 1995), as they are pervasive
from compiler technology to software engineering it-
self. (Yacoub and Ammar, 2000) describe how using
a FiniteStateMachine design pattern that separates
out certain facets can facilitate interoperability between
Mealy, Moore and hybrid FSAs.

(Manolescu, 2000) identifies the FeatureExtraction
pattern as a useful abstraction for information
retrieval and natural language processing: a
FeatureExtractorManager is a Factory of
FeatureExtractor objects, where each knows a
MappingStrategy, a FilteringStrategy and a
Database. Numerical techniques often used in machine
learning to overcome the “curse of dimensionality”
( � data sparseness above) such as Singular Value De-
composition, Latent Semantic Indexing, or Principle
Component Analysis (PCA) are also instances of this
pattern. It is worth noting that some of these patterns
are domain-specific, i.e. the software engineering
aspects interact with the type of linguistic processing.
(Basili et al., 1999) generalize over typical NLP compo-
nents, combining Data Flow Diagrams for a Linguistic
Processing Module (LM), a Lexical Acquisition Module
(LAM) and an Application Module (AM) to a generic
model of an NLP application. The result of the LAM
is what (Cunningham et al., 1997) would call a Data
Resource (as opposed to a Processing Resource, which
corresponds to a LM). (Basili et al., 1999) also present
an UML model of a class for linguistically annotated
text, LinguisticInformation, that is interoperable
with application-dependent classes.

2.8 Productivity gain with composition languages?

Recently, work in software engineering has focused on
composition languages (Nierstrasz and Meijler, 1994),
which allow to construct systems on a meta-level by
specifying composition transformations in a separate
glue notation without editing component source code
(Aßmann, 2003). Such an approach would support a view
held by (Daelemans et al., 1998), who argue that “all
NLP tasks can be seen as either

http://www.ai.sri.com/~oaa/


Figure 3: Productivity Pyramid.

� light NLP tasks involving disambiguation or seg-
mentation locally at one language level or between
two closely-related language levels; or as

� compositions of light NLP tasks, when the task sur-
passes the complexity of single light NLP tasks.”

That NLP processing often involves generic pre-
processing (such as POS-tagging) can be taken as evi-
dence for the need for dedicated linguistic composition
languages.5 Whereas toolkits and frameworks for NLP
have already been developed, to date there exists no ded-
icated NLP composition language. In such a language,
both linguistic structures (such as typed AVMs) and pro-
cessing resources (such as taggers or tag-set mappers)
had first-order status. Composition languages are a logi-
cal next step in the ongoing development of new abstrac-
tion layers for computing.6

3 Experiment or System?

Figure 3 depicts the trade-off researchers have to face
when deciding between carrying out an experiment,
building a prototype program, implementing a more
fleshed-out self-contained system, building a complete,
generic, redistributable toolkit or whether they invest
long-term in providing the community with a new frame-
work.7 On the one hand, experiments ensure high
short-term productivity with hardly any reuse or cross-
fertilization to other projects. Frameworks, on the other

5 The visual application builder part of GATE 2 can be seen as
a visual composition language.
6 See (Abelson and Sussman, 1996) for a view that program-
ming is indeed constant development and application of a grow-
ing collection of abstraction mechanisms.
7 There may be a difference of several orders of magnitude in
complexity between the tip and the bottom of the pyramid in
Figure 3.

hand, which are only possible in larger groups and with
long-range funding, pay back relatively late, but of-
fer many synergies due to their all-embracing nature if
they can overcome developers reluctance to adopt a new
framework.

4 Summary and Conclusion

Whereas the evaluation of effectiveness of NLP methods
has become an integral part of research papers, archi-
tectural evaluation is often neglected. It should also be
recognized as vital part of engineering research publica-
tions, including an assessment of standard compliance,
rapid deployability, maintainability and flexibility of de-
sign (Nyberg and Mitamura, 2002). Researchers should
strive toward development of component APIs rather than
prototypes to foster cross-fertilization and reuse. Frame-
works are a valuable asset on the way as they embody
common assumptions, but (unlike toolkits) they are not
normally inter-operable with other frameworks. Already
the horizon, NLP composition languages and could be an
attractive solution to problems of productivity and reuse.
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