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Abstract

The audio bitstream in music encodes a high
amount of statistical, acoustic, emotional and
cultural information. But music also has an
important linguistic accessory; most musical
artists are described in great detail in record
reviews, fan sites and news items. We high-
light current and ongoing research into extract-
ing relevant features from audio and simulta-
neously learning language features linked to
the music. We show results in a “query-by-
description” task in which we learn the per-
ceptual meaning of automatically-discovered
single-term descriptive components, as well as
a method of automatically uncovering ‘seman-
tically attached’ terms (terms that have percep-
tual grounding.) We then show recent work in
‘semantic basis functions’ – parameter spaces
of description (such asfast ... slowor male
... female) that encode the highest descriptive
variance in a semantic space.

1 Introduction

What can you learn by listening to the radio all day? If
the DJ was wordy enough, we argue that you can gain
enough knowledge of the language of perception, as well
as the grammar of description and the grammar of music.

Here we develop a system that uncovers descriptive pa-
rameters of perception completely autonomously. Rela-
tions between English adjectives and audio features are
learned using a new ‘severe multi-class’ algorithm based
on the support vector machine. Training data consists of
music reviews from the Internet correlated echnology and
Entertainment Media: Rights and Responsibilities with
acoustic recordings of the reviewed music. Once trained,
we obtain a perceptually-grounded lexicon of adjectives
that may be used to automatically label new music. The
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Figure 1: Mean spectral characteristics of four different
terms uncovered by the spectral frame-based single term
attachment system. Magnitude of frequency on the y-
axis, frequency in Hz on the x-axis.

predictive accuracy of the perceptual models are evalu-
ated on unseen test music-review data samples. We con-
sider terms with high predictive accuracy (i.e., that agree
with word usage of musical reviews not used during train-
ing) to be well grounded. We extend our prior work by
introducing a ‘linguistic expert,’ in the form of a lexical
knowledge base that provides human-encoded symbolic
knowledge about lexical relations. We apply lexical re-
lations to well grounded adjectives to determine the per-
ceptual correlates of opposition. This enables us to move
from isolated word groundings to a gradation system by
discovering the perceptual basis underlying lexical oppo-
sition of adjective pairs (fast ... slow, hard ... soft, etc.).
Once we have uncovered these gradations, we effectively
obtain a set of “semantic basis functions” which can be
used to characterize music samples based on their per-
ceptual projections onto these lexically determined basis
functions.



Term Precision Term Precision
acoustic 23.2% annoying 0.0%
classical 27.4% dangerous 0.0%
clean 38.9% gorgeous 0.0%
dark 17.1% hilarious 0.0%
electronic 11.7% lyrical 0.0%
female 32.9% sexy 1.5%
happy 13.8% troubled 0.0%
romantic 23.1% typical 0.0%
upbeat 21.0% wicked 0.0%
vocal 18.6% worldwide 2.8%

Table 1: Selected adjective terms and their weighted pre-
cision in predicting a description of as-yet ‘unheard’ mu-
sic in the frame-based single term attachment system.
The very low baseline and noisy ground truth contribute
to low overall scores, but the difference between ‘un-
groundable’ and high-scoring terms are significant– for
example, the system cannot find a spectral definition of
‘sexy.’

2 Background

In the general audio domain, work has recently been done
(Slaney, 2002) that links sound samples to description us-
ing the labeled descriptions on the sample sets. In the vi-
sual domain, some work has been undertaken attempting
to learn a link between language and multimedia. The
lexicon-learning aspects in (Duygulu et al., 2002) study
a set of fixed words applied to an image database and
use a method similar to EM (expectation-maximization)
to discover where in the image the terms (nouns) ap-
pear. (Barnard and Forsyth, 2000) outlines similar work.
Regier has studied the visual grounding of spatial terms
across languages, finding subtle effects that depend on
the relative shape, size, and orientation of objects (Regier,
1996). Work on motion verb semantics include both pro-
cedural (action) based representations building on Petri
Net formalisms (Bailey, 1997; Narayanan, 1997) and en-
codings of salient perceptual features (Siskind, 2001). In
(Roy, 1999), we explored aspects of learning shape and
color terms, and took first steps in perceptually-grounded
grammar acquisition.

We refer to a word as “grounded” if we are able to de-
termine reliable perceptual or procedural associations of
the word that agree with normal usage. However, encod-
ing single terms in isolation is only a first step in sensory-
motor grounding. Lexicographers have traditionally stud-
ied lexical semantics in terms of lexical relations such
as opposition, hyponymy, and meronymy (Cruse, 1986).
We have made initial investigations into theperceptual
grounding of lexical relations. We argue thatgradations
or linguistic parameter spaces (such asfast ... slowor
big ... small) are necessary to describe high-dimensional
perceptual input.

Figure 2: The “Radio, Radio” platform for autonomously
learning language and music models. A bank of systems
(with a distributed computing back-end connecting them)
listens to multiple genres of radio streams and hones an
acoustic model. When a new artist is detected from the
metadata, our cultural representation crawler extracts lan-
guage used to describe the artist and adds to our language
model. Concurrently, we learn relations between the mu-
sic and language models to ground language terms in per-
ception.

Our first approach to this problem was in (Whitman
and Rifkin, 2002), in which we learned the descriptions
of music by a combination of automated web crawls for
artist description and analysis of the spectral content of
their music. The results for that work, which appear
in Figure 1 and Table 1, show that we can accurately
predict (well above an impossibly low baseline) a label
on a held-out test set of music. We also see encour-
aging results in the set of terms that were accurately
predicted. In effect we can draw an imaginary line in
the form of a confidence threshold around our results
and assign certain types of terms ‘grounded’ while oth-
ers are ‘ungroundable.’ In Table 1 above, we note that
terms like ‘electronic’ and ‘vocal’ that would appear in
the underlying perceptual feature space get high scores
while more culturally-influenced terms like ‘gorgeous’
and ‘sexy’ do not do as well. We have recently extended
this work (Whitman et al., 2003) by learning parameters
in the same manner. Just because we know the spectral
shape of ‘quiet’ and ‘loud’ (as in Figure 1) we cannot
infer any sort of connecting space between them unless
we know that they are antonyms. In this work, we infer
such gradation spaces through the use of a lexical knowl-
edge base, ‘grounding’ such parameters through percep-
tion. As well, to capture important time-aware gradations
such as‘fast...slow’we introduce a new machine listening



np Term Score
beth gibbons 0.1648
trip hop 0.1581
dummy 0.1153
goosebumps 0.0756
soulful melodies 0.0608
rounder records 0.0499
dante 0.0499
may 1997 0.0499
sbk 0.0499
grace 0.0499

adj Term Score
cynical 0.2997
produced 0.1143
smooth 0.0792
dark 0.0583
particular 0.0571
loud 0.0558
amazing 0.0457
vocal 0.0391
unique 0.0362
simple 0.0354

Table 2: Top 10 terms (noun phrase and adjective sets) for
the musical group ‘Portishead’ from community meta-
data.

representation that allows for far more perceptual gener-
ality in the time domain than our previous work’s single
frame-based power spectral density. Our current platform
for retrieving audio and description is shown in Figure 2.

We acknowledge previous work on the computational
study of adjectival scales as in (Hatzivassiloglou and
McKeown, 1993), where a system could group gradation
scales using a clustering algorithm. The polar represen-
tation of adjectives discussed in (Miller, 1990) also influ-
enced our system.

3 Automatically Uncovering Description

We propose an unsupervised model of language feature
collection that is based ondescription by observation,
that is, learning target classifications by reading about the
musical artists in reviews and discussions.

3.1 Community Metadata

Our model is calledcommunity metadata(Whitman and
Lawrence, 2002) and has been successfully used in style
detection (Whitman and Smaragdis, 2002) and artist sim-
ilarity prediction (Ellis et al., 2002). It creates a ma-
chine understandable representation of artist description
by searching the Internet for the artist name and perform-
ing light natural language processing on the retrieved
pages. We split the returned documents into classes en-
compassingn-grams (terms of word lengthn), adjectives
(using a part-of-speech tagger (Brill, 1992)) and noun
phrases (using a lexical chunker (Ramshaw and Mar-
cus, 1995).) Each pair{artist, term} retrieved is given
an associated salience weight, which indicates the rela-
tive importance ofterm as associated toartist. These
saliences are computed using a variant of the popular TF-
IDF measure gaussian weighted to avoid highly specific
and highly general terms. (See Table 2 for an example.)
One important feature of community metadata is its time-
sensitivity; terms can be crawled once a week and we can
take into account trajectories of community-level opinion

about certain artists.
Although tempting, we are reticent to make the claim

that the community metadata vectors computationally ap-
proach the “linguistic division of labor” proposed in (Put-
nam, 1987) as each (albeit unaware) member of the net-
worked community is providing a small bit of informa-
tion and description about the artist in question. We feel
that the heavily biased opinion extracted from the Inter-
net is best treated as an approximation of a ‘ground truth
description.’ Factorizing the Internet community into rel-
atively coherent smaller communities to obtain sharpened
lexical groundings is part of future work. However, we
do in fact find that the huge amount of information we
retrieve from these crawls average out to a good general
idea of the artists.

4 Time-Aware Machine Listening

We aim for a representation of audio content that cap-
tures as much perceptual content as possible and ask the
system to find patterns on its own. Our representation is
based on the MPEG-7 (Casey, 2001) standard for con-
tent understanding and metadata organization.1 The re-
sult of an MPEG-7 encoding is a discrete state number
l (l = [1...n]) for each 1

100 th of a second of input au-
dio. We histogram the state visits into counts for each
n-second piece of audio.

5 Relating Audio to Description

Given an audio and text model, we next discuss how to
discover relationships between them. The approach we
use is the same as our previous work, where we place
the problem as a multi-class classification problem. Our
input observations are the audio-derived features, and
in training, each audio feature is associated with some
salience weight of each of the 200,000 possible terms that
our community metadata crawler discovered. In a recent
test, training 703 separate SVMs on a small adjective set
in the frame-based single term system took over 10 days.
In most machine learning classifiers, time is dependent on
the number of classes. As well, due to the unsupervised
and automatic nature of the description classes, many are
incorrect (such as when an artist is wrongly described)
or unimportant (as in the case of terms such as ‘talented’
or ‘cool’– meaningless to the audio domain.) Lastly, be-
cause the decision space over the entire artist space is so
large, most class outputs are negative. This creates a bias
problem for most machine learning algorithms. We next
show our attempt at solving these sorts of problems us-
ing a new classifier technique based on the support vector
machine.

1Our audio representation is fully described in (Whitman et
al., 2003).



5.1 Regularized Least-Squares Classification

Regularized Least-Squares Classification (Rifkin, 2002)
allows us to solve ‘severe multi-class’ problems where
there are a great number of target classes and a fixed set
of source observations. It is related to the Support Vector
Machine (Vapnik, 1998) in that they are both instances
of Tikhonov regularization (Evgeniou et al., 2000), but
whereas training a Support Vector Machine requires the
solution of a constrained quadratic programming prob-
lem, training RLSC only requires solving a single system
of linear equations. Recent work (Fung and Mangasar-
ian, 2001), (Rifkin, 2002) has shown that the accuracy of
RLSC is essentially identical to that of SVMs.

We arrange our observations in a Gram matrixK,
whereKij ≡ Kf (xi, xj) using thekernel functionKf .
Kf (x1, x2) is a generalized dot product (in a Reproduc-
ing Kernel Hilbert Space (Aronszajn, 1950)) betweenxi

andxj. We use the Gaussian kernel

Kf (x1, x2) = e−
(|x1−x2|)

2

σ2 (1)

whereσ is a parameter we keep at 0.5.
Then, training an RLSC system consists of solving the

system of linear equations

(K +
I

C
)c = y, (2)

whereC is a user-suppliedregularization constant. The
resulting real-valued classification functionf is

f(x) =
∑̀
i=1

ciK(x, xi). (3)

The crucial property of RLSC is that if we store the in-
verse matrix(K+ I

C )−1, then for a new right-hand sidey,
we can compute the newc via a simple matrix multipli-
cation. This allows us to compute new classifiers (after
arranging the data and storing it in memory) on the fly
with simple matrix multiplications.

5.2 Evaluation for a “Query-by-Description” Task

To evaluate our connection-finding system, we compute
theweighted precisionP (at) of predicting the labelt for
audio derived features of artista. We train a newct for
each termt against the training set.ft(x) for the test set
is computed over each audio-derived observation frame
x and termt. If the sign of ft(x) is the same as our
supposed ‘ground truth’ for that{artist, t}, (i.e. did the
audio frame for an artist correctly resolve to a known de-
scriptive term?) we consider the prediction successful.
Due to the bias problem mentioned earlier, the evaluation
is then computed on the test set by computing a ‘weighted
precision’: whereP (ap) indicates overall positive accu-
racy (given an audio-derived observation, the probabil-
ity that a positive association to a term is predicted) and

Perception

Lexical Knowledge BaseDescription by Observation

Figure 3: Overview of our parameter grounding method.
Semantically attached terms are discovered by finding
strong connections to perception. We then ask a ‘pro-
fessional’ in the form of a lexical knowledge base about
antonymial relations. We use those relations to infer gra-
dations in perception.

P (an) indicates overall negative accuracy,P (a) is de-
fined asP (ap)P (an), which should remain significant
even in the face of extreme negative output class bias.

Now we sort the list ofP (at) and set an arbitrary
thresholdε. In our implementation, we useε = 0.1. Any
P (at) greater thanε is considered ‘grounded.’ In this
manner we can use training accuracy to throw away badly
scoring classes and then figure out which were incorrect
or unimportant.

6 Linguistic Experts for Parameter
Discovery

Given a set of ‘grounded’ single terms, we now discuss
our method for uncovering parameter spaces among those
terms and learning the knobs to vary their gradation. Our
model states that certain knowledge is not inferred from
sensory input or intrinsic knowledge but rather by query-
ing a ‘linguistic expert.’ If we hear ‘loud’ audio and we
hear ‘quiet’ audio, we would need to know that those
terms are antonymially related before inferring the gra-
dation space between them.

6.1 WordNet

WordNet (Miller, 1990) is a lexical database hand-
developed by lexicographers. Its main organization is
the ‘synset’, a group of synonymous words that may re-
place each other in some linguistic context. The mean-
ing of a synset is captured by its lexical relations, such
as hyponymy, meronymy, or antonymy, to other synsets.
WordNet has a large community of users and various
APIs for accessing the information automatically. Ad-
jectives in WordNet are organized in two polar clusters of
synsets, which each focal synset (the head adjective) link-
ing to some antonym adjective. The intended belief is that



northern - southern playful - serious
unlimited - limited naive - sophisticated
foreign - native consistent - inconsistent
outdoor - indoor foreign - domestic
dissonant - musical physical - mental
opposite - alternate censored - uncensored
unforgettable - forgettable comfortable - uncomfortable
concrete - abstract untamed - tame
partial - fair empirical - theoretical
atomic - conventional curved - straight
lean - rich lean - fat

Table 3: Examplesynantrelations.

descriptive relations are stored as polar gradation spaces,
implying that we can’t fully understand ‘loud’ without
also understanding ‘quiet.’ We use these antonymial re-
lations to build up a new relation that encodes as much
antonymial expressivity as possible, which we describe
below.

6.2 Synant Sets

We define a set of lexical relations calledsynants, which
consist of every antonym of a source term along with ev-
ery antonym of each synonym and every synonym of each
antonym. In effect, we recurse through WordNet’s tree
one extra level to uncover as many antonymial relations
as possible. For example, “quiet”’s anchor antonym is
“noisy,” but “noisy” has other synonyms such as “clan-
gorous” and “thundering.” By uncovering these second-
order antonyms in the synant set, we hope to uncover as
much gradation expressivity as possible. Some example
synants are shown in Table 3.

The obvious downside of computing the synant set is
that they can quickly lose synonymy– following from the
example above, we can go from “quiet” to its synonym
“untroubled,” which leads to an synantonymial relation
of “infested.” We also expect problems due to our lack of
sense tagging: “quiet” to its fourth sense synonym “re-
strained” to its antonym “demonstrative,” for example,
probably has little to do with sound. But in both cases
we rely again on the sheer size of our example space;
with so many possible adjective descriptors and the large
potential size of the synant set, we expect our connection-
finding machines to do the hard work of throwing away
the mistakes.

7 Innate Dimensionality of Parameters

Now that we have a set of grounded antonymial adjec-
tives pairs, we would like to investigate the mapping in
perceptual space between each pair. We can do this with
a multidimensional scaling (MDS) algorithm. Let us call
all acoustically derived data associated with one adjec-
tive asX1 and all data associated with the syn-antonym

X2. An MDS algorithm can be used to find a multidi-
mensional embedding of the data based on pairwise sim-
ilarity distances between data points. The similarity dis-
tances between music samples is based on the represen-
tations described in the previous section. Consider first
only the data fromX1. The perceptual diversity of this
data will reflect the fact that it represents numerous artists
and songs. Overall, however, we would predict that a low
dimensional space can embedX1 with low stress (i.e.,
good fit to the data) since all samples ofX1 share a de-
scriptive label that is well grounded. Now consider the
embedding of the combined data set ofX1 andX2. In
this case, the additional dimensions needed to accomo-
date the joint data will reflect therelation between the
two datasets. Our hypothesis was that the additional per-
ceptual variance of datasets formed by combining pairs
of datasets on the basis of adjective pairs which are (1)
well grounded, and (2) synants, would small compared to
combinations in which either of these two combinations
did not hold. Following are intial results supporting this
hypothesis.

7.1 Nonlinear Dimensionality Reduction

Classical dimensional scaling systems such as MDS or
PCA can efficiently learn a low-dimensional weighting
but can only use euclidean or tangent distances between
observations to do so. In complex data sets, the distances
might be better represented as a nonlinear function to
capture inherent structure in the dimensions. Especially
in the case of music, time variances among adjacent ob-
servations could be encoded as distances and used in the
scaling. We use the Isomap algorithm from (Tenenbaum
et al., 2000) to capture this inherent nonlinearity and
structure of the audio features. Isomap scales dimensions
given aNxN matrix of distances between every observa-
tion in N . It roughly computes global geodesic distance
by adding up a number of short ‘neighbor hops’ (where
the number of neighbors is a tunable parameter, here we
usek = 20) to get between two arbitrarily far points in in-
put space. Schemes like PCA or MDS would simply use
the euclidean distance to do this, where Isomap operates
on prior knowledge of the structure within the data. For
our purposes, we use the same gaussian kernel function
as we do for RLSC (Equation 1) for a distance metric,
which has proved to work well for most music classifica-
tion tasks.

Isomap can embed in a set of dimensions beyond the
target dimension to find the best fit. By studying the
residual variance of each embedding, we can look for the
“elbow” (the point at which the variance falls off to the
minimum)– and treat that embedding as the innate one.
We use this variance to show that our highly-grounded
parameter spaces can be embedded in less dimensions
than ungrounded ones.



8 Experiments and Results

In the following section we describe our experiments us-
ing the aforementioned models and show how we can au-
tomatically uncover the perceptual parameter spaces un-
derlying adjective oppositions.

8.1 Audio dataset

We use audio from the NECI Minnowmatch testbed
(Whitman et al., 2001). The testbed includes on average
ten songs from each of 1,000 albums from roughly 500
artists. The album list was chosen from the most popular
songs on OpenNap, a popular peer-to-peer music sharing
service, in August of 2001. We do not separate audio-
derived features among separate songs since our connec-
tions in language are at the artist level (community meta-
data refers to an artist, not an album or song.) Therefore,
each artista is represented as a concatenated matrix of
Fa computed from each song performed by that artist.

Fa containsN rows of 40-dimensional data. Each ob-
servation represents 10 seconds of audio data. We choose
a random sampling of artists for both training and testing
(25 artists each, 5 songs for a total ofN observations for
testing and training) from the Minnowmatch testbed.

8.2 RLSC for Audio to Term Relation

Each artist in the testbed has previously been crawled for
community metadata vectors, which we associate with
the audio vectors as ayt truth vector. In this experiment,
we limit our results to adjective terms only. The entire
community metadata space of 500 artists ended up with
roughly 2,000 unique adjectives, which provide a good
sense of musical description. The other term types (n-
grams and noun phrases) are more useful in text retrieval
tasks, as they contain more specific information such as
band members, equipment or song titles. Each audio ob-
servation inN is associated with an artista, which in
turn is related to the set of adjectives with pre-defined
salience. (Salience is zero if the term is not related, un-
bounded if related.) We are treating this problem as clas-
sification, not regression, so we assign not-related terms
a value of -1 and positively related terms are regularized
to 1.

We compute act for each adjective termt on the train-
ing set after computing the stored kernel. We use aC
of 10. After all thects are stored to disk we then bring
out the held-out test set and compute relative adjective
weighted prediction accuracyP (a) for each term. The
results (in Table 4) are similar to our previous work but
we note that our new representation allows us to capture
more time- and structure-oriented terms. We see that the
time-aware MPEG-7 representation creates a far better
sense of perceptual salience than our prior frame-based
power spectral density estimation, which threw away all
short- and mid-time features.

Term Precision Term Precision
busy 42.2% artistic 0.0%
steady 41.5% homeless 0.0%
funky 39.2% hungry 0.0%
intense 38.4% great 0.0%
acoustic 36.6% awful 0.0%
african 35.3% warped 0.0%
melodic 27.8% illegal 0.0%
romantic 23.1% cruel 0.0%
slow 21.6% notorious 0.0%
wild 25.5% good 0.0%
young 17.5% okay 0.0%

Table 4: Select adjective terms discovered by the time-
aware adjective grounding system. Overall, the attached
term list is more musical due to the increased time-aware
information in the representation.

Parameter Precision
big - little 30.3%
present - past 29.3%
unusual - familiar 28.7%
low - high 27.0%
male - female 22.3%
hard - soft 21.9%
loud - soft 19.8%
smooth - rough 14.6%
clean - dirty 14.0%
vocal - instrumental 10.5%
minor - major 10.2%

Table 5: Select automatically discovered parameter
spaces and their weighted precision. The top are the most
semantically significant description spaces for music un-
derstanding uncovered autonomously by our system.

8.3 Finding Parameter Spaces using WordNet
Lexical Relations

We now take our new single-term results and ask our pro-
fessional for help in finding parameters. For all adjec-
tives over our predefinedε we retrieve a restricted synant
set. This restricted set only retrieves synants that are
in our community metadata space: i.e. we would not
return ‘soft’ as a synant to ‘loud’ if we did not have
community-derived ‘soft’ audio. The point here is to only
find synantonymial relations that we have perceptual data
to ‘ground’ with. We rank our synant space by the mean
of the P (a) of each polar term. For example,P (asoft)
was 0.12 and we found a synant ‘loud’ in our space with
aP (aloud) of 0.26, so ourP (aloud...soft) would be 0.19.
This allows us to sort our parameter spaces by the maxi-
mum semantic attachment. We see results of this process
in Table 5.

We consider this result our major finding: from lis-
tening to a set of albums and reading about the artists, a
computational system hasautomatically derived the opti-
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Figure 4: Residual variance elbows (marked by arrows)
for different parameter spaces. Note the clear elbows
for grounded parameter spaces, while less audio-derived
spaces such as “alive - dead” maintain a high variance
throughout. Bad antonym relations such as “quiet - soft”
also have no inherent dimensionality.

mal (strongest connection to perception)semantic grada-
tion spaces to describe the incoming observation. These
are not the most statistically significant bases but rather
the mostsemantically significantbases for understanding
and retrieval.

8.4 Making Knobs and Uncovering Dimensionality

We would like to show the results of such understanding
at work in a classification or retrieval interface, so we then
have another algorithm learn thed-dimensional mapping
of the two polar adjectives in each of the topn parameter
spaces. We also use this algorithm to uncover the natural
dimensionality of the parameter space.

For each parameter spacea1 ... a2, we take all obser-
vations automatically labeled by the test pass of RLSC as
a1 and all asa2 and separate them from the rest of the
observations. The observationsFa1 are concatenated to-
gether withFa2 serially, and we choose an equal number
of observations from both to eliminate bias. We take this
subset of observationFa12 and embed it into a distance
matrixD with the gaussian kernel in Equation 1. We feed
D to Isomap and ask for a one-dimensional embedding
of the space. The result is a weighting that we can feed
completely new unlabeled audio into and retrieve scalar
values for each of these parameters. We would like to
propose that the set of responses from each of our new
‘semantic experts’ (weight matrices to determine param-
eter values) define the most expressive semantic repre-
sentation possible for music.

By studying the residual variances of Isomap as in Fig-
ure 4, we can see that Isomap finds inherent dimension-
ality for our top grounded parameter spaces. But for ‘un-
grounded’ parameters or non-antonymial spaces, there is
less of a clear ‘elbow’ in the variances indicating a natural
embedding. For example, we see from Figure 4 that the
“male - female” parameter (which we construe as gender
of artist or vocalist) has a lower inherent dimensional-
ity than the more complex “low - high” parameter and is
lower yet than the ungroundable (in audio) “alive - dead.”
These results allow us to evaluate our parameter discov-
ery system (in which we show that groundable terms have
clearer elbows) but also provide an interesting window
into the nature of descriptions of perception.

9 Conclusions

We show that we can derive the most semantically sig-
nificant description spaces automatically, and also form
them into a knob for future classification, retrieval and
even synthesis. Our next steps involve user studies of
music description, an attempt to discover if the meaning
derived by community metadata matches up with individ-
ual description, and a way to extract a user model from
language to specify results based on prior experience.

We are also currently working on new automatic lexi-
cal relation discovery techniques. For example, from the
set of audio observations, we can infer antonymial rela-
tions without the use of an expert by finding optimally
statistically separable observations. As well, meronymy,
hyponymy and synonymy can be inferred by studying ar-
tificial combinations of observation (the mixture of ‘loud’
and ‘peaceful’ might not resolve but the mixture of ‘sexy’
and ‘romantic’ might.)

From the perspective of computational linguistics, we
see a rich area of future exploration at the boundary of
perceptual computing and lexical semantics. We have
drawn upon WordNet to strengthen our perceptual repre-
sentations, but we believe the converse is also true. These
experiments are a step towards grounding WordNet in
machine perception.

References

N. Aronszajn. 1950. Theory of reproducing kernels.
Transactions of the American Mathematical Society,
68:337–404.

D. Bailey. 1997.When push comes to shove: A compu-
tational model of the role of motor control in the ac-
quisition of action verbs. Ph.D. thesis, University of
California at Berkeley.

K. Barnard and D. Forsyth. 2000. Learning the seman-
tics of words and pictures.



Eric Brill. 1992. A simple rule-based part-of-speech tag-
ger. In Proc. ANLP-92, 3rd Conference on Applied
Natural Language Processing, pages 152–155, Trento,
IT.

Michael Casey. 2001. General sound recognition and
similarity tools. InMPEG-7 Audio Workshop W-6 at
the AES 110th Convention, May.

D.A. Cruse. 1986.Lexical Semantics. Cambridge Uni-
versity Press.

P. Duygulu, K. Barnard, J.F.G. De Freitas, and D.A.
Forsyth. 2002. Object recognition as machine transla-
tion: Learning a lexicon for a fixed image vocabulary.

Dan Ellis, Brian Whitman, Adam Berezweig, and Steve
Lawrence. 2002. The quest for ground truth in musical
artist similarity. InProc. International Symposium on
Music Information Retrieval ISMIR-2002.

Theodoros Evgeniou, Massimiliano Pontil, and Tomaso
Poggio. 2000. Regularization networks and support
vector machines.Advanced In Computational Mathe-
matics, 13(1):1–50.

Glenn Fung and O. L. Mangasarian. 2001. Proximal
support vector classifiers. In Provost and Srikant, edi-
tors,Proc. Seventh ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining,
pages 77–86. ACM.

Vasileios Hatzivassiloglou and Kathleen R. McKeown.
1993. Towards the automatic identification of adjecti-
val scales: Clustering adjectives according to meaning.
In Proceedings of the 31st Annual Meeting of the ACL.

G.A. Miller. 1990. Wordnet: An on-line lexical database.
International Journal of Lexicography, 3(4):235–312.

S. Narayanan. 1997.Knowledge-based Action Repre-
sentations for Metaphor and Aspect (KARMA). Ph.D.
thesis, University of California at Berkeley.

H. Putnam. 1987. Representation and Reality. MIT
Press.

Lance Ramshaw and Mitch Marcus. 1995. Text chunk-
ing using transformation-based learning. In David
Yarovsky and Kenneth Church, editors,Proc. Third
Workshop on Very Large Corpora, pages 82–94, Som-
erset, New Jersey. Association for Computational Lin-
guistics.

T. Regier. 1996.The human semantic potential. MIT
Press, Cambridge, MA.

Ryan M. Rifkin. 2002. Everything Old Is New Again:
A Fresh Look at Historical Approaches to Machine
Learning. Ph.D. thesis, Massachusetts Institute of
Technology.

D. Roy. 1999.Learning Words from Sights and Sounds:
A Computational Model. Ph.D. thesis, Massachusetts
Institute of Technology.

J. Siskind. 2001. Grounding the Lexical Semantics of
Verbs in Visual Perception using Force Dynamics and
Event Logic. Journal of Artificial Intelligence Re-
search, 15:31–90.

Malcolm Slaney. 2002. Semantic-audio retrieval. In
Proc. 2002 IEEE International Conference on Acous-
tics, Speech and Signal Processing, May.

J.B. Tenenbaum, V. de Silva, and J.C. Langford. 2000. A
global geometric framework for nonlinear dimension-
ality reduction.Science, 290:2319–2323.

Vladimir N. Vapnik. 1998.Statistical Learning Theory.
John Wiley & Sons.

Brian Whitman and S. Lawrence. 2002. Inferring de-
scriptions and similarity for music from community
metadata. InProc. Int. Computer Music Conference
2002 (ICMC), pages 591–598, September.

Brian Whitman and Ryan Rifkin. 2002. Musical query-
by-description as a multi-class learning problem. In
Proc. IEEE Multimedia Signal Processing Conference
(MMSP), December.

Brian Whitman and Paris Smaragdis. 2002. Combin-
ing musical and cultural features for intelligent style
detection. InProc. Int. Symposium on Music Inform.
Retriev. (ISMIR), pages 47–52, October.

Brian Whitman, Gary Flake, and Steve Lawrence. 2001.
Artist detection in music with minnowmatch. InProc.
2001 IEEE Workshop on Neural Networks for Signal
Processing, pages 559–568. Falmouth, Massachusetts,
September 10–12.

Brian Whitman, Deb Roy, and Barry Vercoe. 2003.
Grounding a lexicon and lexical relations from ma-
chine perception of music.submitted.


