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Abstract quiet i loud
The audio bitstream in music encodes a high . .
amount of statistical, acoustic, emotional and
cultural information. But music also has an o5 0s
important linguistic accessory; most musical
artists are described in great detail in record ©""Ioo0 2000 3000 4000 5000 ®""Io00 2000 3000 4000 5000
reviews, fan sites and news items. We high- funky lonesome
light current and ongoing research into extract- 1'5 B
ing relevant features from audio and simulta- . .
neously learning language features linked to
the music. We show results in a “query-by- 0s 0s
description” task in which we learn the per-
ceptual meaning of automatically-discovered °" 160 2000 3000 4000 5000 *" 160 2000 3000 4000 5000
single-term descriptive components, as well as
a method of automatically uncovering ‘seman- Figure 1: Mean spectral characteristics of four different

tically attached’ terms (terms that have percep-  terms uncovered by the spectral frame-based single term
tual grounding.) We then show recent work in ~ attachment system. Magnitude of frequency on the y-
‘semantic basis functions’ — parameter spaces  axis, frequency in Hz on the x-axis.
of description (such afast ... slowor male
... femal@ that encode the highest descriptive
variance in a semantic space. predictive accuracy of the perceptual models are evalu-
ated on unseen test music-review data samples. We con-
sider terms with high predictive accuracy (i.e., that agree
with word usage of musical reviews not used during train-
What can you learn by listening to the radio all day? Ifing) to be well grounded. We extend our prior work by
the DJ was wordy enough, we argue that you can gaintroducing a ‘linguistic expert,’ in the form of a lexical
enough knowledge of the language of perception, as wéthowledge base that provides human-encoded symbolic
as the grammar of description and the grammar of musiknowledge about lexical relations. We apply lexical re-
Here we develop a system that uncovers descriptive pktions to well grounded adjectives to determine the per-
rameters of perception completely autonomously. Relaeptual correlates of opposition. This enables us to move
tions between English adjectives and audio features afi®mm isolated word groundings to a gradation system by
learned using a new ‘severe multi-class’ algorithm basediscovering the perceptual basis underlying lexical oppo-
on the support vector machine. Training data consists gftion of adjective pairsfést ... slowhard ... soft etc.).
music reviews from the Internet correlated echnology an@nce we have uncovered these gradations, we effectively
Entertainment Media: Rights and Responsibilities wittobtain a set of “semantic basis functions” which can be
acoustic recordings of the reviewed music. Once trainedsed to characterize music samples based on their per-
we obtain a perceptually-grounded lexicon of adjectiveseptual projections onto these lexically determined basis
that may be used to automatically label new music. Th&inctions.

1 Introduction



Term Precision || Term Precision . .
acousiic | 23.2% annoying | 0.0% Audio str’eams Text c.lescrlptlons
classical | 27.4% dangerous| 0.0% from radio of artists
clean 38.9% gorgeous | 0.0% \
dark 17.1% hilarious 0.0%
electronic| 11.7% lyrical 0.0% —
female 32.9% sexy 1.5%
happy 13.8% troubled 0.0% Large-scale distributed :|
romantic | 23.1% typical 0.0% computer system ‘|
upbeat 21.0% wicked 0.0%
vocal 18.6% worldwide | 2.8% _E]
Table 1: Selected adjective terms and their weighted pre- Music AP
. . o o ) ; - Music models (structure etc.)
cision in predicting a description of as-yet ‘unheard’ mu- - Grounded language models
sic in the frame-based single term attachment system. - "Query by description”
The very low baseline and noisy ground truth contribute - Parameter spaces

to low overall scores, but the difference between ‘un-
groundable’ and high-scoring terms are significant— for
example, the system cannot find a spectral definition dfigure 2: The “Radio, Radio” platform for autonomously
‘sexy. learning language and music models. A bank of systems
(with a distributed computing back-end connecting them)
listens to multiple genres of radio streams and hones an
acoustic model. When a new artist is detected from the
metadata, our cultural representation crawler extracts lan-

In the general audio domain, work has recently been dor§glage used to describe the artist and adds to our language
(Slaney, 2002) that links sound samples to description ugiodel. Concurrently, we learn relations between the mu-
ing the labeled descriptions on the sample sets. In the \§iC and language models to ground language terms in per-
sual domain, some work has been undertaken attemptif§Ption.
to learn a link between language and multimedia. The
lexicon-learning aspects in (Duygulu et al., 2002) study
a set of fixed words applied to an image database andQur first approach to this problem was in (Whitman
use a method similar to EM (expectation-maximizationjand Rifkin, 2002), in which we learned the descriptions
to discover where in the image the terms (nouns) awf music by a combination of automated web crawls for
pear. (Barnard and Forsyth, 2000) outlines similar workartist description and analysis of the spectral content of
Regier has studied the visual grounding of spatial termeir music. The results for that work, which appear
across languages, finding subtle effects that depend @ Figure 1 and Table 1, show that we can accurately
the relative shape, size, and orientation of objects (Regigsredict (well above an impossibly low baseline) a label
1996). Work on motion verb semantics include both proen a held-out test set of music. We also see encour-
cedural (action) based representations building on Petiging results in the set of terms that were accurately
Net formalisms (Bailey, 1997; Narayanan, 1997) and erpredicted. In effect we can draw an imaginary line in
codings of salient perceptual features (Siskind, 2001). lthe form of a confidence threshold around our results
(Roy, 1999), we explored aspects of learning shape anrghd assign certain types of terms ‘grounded’ while oth-
color terms, and took first steps in perceptually-groundegrs are ‘ungroundable.” In Table 1 above, we note that
grammar acquisition. terms like ‘electronic’ and ‘vocal’ that would appear in
We refer to a word as “grounded” if we are able to dethe underlying perceptual feature space get high scores
termine reliable perceptual or procedural associations @fhile more culturally-influenced terms like ‘gorgeous’
the word that agree with normal usage. However, enco@nd ‘sexy’ do not do as well. We have recently extended
ing single terms in isolation is only a first step in sensorythis work (Whitman et al., 2003) by learning parameters
motor grounding. Lexicographers have traditionally studin the same manner. Just because we know the spectral
ied lexical semantics in terms of lexical relations suclshape of ‘quiet’ and ‘loud’ (as in Figure 1) we cannot
as opposition, hyponymy, and meronymy (Cruse, 1986)nfer any sort of connecting space between them unless
We have made initial investigations into tperceptual we know that they are antonyms. In this work, we infer
grounding of lexical relationsWe argue thagjradations such gradation spaces through the use of a lexical knowl-
or linguistic parameter spaces (suchfast ... slowor edge base, ‘grounding’ such parameters through percep-
big ... smal) are necessary to describe high-dimensionalon. As well, to capture important time-aware gradations
perceptual input. such asfast...slow'we introduce a new machine listening

2 Background



np Term Score adj Term | Score about certain artists.

beth gibbons 0.1648 || cynical 0.2997 : : .
i Fiop 0.1581 | produced | 0.1143 hAItEough temp_tlng, Wedare reticent to make fche (I:llalm
dummy 0.1153 | smooth 0.0792 that the commun!ty_me.tq fita vectors computatpna y ap-
goosebumps 0.0756 | dark 0.0583 proach the “linguistic division of labor” proposed in (Put-
soulful melodies| 0.0608 || particular | 0.0571 nam, 1987) as each (albeit unaware) member of the net-
rounder records | 0.0499 || loud 0.0558 worked community is providing a small bit of informa-
dante 0.0499 || amazing | 0.0457 tion and description about the artist in question. We feel
;nb"’l‘(y 1997 8'8233 ‘lj‘r)]‘i:;‘llje 8'8222 that the heavily biased opinion extracted from the Inter-
grace 0.0499 || simple 0.0354 net is best treated as an approximation of a ‘ground truth

description.’ Factorizing the Internet community into rel-

Table 2: Top 10 terms (noun phrase and adjective sets) fafively coherent smaller communities to obtain sharpened
the musical group ‘Portishead’ from community metalexical groundings is part of future work. However, we
data. do in fact find that the huge amount of information we

retrieve from these crawls average out to a good general
idea of the artists.

representation that allows for far more perceptual gener-

ality in the time domain than our previous work’s single4  Time-Aware Machine Listening

frame-based power spectral density. Our current platform ) )

for retrieving audio and description is shown in Figure 2YV& a@im for a representation of audio content that cap-

We acknowledge previous work on the computationdt"€S @s much perceptual content as possible and ask the
Study of adjectival scales as in (HatZivaSS”OglOU an&ystem to find patterns on its own. Our representatlon IS

McKeown, 1993), where a system could group gradatioR@sed on the MPEG-7 (Casey, 2001) standard for con-
fent understanding and metadata organizatiorhe re-

tation of adjectives discussed in (Miller, 1990) also influSult of @ MPEG-7 encoding is a discrete state number

— 1 : _
enced our system. l_(l = [1...@) for eachg5th of.a. se_cond of input au
dio. We histogram the state visits into counts for each

3 Automatically Uncovering Description n-second piece of audio.
We propose an unsupervised model of language featube Relating Audio to Description

collection that is based odescription by observation, ) )
that is, learning target classifications by reading about tHéiven an audio and text model, we next discuss how to

musical artists in reviews and discussions. discover relationships between them. The approach we
use is the same as our previous work, where we place
3.1 Community Metadata the problem as a multi-class classification problem. Our

. : . input observations are the audio-derived features, and
Our model is calledcommunity metadat@WVhitman and . put of . . . .
training, each audio feature is associated with some

. [
Lawrence, 2002) and has been successfully used in Styspglience weight of each of the 200,000 possible terms that

_det_e ction (\_Nhltman and Smaragdis, 2002) and artist SINur community metadata crawler discovered. In a recent
ilarity prediction (Ellis et al., 2002). It creates a ma-

: . . .. test, training 703 separate SVMs on a small adjective set
chine understandable representation of artist description .
in the frame-based single term system took over 10 days.

by searching the Internet for the artist name and perform- . : i o
ina light natural lanauage processing on the retrieve most machine learning classifiers, time is dependent on
919 guage p 9 e number of classes. As well, due to the unsupervised

pages. We split the returned documents mtolcla.sses “hd automatic nature of the description classes, many are
compassing:-grams (terms of word length), adjectives

. ) incorr h when an artist is wrongl ri
(using a part-of-speech tagger (Brill, 1992)) and noun co .ECt (suc as when an a ust is wrongly de:sc bed),
: . or unimportant (as in the case of terms such as ‘talented
phrases (using a lexical chunker (Ramshaw and Mar- , ) N . .
cus, 1995).) Each paffartist, t } retrieved is given or ‘cool’'— meaningless to the audio domain.) Lastly, be-
' e ' pafariist, termy TEeV 9 cause the decision space over the entire artist space is so
an associated salience weight, which indicates the rel

L . ) F‘a'r e, most class outputs are negative. This creates a bias
tive importance oterm as associated tertist. These 9 P 9

. ) ) ’c_)roblem for most machine learning algorithms. We next
saliences are computed using a variant of the popular TE: :
show our attempt at solving these sorts of problems us-

IDF measure gaussian weighted to avoid highly specific i ;
. INg a new classifier technique based on the support vector
and highly general terms. (See Table 2 for an example, :
. . L achine.
One important feature of community metadata is its time-
sensitivity; terms can be crawled once a week and we can *oyr audio representation is fully described in (Whitman et

take into account trajectories of community-level opinioral., 2003).



5.1 Regularized Least-Squares Classification Perception _

Regularized Least-Squares Classification (Rifkin, 2002)

allows us to solve ‘severe multi-class’ problems where

there are a great number of target classes and a fixed set f

of source observations. It is related to the Support Vector

Machine (Vapnik, 1998) in that they are both instances Descriptionby Observation - Lexical Knowledge Base

of Tikhonov regularization (Evgeniou et al., 2000), but O - )

whereas training a Support Vector Machine requires the _ O C;QOQDQ

solution of a constrained quadratic programming prob- - O% —

lem, training RLSC only requires solving a single system :

of linear equations. Recent work (Fung and Mangasar-

ian, 2001), (Rifkin, 2002) has shown that the accuracy Qfig e 3: Overview of our parameter grounding method.

RLSC is essentially |dent|cal_to th"’_‘t of SVMs. Semantically attached terms are discovered by finding
We arrange our observations in a Gram mathX  guong connections to perception. We then ask a ‘pro-

whereKi; = Ky(w;, ;) using thekernel functionky.  fassional’ in the form of a lexical knowledge base about

Ky(z1,2) is a generalized dot product (in a Reproducy oy mial relations. We use those relations to infer gra-

ing Kernel Hilbert Space (Aronszajn, 1950)) betwegn dations in perception.

andx;. We use the Gaussian kernel

(z1—aa)?
Kp(z1, ) = 2 (1) P(a,) indicates overall negative accurady(a) is de-
wherec is a parameter we keep at 0.5. fined asP(a,)P(a,), which should remain significant
Then, training an RLSC system consists of solving th@ven in the face of extreme negative output class bias.
system of linear equations Now we sort the list ofP(a;) and set an arbitrary
thresholds. In our implementation, we use= 0.1. Any
(K + i)c =y, (2) P(as) greater thare is considered ‘grounded.’ In this
c manner we can use training accuracy to throw away badly
whereC is a user-suppliedegularization constantThe scoring classes and then figure out which were incorrect
resulting real-valued classification functigris or unimportant.
fa) = ici K(z.2). 3 © Linguistic Experts for Parameter
prt Discovery

The crucial property of RLSC is that if we store the in-Given a set of ‘grounded’ single terms, we now discuss
verse matri>(K+é)*1, then for anew right-hand side  our method for uncovering parameter spaces among those
we can compute the newvia a simple matrix multipli- terms and learning the knobs to vary their gradation. Our
cation. This allows us to compute new classifiers (aftemodel states that certain knowledge is not inferred from
arranging the data and storing it in memory) on the flysensory input or intrinsic knowledge but rather by query-
with simple matrix multiplications. ing a ‘linguistic expert.’ If we hear ‘loud’ audio and we

. . hear ‘quiet’ audio, we would need to know that those
5.2 Evaluation for a “Query-by-Description” Task  {erms are antonymially related before inferring the gra-
To evaluate our connection-finding system, we computegation space between them.
theweighted precisiorP(a;) of predicting the labef for
audio derived features of artist We train a newc, for -1 WordNet
each termt against the training seff;(z) for the test set WordNet (Miller, 1990) is a lexical database hand-
is computed over each audio-derived observation franteveloped by lexicographers. Its main organization is
x and termt¢. If the sign of f;(z) is the same as our the ‘synset’, a group of synonymous words that may re-
supposed ‘ground truth’ for thdturtist,t}, (i.e. did the place each other in some linguistic context. The mean-
audio frame for an artist correctly resolve to a known deing of a synset is captured by its lexical relations, such
scriptive term?) we consider the prediction successfus hyponymy, meronymy, or antonymy, to other synsets.
Due to the bias problem mentioned earlier, the evaluatiowordNet has a large community of users and various
is then computed on the test set by computing a ‘weighte@lPIs for accessing the information automatically. Ad-
precision’: whereP(a,,) indicates overall positive accu- jectives in WordNet are organized in two polar clusters of
racy (given an audio-derived observation, the probabikynsets, which each focal synset (the head adjective) link-
ity that a positive association to a term is predicted) aniohg to some antonym adjective. The intended belief is that



northern - southern playful - serious X2. An MDS algorithm can be used to find a multidi-
unlimited - iimiec naive - sophisiicatec mensional embedding of the data based on pairwise sim-
foreign - native consistent - Inconsistent ilarity distances between data points. The similarity dis-
outdoor - indoor foreign - domestic . . :

dissonant - musical physical - mental tances between music samples is based on the represen-
opposite - alternate censored - uncensored tations described in the previous section. Consider first
unforgettable - forgettable comfortable - uncomfortable  only the data fromX'1. The perceptual diversity of this
concrete - abstract untamed - tame data will reflect the fact that it represents numerous artists
partial - fair empirical - theoretical and songs. Overall, however, we would predict that a low
atomic - conventional curved - straight dimensional space can embgd with low stress (i.e.,
lean - rich lean - fat

good fit to the data) since all samplesX®fl share a de-

Table 3: Examplsynantrelations. scriptive label that is well grounded. Now consider the

embedding of the combined data set’6f and X2. In

this case, the additional dimensions needed to accomo-

gélte the joint data will reflect theelation between the

implying that we can't fully understand ‘loud’ without two dataset_s. Our hypothesis was that the add_iti_onal per-
eq:_eptual variance of datasets formed by combining pairs

also understanding ‘quiet” We use these antonymial r td he basis of adiect . hich 1
lations to build up a new relation that encodes as mucfl datasets on the basis of adjective pairs which are @

antonymial expressivity as possible, which we describ\é’e" g.rour'1dedz and ,(2) SY”a”‘S’ would small com'pargd o
below. combinations in which either of these two combinations

did not hold. Following are intial results supporting this
6.2 Synant Sets hypothesis.

We define a set of lexical relations callsghantswhich 7 1 Nonlinear Dimensionality Reduction

consist of every antonym of a source term along with ev- . ) ) )
ery antonym of each synonym and every synonym of eacpl@ssical dimensional scaling systems such as MDS or

antonym. In effect, we recurse through WordNet's tre€ CA can efficiently learn a low-dimensional weighting

one extra level to uncover as many antonymial relatiorf@Ut ¢an only use euclidean or tangent distances between
as possible. For example, “quiet”s anchor antonym jobservations to do so. In complex data sets, the distances

“noisy,” but “noisy” has other synonyms such as sclan-Might bg better representgd as a nonlinear function to
gorous” and “thundering.” By uncovering these second?apture inherent st_ruc'_cure in t.he dimensions. Espeually
order antonyms in the synant set, we hope to uncover §the case of music, time variances among adjacent ob-
much gradation expressivity as possible. Some examp‘ﬁgrv_atlons could be encoded as d!stances and used in the
synants are shown in Table 3. scaling. We use the Isomap algorithm from (Tenenbaum
The obvious downside of computing the synant set iet al., 2000) to capture this inherent nonlinearity and

that they can quickly lose synonymy— following from thestructure of the audio features. Isomap scales dimensions
example above, we can go from “quiet” to its synonyngiven alNxN matrix of distances between every observa-

“untroubled,” which leads to an synantonymial relatiorfion in N It roughly computes globa_ll geodesic distance
of “infested.” We also expect problems due to our lack oPY @dding up a number of short ‘neighbor hops’ (where
sense tagging: “quiet” to its fourth sense synonym «-othe number of neighbors is a tuna_ble .paramet.er, here we
strained” to its antonym “demonstrative,” for example,“sek = 20) to get betwgen two arbitrarily far p0|r_1ts inin-
probably has little to do with sound. But in both case®Ut SPace. Schemes like PCA or MDS would simply use
we rely again on the sheer size of our example spac@,e euclidean distance to do this, where Isomap operates

with so many possible adjective descriptors and the largd! Prior knowledge of the structure within the data. For
potential size of the synant set, we expect our connectioRYl PUrPoses, we use the same gaussian kernel function

finding machines to do the hard work of throwing away?S We do for RLSC (Equation 1) for a distance metric,
the mistakes. which has proved to work well for most music classifica-

tion tasks.
7 Innate Dimensionality of Parameters Isomap can embed in a set of dimensions beyond the

target dimension to find the best fit. By studying the
Now that we have a set of grounded antonymial adjeaesidual variance of each embedding, we can look for the
tives pairs, we would like to investigate the mapping irfelbow” (the point at which the variance falls off to the
perceptual space between each pair. We can do this withinimum)— and treat that embedding as the innate one.
a multidimensional scaling (MDS) algorithm. Let us callWe use this variance to show that our highly-grounded
all acoustically derived data associated with one adje@arameter spaces can be embedded in less dimensions
tive asX'1 and all data associated with the syn-antonynthan ungrounded ones.

descriptive relations are stored as polar gradation spac



8 Experiments and Results Term Precision || Term Precision
busy 42.2% artistic 0.0%
In the following section we describe our experiments us- steady | 41.5% homeless| 0.0%
ing the aforementioned models and show how we can au- | funky 39.2% hungry | 0.0%
tomatically uncover the perceptual parameter spaces un- g‘égﬂ:ﬁc gg-ggj" g\r/\?fitl 8-8?;’
: : : P 6% .0%
derlying adjective oppositions. african 35 3% warped | 0.0%
8.1 Audio dataset melodic | 27.8% illegal 0.0%
) ) romantic | 23.1% cruel 0.0%
We use audio from the NECI Minnowmatch testbed slow 21.6% notorious | 0.0%
(Whitman et al., 2001). The testbed includes on average | wild 25.5% good 0.0%
ten songs from each of 1,000 albums from roughly 500 | young 17.5% okay 0.0%

artists. The album list was chosen from the most popular

songs on OpenNap, a popular peer-to-peer music shariﬁable 4: _Selgct adjectiye terms discovered by the time-
service, in August of 2001. We do not separate audi@ware adjective grounding system. Overall, the attached

derived features among separate songs since our conniM list is more musical due to the increased time-aware

tions in language are at the artist level (community metdnformation in the representation.
data refers to an artist, not an album or song.) Therefore,

each artistz is represented as a concatenated matrix of Parameter Precision
F, computed from each song performed by that artist. big - little 30.3%
F, containsN rows of 40-dimensional data. Each ob- present - past 29'32/"
servation represents 10 seconds of audio data. We choose :g\‘l\llj?l:]?l r-]famlllar ggg;’
a rand(_)m sampling of artists for both training gnd testing male - f%male 22:30/2
(25 artists each, 5 songs for a total/@fobservations for hard - soft 21.9%
testing and training) from the Minnowmatch testbed. loud - soft 19.8%
smooth - rough 14.6%
8.2 RLSC for Audio to Term Relation clean - dirty 14.0%
Each artist in the testbed has previously been crawled for vocal - instrumental] 10.5%
minor - major 10.2%

community metadata vectors, which we associate with

the audio vectors as truth vector. In this experiment, tapie 5. Select automatically discovered parameter
we limit gur results to adjective terms_only. The em'r‘?spaces and their weighted precision. The top are the most
community metadata space of 500 artists ended up Wil mangically significant description spaces for music un-

roughly 2,000 unique adjectives, which provide a goOgierstanding uncovered autonomously by our system.
sense of musical description. The other term types (n-

grams and noun phrases) are more useful in text retrieval
tasks, as they contain more specific information such - .
band members, equipment or song titles. Each audio o 3 g?{?ég?;;;?ﬁ;er Spaces using WordNet
servation inN is associated with an artist, which in
turn is related to the set of adjectives with pre-definedlVe now take our new single-term results and ask our pro-
salience. (Salience is zero if the term is not related, urfessional for help in finding parameters. For all adjec-
bounded if related.) We are treating this problem as clagives over our predefinedwe retrieve a restricted synant
sification, not regression, so we assign not-related ternset. This restricted set only retrieves synants that are
a value of -1 and positively related terms are regularizeth our community metadata space: i.e. we would not
to 1. return ‘soft’ as a synant to ‘loud’ if we did not have
We compute a; for each adjective terrhon the train- community-derived ‘soft’ audio. The point here is to only
ing set after computing the stored kernel. We us€ a find synantonymial relations that we have perceptual data
of 10. After all thec;s are stored to disk we then bring to ‘ground’ with. We rank our synant space by the mean
out the held-out test set and compute relative adjectivef the P(a) of each polar term. For exampl&(a,:)
weighted prediction accuracy(a) for each term. The was 0.12 and we found a synant ‘loud’ in our space with
results (in Table 4) are similar to our previous work bu@ P(a;ouq) Of 0.26, SO OUP (aj0ud...s05t) WOUld be 0.19.
we note that our new representation allows us to captuiihis allows us to sort our parameter spaces by the maxi-
more time- and structure-oriented terms. We see that tteum semantic attachment. We see results of this process
time-aware MPEG-7 representation creates a far bettir Table 5.
sense of perceptual salience than our prior frame-basedWe consider this result our major finding: from lis-
power spectral density estimation, which threw away allening to a set of albums and reading about the artists, a
short- and mid-time features. computational system hasitomatically derived the opti-




male - female \ major — minor By studying the residual variances of Isomap as in Fig-
ure 4, we can see that Isomap finds inherent dimension-
ality for our top grounded parameter spaces. But for ‘un-
grounded’ parameters or non-antonymial spaces, there is
0 T 04 s 1 1 lessofaclear‘elbow’ inthe variances indicating a natural

1 loud - soft 1 low = high embedding. For example, we see from Figure 4 that the
“male - female” parameter (which we construe as gender
of artist or vocalist) has a lower inherent dimensional-
4 ity than the more complex “low - high” parameter and is
5 1 15 2 s 1 15 = loweryetthanthe ungroundable (in audio) “alive - dead.”
alive - dead auiet - soft These results allow us to evaluate our parameter discov-
ery system (in which we show that groundable terms have
clearer elbows) but also provide an interesting window
into the nature of descriptions of perception.
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9 Conclusions

Figure 4: Residual variance elbows (marked by arrows)e show that we can derive the most semantically sig-
for different parameter spaces. Note the clear elbowgficant description spaces automatically, and also form
for grounded parameter spaces, while less audio-derivggem into a knob for future classification, retrieval and
spaces such as “alive - dead” maintain a high variancgen synthesis. Our next steps involve user studies of
throughout. Bad antonym relations such as “quiet - softmysic description, an attempt to discover if the meaning
also have no inherent dimensionality. derived by community metadata matches up with individ-
ual description, and a way to extract a user model from
language to specify results based on prior experience.
mal (strongest connection to percepti@®@mantic grada- We are also currently working on new automatic lexi-
tion spaces to describe the incoming observatibhese cal relation discovery techniques. For example, from the
are not the most statistically significant bases but ratheset of audio observations, we can infer antonymial rela-
the mostsemantically significarthases for understanding tions without the use of an expert by finding optimally
and retrieval. statistically separable observations. As well, meronymy,
hyponymy and synonymy can be inferred by studying ar-
8.4 Making Knobs and Uncovering Dimensionality tificial combinations of observation (the mixture of ‘loud’

. . ‘ ful’ migh I he mi fe ’
We would like to show the results of such understandmgzg ‘Ec?r?ngitlijc’ Tnli%httr)mt resolve but the mixture of ‘sexy

at work in a classification or retrieval interface, so we then . . L
; ) . ; From the perspective of computational linguistics, we
have another algorithm learn tledimensional mapping . .
see a rich area of future exploration at the boundary of

of the two polar adjectives in each of the toparameter . . .
: . rceptual computing and lexical semantics. We have
spaces. We also use this algorithm to uncover the natu
' : . rawn upon WordNet to strengthen our perceptual repre-
dimensionality of the parameter space. : . ;
sentations, but we believe the converse is also true. These

For each parameter spacg.... a,, we take all obser- experiments are a step towards grounding WordNet in
vations automatically labeled by the test pass of RLSC 38achine perception

a1 and all asa, and separate them from the rest of the

observations. The observatiofs, are concatenated to-

gether withF,, serially, and we choose an equal numbe
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