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Abstract 

This paper introduces an open computational 
framework for visual perception and grounded 
language acquisition called Experience-Based 
Language Acquisition (EBLA).  EBLA can 
“watch” a series of short videos and acquire a 
simple language of nouns and verbs corre-
sponding to the objects and object-object rela-
tions in those videos.  Upon acquiring this 
protolanguage, EBLA can perform basic 
scene analysis to generate descriptions of 
novel videos. 

The performance of EBLA has been evaluated 
based on accuracy and speed of protolanguage 
acquisition as well as on accuracy of gener-
ated scene descriptions.  For a test set of sim-
ple animations, EBLA had average acquisition 
success rates as high as 100% and average de-
scription success rates as high as 96.7%.  For 
a larger set of real videos, EBLA had average 
acquisition success rates as high as 95.8% and 
average description success rates as high as 
65.3%.  The lower description success rate for 
the videos is attributed to the wide variance in 
the appearance of objects across the test set. 

While there have been several systems capa-
ble of learning object or event labels for vid-
eos, EBLA is the first known system to 

acquire both nouns and verbs using a 
grounded computer vision system. 

1 Introduction 

While traditional, top-down research fields such as natu-
ral language processing (NLP), computational linguis-
tics, and speech recognition and synthesis have made 
great progress in allowing computers to process natural 
language, they typically do not address perceptual un-
derstanding.  In these fields, meaning and context for a 
given word are based solely on other words and the 
logical relationships among them. 

To make this clearer, consider the following Web-
ster’s definition of apple: “The fleshy usually rounded 
and red or yellow edible pome fruit of a tree of the rose 
family.” (Webster’s 1989)  Using traditional ap-
proaches, a computer might be able to determine from 
such a definition that an apple is “edible,” that it is a 
“fruit,” and that it is usually “rounded and red or yel-
low.”  But what does is mean to be “rounded and red”?  
People understand these words because their conceptual 
representations are grounded in their perceptual experi-
ences.  As for more abstract words, many have percep-
tual analogs or can be defined in terms of grounded 
words.  Although it is unlikely that any two people 
share identical representations of a given word, there are 
generally enough similarities for that word to convey 
meaning.  If computers can be enabled to ground lan-
guage in perception, ultimately communication between 
man and machine may be facilitated. 



This paper details a new software framework, Ex-
perience-Based Language Acquisition (EBLA), that 
acquires a childlike language known as protolanguage 
in a bottom-up fashion based on visually perceived ex-
periences.  EBLA uses an integrated computer vision 
system to watch short videos and to generate internal 
representations of both the objects and the object-object 
relations in those videos.  It then performs language 
acquisition by resolving these internal representations to 
the individual words in protolanguage descriptions of 
each video.  Upon acquiring this grounded protolan-
guage, EBLA can perform basic scene analysis to gen-
erate simplistic descriptions of what it “sees.” 

EBLA operates in three primary stages:  vision 
processing, entity extraction, and lexical resolution.  In 
the vision processing stage, EBLA is presented with 
experiences in the form of short videos, each containing 
a simple event such as a hand picking up a ball.  EBLA 
processes the individual frames in the videos to identify 
and store information about significant objects.   In the 
entity extraction stage, EBLA aggregates the informa-
tion from the video processing stage into internal repre-
sentations called entities.  Entities are defined for both 
the significant objects in each experience and for the 
relationships among those objects.  Finally, in the lexi-
cal acquisition stage, EBLA attempts to acquire lan-
guage for the entities extracted in the second stage using 
protolanguage descriptions of each event.  It extracts the 
individual lexemes (words) from each description and 
then attempts to generate entity-lexeme mappings using 
an inference technique called cross-situational learning.   
EBLA is not primed with a base lexicon, so it faces the 
task of bootstrapping its lexicon from scratch. 

While, to date, EBLA has only been evaluated using 
short descriptions comprised of nouns and verbs, one of 
the primary goals of this research has been to develop 
an open system that can potentially learn any perceptu-
ally grounded lexeme using a unified approach.  The 
entities recognized EBLA are generic in nature and are 
comprised of clusters of perceptual attributes linked in a 
database system.  Although only twelve basic attributes 
have been programmed into the current system, both the 
EBLA software and database support the addition of 
other attributes.  There are even mechanisms in the da-
tabase to support dynamic loading/unloading of custom 
attribute calculators.   

2 Related Work 

EBLA is based on research into language acquisition in 
children as well as existing computational models.  This 
section highlights some of this related research.  For a 
more detailed discussion of existing works on early lan-
guage acquisition in children including works by Calvin 
and Bickerton (2001), Lakoff (1990), Locke (1993), 
Norris and Hoffman (2002), Pinker (2000), and Smith 

(1999), see chapter 2 of Pangburn (2002).  For a more 
detailed discussion of existing computational models 
including Steels and Kaplan (2000) and Roy (1999; 
2000), see chapter 3 of Pangburn (2002). 
 
2.1  Experiential Model of Child Development and 

Language Acquisition 
 

Katherine Nelson (1998) has worked to bring together 
many of the domains involved in the cognitive devel-
opment of children with special emphasis on the role 
played by language.  She views language and cognition 
as heavily intertwined—language cannot develop with-
out early, nonlinguistic cognitive function, and full cog-
nitive development cannot occur without language.  
Nelson takes an experiential approach to her work, fo-
cusing on how children adapt to meet their current 
needs and how that adaptation then affects their future 
experiences. 

Nelson’s Experiential Model is centered on events 
in the child’s environment rather than objects.  Nelson 
broadly defines an event as “an organized sequence of 
actions through time and space that has a perceived goal 
or end point.” (Nelson 1998, 93-94)  Events place ob-
jects and actions on those objects in the context of their 
ultimate goal or purpose, adding temporal ordering with 
a beginning and an ending.  A child’s perception, proc-
essing, classification, and storage of events form his/her 
mental event representations (MERs).  The MER be-
comes the cognitive building block for increasingly 
complex knowledge representation and, ultimately, 
natural language. 

 
2.2 Cross-Situational Techniques for Lexical Ac-

quisition 
 

Throughout the 1990’s, Siskind (1992; 1997) has estab-
lished algorithms to map words to symbolic representa-
tions of their meanings.  For example, given the 
utterance, “John walked to school.” and a symbolic rep-
resentation of the event, “GO(John, TO(school)),” his 
system would learn the mappings, “John→John, 
walked→GO(x, y), t →TO(x), and school→school.” 

To perform the word-to-meaning mappings, Siskind 
utilizes cross-situational learning.  Basically, this means 
that the system resolves mappings only after being pre-
sented with multiple utterance/symbolic concept sets 
representing multiple situations.  By drawing inferences 
about word mappings from multiple uses, the system is 
able to determine the correct symbolic mappings.  

 
2.3 Force Dynamics and Event Logic for 

Grounded Event Recognition 
 

In distinct but related research, Siskind (1992; 2000; 
Siskind and Morris 1996) has developed several soft-



ware systems to classify and describe dynamic events.  
In 1992, he described ABIGAIL, a system that con-
structs semantic descriptions of events occurring in 
computer-generated stick-figure animations. ABIGAIL 
perceives events by detecting support, contact, and at-
tachment using counterfactual simulation. 

Using a subsequent system named HOWARD, 
Siskind and Morris built event representations based on 
real video.  HOWARD produces hidden Markov models 
(HMMs) of the motion profiles of the objects involved 
in an event. 

Siskind’s most recent approach has been to use 
event-logic to describe changes in support, contact, and 
attachment, which he now terms force-dynamics.  His 
latest system, LEONARD, uses a camera to capture a 
sequence of images and then processes that sequence 
using three subroutines: 

1. Segmentation-and-Tracking – places a polygon 
around the objects in each frame 

2. Model-Reconstruction – builds a force dynamic 
model of each polygon scene, determining ground-
ing, attachment, and depth/layering 

3. Event-Classification – determines over which in-
tervals various primitive event types are true and 
from that data, over which intervals various com-
pound event types are true 

 
2.4 X-Schemas, F-Structs, and Model-Merging for 

Verb Learning 
 

Bailey (1997) has developed a computational model of 
the role of motor control in verb acquisition.  He argues 
that proprioception, which is knowledge of the body’s 
own state, is linked to the acquisition of action verbs.  In 
fact, he maintains that grounding action verbs in the 
motor-control system constrains the variety of lexical 
action categories and makes verb acquisition tractable.  
Bailey introduces the executing schema (x-schema) as a 
mechanism that can represent and carry out verbal 
commands, and feature structures (f-structs) as a 
mechanism for linking x-schema activities to related 
linguistic features. 

X-schemas are formal representations of sequences 
of motor control actions.  In Bailey’s model, x-schemas 
are modeled as Petri nets with extensions to handle the 
passing of parameters. 

In order to connect x-schemas to verbs, the linking 
feature structure (f-struct) is introduced.  The f-struct is 
an intermediate set of features that allows a layer of 
abstraction between the individual motions of an action 
and the action verb that describes them.  An f-struct is a 
list of feature-value pairs represented in a table with two 
rows.  Each pair maps to a column with the feature lo-
cated in the top row and the value in the bottom row.  
Bailey experientially determined a list of twelve fea-

tures for his system comprised of eight motor control 
features and four perceived world state features. 

Bailey’s system performs verb acquisition using an 
algorithm that develops a lexicon of word senses based 
on a training set of verbs and linking f-structs summa-
rizing that verb.  Verb learning becomes an optimization 
problem to find the best possible lexicon given the train-
ing examples.  Bailey terms this approach for merging 
word senses, model-merging, and implements a solution 
using a hill-climbing algorithm. 

3 EBLA Model 

The EBLA Model (Pangburn 2002) operates by observ-
ing a series of “experiences” in the form of short mov-
ies.  Each movie contains a single event such as an 
arm/hand picking up a ball, and takes the form of either 
an animation or an actual video.  The model detects any 
significant objects in each movie and determines what, 
if any, relationships exist among those objects.  This 
information is then stored so that repeatedly occurring 
objects and relations can be identified across multiple 
experiences. 

 

 
Figure 1.  Method Used by EBLA to Process Ex-

periences 
 
As part of each experience, EBLA receives a textual 

description of the event taking place.  These descrip-
tions are comprised of protolanguage such as “hand 
pickup ball.”  To acquire this protolanguage, EBLA 
must correlate the lexical items in the descriptions to the 



objects and relations in each movie.  Figure 1 provides a 
graphical representation of the method used by EBLA to 
process experiences. 

 
3.1 Model Abstractions and Constraints 

 
The EBLA Model has been constrained in several ways.  
First, the model’s perceptual capabilities are limited to a 
two-dimensional vision system that reduces objects to 
single color polygons. 

Second, the model has not been provided with any 
audio processing capabilities.  Because of this, all ex-
perience descriptions presented to or generated by 
EBLA are textual. 

Third, the model only attempts to acquire a proto-
language of nouns and verbs.  Thus, syntax, word order, 
punctuation, etc. do not apply.  This conforms with 
early human language acquisition since children do not 
begin to use phrases and clauses until somewhere be-
tween eighteen and thirty-six months of age (Calvin and 
Bickerton 2001). 

The final constraint on EBLA is that it only operates 
in an unsupervised mode.  This means that the model 
does not receive any sort of feedback regarding its accu-
racy.  This is definitely a worst-case scenario since chil-
dren receive frequent social mediation in all aspects of 
development. 

 
3.2 Experiences Processed by the EBLA Model 

 
The experiences processed by the EBLA Model are 
based on simple spatial-motion events, and take the 
form of either animations or real videos.  Each experi-
ence contains an arm/hand performing some simple 
action on a variety of objects.  For the animations, the 
actions include pickup, putdown, touch, and slide, and 
the objects include a green ball and a red cube (see fig-
ure 2).  For the real videos, the actions include push, 
pull, slide, touch, tipover, roll, pickup, putdown, drop, 
and tilt, and the objects include several colored bowls, 
rings, and cups, a green ball, a dark blue box, a blue 
glass vase, a red book, and an orange stuffed Garfield 
cat (see figure 3). 

 

 
hand pickup ball 

 
hand touch ball 

 
hand putdown cube 

Figure 2.  Frames from Various Animations Proc-
essed by EBLA 

 
All of the videos were shot two to three times from 

both the left and right side of a makeshift stage.  Angle 
of approach, grasp, and speed were varied at random.  

Multiple actions were performed on each object, but the 
actual object-event combinations varied somewhat 
based on what was feasible for each object.  Dropping 
the glass vase, for example, seemed a bit risky. 

 

 
hand push vase 

 
hand roll ring 

 
hand touch garfield 

 
hand tipover cup 

 
hand pickup ball 

 
hand pull book 

Figure 3.  Frames from Various Videos Processed 
by EBLA 

 
3.3 Entity Recognition 

 
The EBLA Model has a basic perceptual system, which 
allows it to “see” the significant objects in each of its 
experiences.  It identifies and places polygons around 
the objects in each video frame, using a variation of the 
mean shift analysis image segmentation algorithm (Co-
maniciu 2002).  EBLA then calculates a set of static 
attribute values for each object and a set of dynamic 
attribute values for each object-object relation.  The sets 
of attribute-value pairings are very similar to the linking 
feature structures (f-structs) used by Bailey (1997). 

Each unique set of average attribute values defines 
an entity, and is compared to the entities from prior ex-
periences.  In order to match existing entities with those 
in the current experience, the existing entity must have 
average values for all attributes within a single standard 
deviation (σ) of the averages for the current entity.  
When this occurs, the current entity is merged with the 
existing entity, creating a more prototypical entity defi-
nition.  Otherwise, a new entity definition is established.   

To prevent entity definitions from becoming too nar-
rowly defined, a minimum standard deviation (σmin) is 
established as a percentage of each average attribute 
value.  In essence, σmin defines how much two entities 
must differ to be considered distinct, and thus can have 
a significant impact on the number of unique entities 
recognized by EBLA. 

Both the object and relation attributes for EBLA 
were determined experimentally based on data available 
from the computer vision system.  To aid in the debug-
ging and evaluation of EBLA as well as to restrict any 
assumptions about early perception in children, an effort 
was made to keep the attributes as simple as possible.  
The five object attributes and seven relation attributes 
calculated by EBLA are briefly described in table 1. 

 



Entity Type Description 
area object area (in pixels) of a given object 
grayscale 
value 

object grayscale color of  object (0-255) 

number of 
edges 

object number of edges on polygon tracing 
object 

relative 
centroid (x) 

object horizontal coordinate of object’s cen-
ter of gravity relative to the width of a 
bounding rectangle around the object 

relative 
centroid (y) 

object vertical coordinate of object’s center 
of gravity relative to the height of a 
bounding rectangle around the object 

contact relation Boolean value indicating if two objects 
are in contact with one another 

x-relation relation indicates whether one object is to the 
left of, on top of, or to the right of 
another object 

y-relation relation indicates whether one object is above, 
on top of, or below another object 

delta-x relation indicates whether the horizontal dis-
tance between two objects is increas-
ing, decreasing, or unchanged 

delta-y relation indicates whether the vertical distance 
between two objects is increasing, 
decreasing, or unchanged 

x-travel relation indicates direction of horizontal travel 
for both objects 

y-travel relation indicates direction of vertical travel for 
both objects 

Table 1.  Entity Attributes Calculated by EBLA 
 
Because average attribute values are used to define 

entities, temporal ordering is not explicitly stored in 
EBLA.  Rather, the selected relation attributes implicitly 
indicate how objects interact over time.  For example, 
EBLA is able to distinguish between pickup and put-
down entities using the average “delta-y” attribute 
value—for pickup, the vertical distance between the two 
objects involved is decreasing over the experience and 
for putdown, the vertical distance is increasing. 

Currently, object entities are defined using all of the 
object attributes, and relation entities are defined using 
all of the relation attributes.  There is no mechanism to 
drop attributes that may not be relevant to a particular 
entity.  For example, grayscale color value may not 
have anything to do with whether or not an object is a 
ball, but EBLA would likely create separate entities for 
a light-colored ball and a dark-colored ball. 

A variation of the model-merging algorithm em-
ployed by Bailey (1997) could be applied to drop attrib-
utes unrelated to the essence of a particular entity.  
Because EBLA currently uses a limited number of at-
tributes, dropping any would likely lead to overgener-
alization of entities, but with more attributes, it could be 
a very useful mechanism.  Such a mechanism would 
also improve EBLA’s viewpoint invariance.  For exam-
ple, when detecting a putdown object-object relation, 
EBLA is not affected by small to moderate changes in 
angle, distance, or objects involved, but is affected by 
the horizontal orientation.  Dropping the “x-relation” 

and “x-travel” attributes from the putdown entity would 
remedy this. 

Work is underway to determine how to incorporate a 
3D graphics engine into EBLA in order to build a more 
robust perceptual system.  While this would obviously 
limit the realism, it would allow for the quick addition 
of attributes for size, volume, distance, texture, speed, 
acceleration, etc.  Another option is to develop new at-
tribute calculators for the current vision system such as 
those employed by Siskind (2000) to determine force 
dynamic properties. 

 
3.4 Lexical Acquisition 

 
Once EBLA has generated entities for the objects and 
object-object relations in each experience, its final task 
is to map those entities to the lexemes (words) in proto-
language descriptions of each experience.  Protolan-
guage was chosen because it is the first type of language 
acquired by children.  The particular variety of proto-
language used for the EBLA’s experience descriptions 
has the following characteristics: 
1. Word order is not important, although the descrip-

tions provided to EBLA are generally in the format:  
subject-manipulation-object (e.g. “hand touch 
ball”). 

2. Verbs paired with particles are combined into a 
single word (e.g. “pick up” becomes “pickup”). 

3. Words are not case-sensitive (although there is an 
option in EBLA to change this). 

4. Articles (e.g. “a,” “an,” “the”) can be added to de-
scriptions, but are generally uninterpretable by 
EBLA. 

It should be noted that EBLA is not explicitly coded to 
ignore articles, but since they are referentially ambigu-
ous when considered as individual, unordered lexemes, 
EBLA is unable to map them to entities.  Adding arti-
cles to the protolanguage descriptions generally slows 
down EBLA’s average acquisition speed. 

In order to map the individual lexemes in the proto-
language descriptions to the entities in each experience, 
EBLA must overcome referential ambiguity.  This is 
because EBLA operates in a bottom-up fashion and is 
not primed with any information about specific entities 
or lexemes.  If the first experience encountered by 
EBLA is a hand sliding a box with the description “hand 
slide box,” it has no idea whether the lexeme “hand” 
refers to the hand object entity, the box object entity, or 
the slide relation entity.  This same referential ambigu-
ity exists for the “slide” and “box” lexemes.  EBLA can 
only overcome this ambiguity by comparing and con-
trasting the current experience with future experiences.  
This process of resolving entity-lexeme mappings is a 
variation of the cross-situational learning employed by 
Siskind  (1992; 1997). 



For each experience, two lists are created to hold all 
of the unresolved entities and lexemes.  EBLA attempts 
to establish the correct mappings for these lists in three 
stages: 
1. Lookup any known resolutions from prior experi-

ences. 
2. Resolve any single remaining entity-lexeme pair-

ings. 
3. Apply cross-situational learning, comparing unre-

solved entities and lexemes across all prior experi-
ences, repeating stage two after each new 
resolution. 

To perform the first stage of lexical resolution, 
EBLA reviews known entity-lexeme mappings from 
prior experiences.  If any match both an entity and lex-
eme in the current experience, those pairings are re-
moved from the unresolved entity and lexeme lists. 

The second stage operates on a simple process of 
elimination principal.  If at any point during the resolu-
tion process both the unresolved entity and lexeme lists 
contain only a single entry, it is assumed that those en-
tries map to one another.  In addition, prior experiences 
are searched for the same entity-lexeme pairing and 
resolved if found.  Since resolving mappings in prior 
experiences can generate additional instances of single 
unmapped pairings, the entire second stage is repeated 
until no new resolutions are made. 

The third and final stage of resolution is by far the 
most complex and involves a type of cross-situational 
inference.  Basically, by comparing the unresolved enti-
ties and lexemes across all experiences in a pair wise 
fashion, EBLA can infer new mappings.  If the cardinal-
ity of the intersection or difference between the un-
mapped entities and lexemes for a pair of experiences is 
one, then that intersection or difference defines a map-
ping.  In more formal terms: 
1. Let i and j be any two experiences, i ≠ j. 
2. Let Ei and Ej ∈ unmapped entities for i and j 

respectively. 
3. Let Li and Lj ∈ unmapped lexemes for i and j re-

spectively. 
4. If |{Ei ∩ Ej}| = 1 and |{Li ∩ Lj}| = 1 then {Ei ∩ Ej} 

maps to {Li ∩ Lj}. 
5. If |{Ei \ Ej}| = 1 and |{Li \ Lj}| = 1 then {Ei \ Ej} 

maps to {Li \ Lj}. 
6. If |{Ej \ Ei}| = 1 and |{Lj \ Li}| = 1 then {Ej \ Ei} 

maps to {Lj \ Li}. 
To demonstrate how all three stages work together, 

consider the following example.  If the model was ex-
posed to an experience of a hand picking up a ball with 
the description “hand pickup ball” followed by an ex-
perience of a hand picking up a box with the description 
“hand pickup box,” it could take the set differences dis-
cussed in stage three for the two experiences to resolve 
the “ball” lexeme to the ball entity and the “box” lex-
eme to the box entity.  Assuming that these were the 

only two experiences presented to the model, it would 
not be able to resolve “hand” or “pickup” to the corre-
sponding entities because of referential ambiguity.  If 
the model was then exposed to a third experience of a 
hand putting down a ball with the description “hand 
putdown ball,” it could resolve all of the remaining 
mappings for all three experiences.  Using the technique 
discussed in stage one, it could resolve “ball” based on 
known mappings from the prior experiences.  It could 
then take the set intersection with the unmapped items 
in either of the first two experiences to resolve “hand.”  
This would leave a single unmapped pairing in each of 
the three experiences, which could be resolved using the 
process of elimination discussed in stage two.  Note that 
taking the set difference rather than the intersection be-
tween the third and first or second experiences would 
have worked equally well to resolve “hand pickup” and 
“hand putdown.” 

4 Evaluation 

EBLA was evaluated using three criteria.  First, overall 
success was measured by comparing the number of cor-
rect entity-lexeme mappings to the total number of enti-
ties detected.  Second, acquisition speed was measured 
by comparing the average number of experiences 
needed to resolve a word in comparison to the total 
number of experiences processed.  Third, descriptive 
accuracy was measured by presenting EBLA with new, 
unlabeled experiences, and determining its ability to 
generate protolanguage descriptions based on prior ex-
periences. 

The test sets for EBLA were comprised of eight 
simple animations created using Macromedia Flash, and 
319 short digital videos.  While the results for the an-
imations were somewhat better than those for the vid-
eos, only the results for the larger and more complex 
video test set will be presented here. 

 

 
frame 9 

 
frame 26 

 
frame 35 

Figure 4.  Polygon Traces from a Single Video 
Demonstrating Normal Segmentation, Underseg-

mentation, and Oversegmentation 
 
Of the 319 videos, 226 were delivered to EBLA for 

evaluating lexical acquisition accuracy and speed and 
167 were delivered to EBLA for evaluating descriptive 
accuracy.  Videos were removed from the full set of 319 
because of problems with over and undersegmentation 
in the vision processing system.  Figure 4 demonstrates 
the types of problems encountered by EBLA’s vision 



system.  It shows the polygon tracings for three frames 
from a single video shot with the Garfield toy.  The 
frame on the left was correctly segmented, the frame in 
the middle was undersegmented where the hand has 
been merged into the background and essentially disap-
peared, and the frame on the right was oversegmented 
where the Garfield toy has been split into two objects. 
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Figure 6.  Average Lexical Acquisition Time for 
Videos 

To measure acquisition speed and accuracy, the 226 
videos were delivered to EBLA at random, ten times for 
each of nineteen different minimum standard deviation 
(σmin) values.  The value of σmin used to match the at-
tribute values to existing entities was varied from 5% to 
95% in increments of 5%. 

Figure 5 shows the success rates for lexeme map-
pings for each of the nineteen σmin values.  For σmin val-
ues of 5% and 10%, the acquisition success was only 
76% and 85% respectively.  This can be attributed to the 
amount of variation in the entities for the videos.  A 
stricter matching criteria results in more unmatched 
entities.  For all of the other σmin values the acquisition 
success rate was better than 90% and as high as 95.8% 
for a σmin value of 45%.  

   
σmin % Correct % Incorrect % Unknown

5 50.33 9.00 40.67
10 57.22 14.11 28.67
15 65.33 16.00 18.67
20 56.07 25.27 18.67
25 57.44 27.89 14.67
30 62.94 27.73 9.33
35 59.30 35.03 5.67
40 63.14 30.52 6.33
45 60.95 34.05 5.00
50 50.83 41.17 8.00
55 55.04 40.62 4.33
60 48.39 45.94 5.67
65 46.21 49.46 4.33
70 49.96 45.38 4.67
75 43.63 53.03 3.33
80 44.42 50.91 4.67
85 46.45 50.55 3.00
90 45.04 52.62 2.33
95 39.51 54.49 6.00
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Figure 5.  Lexeme Mapping Success Rates for Dif-
ferent Minimum Standard Deviations 

Table 2.  Accuracy of Video Descriptions  
 

For the lower values of σmin, there were very few 
incorrect descriptions, but many entities did not map to 
a known lexeme.  As σmin was increased, the situation 
reversed with almost every entity mapping to some lex-
eme, but many to the wrong lexeme.  The most accurate 
descriptions were produced for a σmin value of 15% 
where just over 65% of the entities were described cor-
rectly.  These are reasonably good results considering 
the amount that any given entity varied from video to 
video, especially the object-object relation entities.  For 
a full discussion of both the animation and video results 
for EBLA see chapter 6 of Pangburn (2002). 

 
Figure 6 displays the average acquisition speed for 

the videos.  It indicates that for the first few videos, it 
took an average of over twenty experiences to resolve 
all of the entity-lexeme mappings.  After about seventy-
five experiences had been processed, this average 
dropped to about five experiences, and after about 150 
experiences, the average fell below one. 

To evaluate the descriptive accuracy of EBLA, 157 
of the 167 best videos were randomly processed in ac-
quisition mode and the remaining ten were processed in 
description mode.  This scenario was run ten times for 
each of the same nineteen σmin values used to evaluate 
acquisition success.  The results are shown in table 2.  It 
is important to note that for a given σmin value, EBLA 
often returned multiple “matching” lexemes.  When this 
happened, both the correct and incorrect lexemes were 
scored pro-rata.  

5 Conclusion 

While there have been several systems capable of learn-
ing object or event labels for videos, EBLA is the first 
known system to acquire both nouns and verbs using a 
grounded computer vision system.  In addition, because 
EBLA operates in an online fashion, it does not require 
an explicit training phase. 

 



EBLA performed very well on the entity-lexeme 
mapping task for both the animations and the videos, 
achieving success rates as high as 100% and 95.8% re-
spectively.  EBLA was also able to generate descrip-
tions for the animations and videos with average 
accuracies as high as 96.7% and 65.3%.  The 65.3% is 
still quite good when compared to the approximately 
15% average success rate obtained by generating three 
word descriptions at random from the pool of nineteen 
lexemes processed by EBLA. 

While the initial results from the EBLA system are 
encouraging, much development and evaluation remains 
to be done.  Adding new attribute calculators along with 
a mechanism for dropping extraneous attributes would 
likely make EBLA’s entity definitions more robust and 
facilitate the acquisition of additional nouns and verbs 
as well as other parts of speech.  Since there is nothing 
in the design of EBLA that prevents it from processing 
videos with more than three entities/lexemes, it should 
be thoroughly tested using more complex experiences 
and/or descriptions 

As mentioned in the introduction, one of the primary 
goals of EBLA has been to develop an open system that 
would be relatively easy for others to use and extend.  
To that end, EBLA was written entirely in Java with a 
PostgreSQL relational database for storage of all ex-
perience parameters, intermediate results, attribute defi-
nitions and values, lexemes, entity definitions, and 
entity-lexeme mappings.  EBLA has been released on 
SourceForge at http://sourceforge.net/projects/ebla/.  
For more information on EBLA, visit 
http://www.greatmindsworking.com 
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