
Word Transformation Heuristics Against Lexicons for Cognate Detection

Alexandra L. Uitdenbogerd
RMIT University

GPO Box 2476, Melbourne VIC 3001 Australia
sandrau@rmit.edu.au

Abstract

One of the most common lexical transfor-
mations between cognates in French and
English is the presence or absence of a ter-
minal “e”. However, many other transfor-
mations exist, such as a vowel with a cir-
cumflex corresponding to the vowel and
the letter s. Our algorithms tested the ef-
fectiveness of taking the entire English and
French lexicons from Treetagger, deac-
centing the French lexicon, and taking the
intersection of the two. Words shorter than
6 letters were excluded from the list, and
a set of lexical transformations were also
used prior to intersecting, to increase the
potential pool of cognates. The result was
15% above the baseline cognate list in the
initial test set, but only 1% above it in the
final test set. However, its accuracy was
consistant at about 37% for both test sets.

1 Credits

2 Introduction

When assessing readability of English for French
native speakers, or French for English native
speakers, the cognates — words with similar ap-
pearance and meaning — tend to be relatively dif-
ficult words, making traditional readability mea-
sures less effective than a simple average words
per sentence (Uitdenbogerd, 2005). While most
words that look similar in French and English are
cognates, some commonly occurring words that
look similar, such as “a”, “as”, and “an”, tend
to be false friends. Other words are partial cog-
nates, having a similar meaning only in some sit-
uations (Wang and Sitbon, 2014). Our approach
ignored all context and focussed on simple heuris-
tics. All approaches were based on taking the
intersection of the French and English lexicons
of the Treetagger Part of Speech tagger (Schmid,

1994), after applying a set of lexical transforma-
tions. The submission was a “quick and dirty
hack” implemented on little sleep during confer-
ence attendance, and merely demonstrates that a
simple heuristic-based algorithm can beat a man-
ually curated list of cognates, albeit not by much.
However, the approach should perform better than
demonstrated in the ALTW challenge if applied
more comprehensively.

3 Algorithms

The first “quick and dirty” baseline algorithm (Al-
gorithm 1) only looks for exact matches once case
and accents are preprocessed:

1. Replace the accented letters in the French
lexicon with unaccented letters. For example,
replace “ê” and “é” with “e”.

2. Casefold and remove punctuation from the
words in the source and cognate file.

3. Take the intersection of the sanitised source
and cognate file words.

4. All words in the text that are in the intersec-
tion are counted as cognates.

Algorithm 2 discards any Algorithm 1 words
of 5 letters or less as false friends. Common false
friend English words that become discarded as a
result include: “a”, “as”, “an”. However, the fol-
lowing cognates are also discarded: “ah”, “oh”.

Algorithm 3 uses lexical transformations to the
French lexicon list before intersecting with the En-
glish lexicon. It is done with and without plu-
rals. The list is based on observation on reading
a French text. While there are many transforma-
tion rules, they are not comprehensive. In par-
ticular, words in which multiple transformations
are required to create an exact match are likely to
be missed. Figure 1 shows the regular expression-
based substitutions applied to the file.

Alexandra Uitdenbogerd. 2015. Word Transformation Heuristics Agains Lexicons for Cognate Detection . In
Proceedings of Australasian Language Technology Association Workshop, pages 142−144.

Table 1: Training Set Statistics
Actual Algorithm 3

Cognates 1670 703
Non-Cognates 9425 10392
Total Words 11095
Proportion of Cognates 0.150 0.063
Precision 0.661
Recall 0.278
F1 0.390

Table 2: ALTW Challenge 2015 Results

Team Public Private
LookForward 0.70478 0.77001
Little Monkey 0.67118 0.71415
MAC 0.59927 0.66857
toe in (Alg. 4 lex.tr.-shrt) 0.37019 0.36697
Alg. 3 (lex. trans.) 0.31394 0.37272
Alg. 2 (Exact - shrtwrds) 0.23583 0.23908
Baseline 0.22951 0.34158
Alg. 1 (Exact Match) 0.22107 0.27406
Stemmed lexicon match 0.11347 0.14116

Algorithm 4 combines Algorithm 3’s lexical
transformations with discarding words that are 5
letters or fewer in length.

We also tried stemming but the result was half
the accuracy of the original baseline. The final
submission used the transformations as well as
discarding words of 5 letters or less.

4 Results

Table 1 shows the precision, recall and F1 measure
for the training data set.

Table 2 shows the overall results for the ALTW
challenge. As can be seen, our entry (toe in) had
the most consistent performance across the two
test sets. Of our submissions, Algorithm 3 per-
formed the best on the public test dataset. The
best private data submission was a version of Al-
gorithm 3 that didn’t discard short words.

In a post-analysis using the training data set we
looked at the effect of varying the minimum word
length for cognates, holding the base word list
constant. Table 3 shows the effect on precision,
recall and F measure. Precision increases as the
minimum word length is increased, and recall de-
creases. The sweet spot in the training data set is
to discard words that are 4 letters long or less.

Table 3: The effect of minimum word length on
cognate detection reliability

Min Length Precision Recall F measure
3 .457 .346 .393
4 .457 .346 .393
5 .579 .323 .414
6 .658 .266 .378
7 .711 .198 .309

5 Discussion

The experimental results demonstrated that a lexi-
cally transformed French lexicon intersected with
an English lexicon with the shortest words dis-
carded can be a substitute for a manually curated
list of cognates, achieving 1 to 15% higher accu-
racy on the given test sets. A more comprehen-
sive set of lexical transformations is likely to give
a slightly higher accuracy again.

However, as the ALTW challenge results
demonstrate, this context-free, heuristic approach
has only about half the accuracy of the best tech-
nique.

Acknowledgments

Some text processing code was written by Aidan
Martin.

Support for this project has been provided by
the Australian Government Office for Learning
and Teaching. The views in this project do not
necessarily reflect the views of the Australian
Government Office for Learning and Teaching.

References
A. L. Uitdenbogerd. 2005. Readability of French as

a foreign language and its uses. In A. Turpin and
R. Wilkinson, editors, Australasian Document Com-
puting Symposium, volume 10, December.

H. Schmid. 1994. Probabilitic part-of-speech tagging
using decision trees. In International Conference on
New Methods in Language Processing.

H. Wang and L. Sitbon. 2014. Multilingual lexical
resources to detect cognates in non-aligned texts.
In G. Ferraro and S. Wan, editors, Proceedings of
the Australasian Language Technology Association
Workshop, pages 14–22, Melbourne, Victoria, Aus-
tralia, November. ALTA.

143

grep "e$" $1 | sed "s/e$//"
grep "ait$" $1 | sed "s/ait$/ed/"
grep "aient$" $1 | sed "s/aient$/ed/"
grep "gue$" $1 | sed "s/gue/g/"
grep "é$" $1 | sed "s/é$/y/"
grep "euse$" $1 | sed "s/euse/ous/"
grep "eux$" $1 | sed "s/eux/ous/"
grep "ique$" $1 | sed "s/ique/ic/"
grep "ˆdé$" $1 | sed "s/ˆdé/dis/"
grep "ont$" $1 | sed "s/ont$/ount/"
grep "ond$" $1 | sed "s/ond$/ound/"
grep "ant$" $1 | sed "s/ant$/ing/"
grep "ain$" $1 | sed "s/ain$/an/"
grep "aine$" $1 | sed "s/aine/an/"
grep "re$" $1 | sed "s/re$/er/"
grep "ment$" $1 | sed "s/ment$/ly/"
grep "é$" $1 | sed "s/é$/ated/"
grep "é$" $1 | sed "s/é$/ed/"
grep "ée$" $1 | sed "s/ée$/ated/"
grep "ée$" $1 | sed "s/ée$/ed/"
grep "i$" $1 | sed "s/i$/ished/"
grep "ir$" $1 | sed "s/ir$/ish/"
grep "er$" $1 | sed "s/er$/e/"
grep "ô" $1 | sed "s/ô/os/"
grep "ê" $1 | sed "s/ê/es/"
grep "ı̂" $1 | sed "s/ı̂/is/"
grep "ement$" $1 | sed "s/ement$/ly/"
grep "eusement$ $1| sed "s/eusement$/ously/"
grep "isme$" $1 | sed "s/isme$/ism/"
grep "if$" $1| sed "s/if$/ive/"
grep "asse$" $1 | sed "s/asse$/ace/"
grep "eur$" $1 | sed "s/eur$/or/"
grep "eur$" $1 | sed "s/eur$/er/"
grep "eur$" $1 | sed "s/eur$/our/"
grep "ˆé" $1 | sed "s/ˆé/es/"
grep "ˆé" $1 | sed "s/ˆé/s/"
grep "oût" $1 | sed "s/oût/ost/"
grep "ˆav" $1 | sed "s/ˆav/adv"
grep "ˆaj" $1 | sed "s/ˆaj/adj"
grep "elle$ $1 | sed "s/elle$/al/"
grep "ette$" $1 | sed "s/ette$/et/"
grep "onne$" $1 | sed "s/onne$/on/"
grep "quer$" $1 | sed "s/quer$/cate/"
grep "ai" $1 | sed "s/ai/ea/"
grep "ˆen" $1 | sed "s/ˆen/in/"
grep "ier$" $1 | sed "s/ier$/er/"

Figure 1: The set of lexical transformations applied to the French lexicon prior to intersection with the
English lexicon. ”$1” is the file containing the French lexicon.

144

