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Abstract

A central task in clinical information ex-
traction is the classification of sentences to
identify key information in publications,
such as intervention and outcomes. Sur-
face tokens and part-of-speech tags have
been the most commonly used feature
types for this task. In this paper we eval-
uate the use of word representations, in-
duced from approximately 100m tokens
of unlabelled in-domain data, as a form
of semi-supervised learning for this task.
We take an approach based on unsuper-
vised word clusters, using the Brown clus-
tering algorithm, with results showing that
this method outperforms the standard fea-
tures. We inspect the induced word rep-
resentations and the resulting discrimina-
tive model features to gain further insights
about this approach.

1 Introduction

Evidence-based Medicine (EBM) is an approach
to enhance clinical decision making by leverag-
ing currently available evidence. The rationale be-
hind EBM is that clinicians can make more judi-
cious decisions with access to abundant clinical
evidence about a particular medical case. This ev-
idence is sourced from research outcomes which
can be found in medical publications accessible
via online repositories such as PubMed.1 Al-
though millions of publications are available, find-
ing the most relevant ones is cumbersome using
current search technology. Additionally, the rapid
growth of research output makes manual analysis
and synthesis of search results unfeasible. This
has given rise to the need for methods to auto-
matically extract relevant information from publi-
cations to support automatic summarization (Has-

1http://www.ncbi.nlm.nih.gov/pubmed

sanzadeh et al., 2015). This is an emerging re-
search area that has begun to attract increasing at-
tention (Summerscales et al., 2011).

This information extraction is generally per-
formed at the sentence level on the paper ab-
stracts (Verbeke et al., 2012). Scholarly publica-
tions usually follow a common rhetorical structure
that first defines the problem and research aims
by introducing background information. They
then describe the methodology and finally the out-
comes of the research are presented. Abstracts,
as the summary of the reported research, gener-
ally have the same structure. This information,
which can be considered as scientific artefacts, can
usually be found in the form of whole sentences
within the abstracts. More specifically, the arte-
facts in the clinical research domain have been
categorized as Intervention, Population or Prob-
lem, Comparison, and Outcome. This is known as
the PICO scheme (Richardson et al., 1995). An-
other proposed approach to formalise the rhetori-
cal structure of medical abstracts is the PIBOSO
model (Kim et al., 2011), a refined version of the
PICO criteria. It contains six classes, rather than
four: (i) POPULATION: the group of individuals
participating in a study; (ii) INTERVENTION: the
act of interfering with a condition to modify it or
with a process to change its course; (iii) BACK-
GROUND: material that places the current study
in perspective, e.g. work that preceded the cur-
rent study; information about disease prevalence;
etc.; (iv) OUTCOME: a summarisation of the con-
sequences of an intervention; (v) STUDY DESIGN:
the type of study that is being described; and (vi)
OTHER: other information in the publication.

By comparing these artefacts across publica-
tions clinicians can track the evolution of treat-
ments and empirical evidence, allowing them to
employ it in their decision making. However,
finding and identifying these artefacts is a barrier.
To facilitate this process, various approaches have
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been devised to automatically recognise these sci-
entific artefacts in publications (Hassanzadeh et
al., 2014a). The most common approach, as dis-
cussed in §2, is the use of supervised learning to
classify sentences into the various categories.

Separately, another recent trend in Natural Lan-
guage Processing (NLP) has been the use of word
representations to integrate large amounts of un-
labelled data into such supervised tasks, a form
of semi-supervised learning (Turian et al., 2010).
This is something that has not been applied to sci-
entific artefacts extraction.

Accordingly, the primary aim of the present
work is to draw together the two areas, evaluating
the utility of word representations for this task and
comparing them against the most commonly used
features to see if they can enhance accuracy. A
secondary goal is to inspect the induced word rep-
resentations and the resulting discriminative mod-
els to gain further insights about this approach.

The paper is structured as follows. We present
related work on biomedical information extrac-
tion in §2. Word representations are introduced
in §3 along with our unlabelled data and cluster-
ing method. The experimental setup is outlined
in §4 followed by results in §5. In §6 we analyze
the most discriminative features of our model and
in §7 we present a brief error analysis. Finally, we
conclude with a discussion in §8.

2 Related Work

The approaches for classifying scientific artefacts
vary from having very coarse grained models of
these artefacts, such as, publication zone/section
identification (Teufel, 2000), to more fine grained
ones, such as, sentence classification (Kim et al.,
2011; Liakata et al., 2012). In this section, we
review the literature that has a similar perspective
as ours, that is, sentence-level classification.

Kim et al. (2011) perform classification in two
steps using PIBOSO scheme. In the first step, a
classifier identifies the sentences that contain PI-
BOSO concepts, while in the second step, a dif-
ferent classifier assigns PIBOSO classes to these
sentences. The annotation is performed at the sen-
tence level and one sentence may have more than
one class (i.e. multi-label classification). They
also employ a Conditional Random Field (CRF)
as their classifier using features derived from the
context, semantic relations, structure and the se-
quence of sentences in the text. Domain-specific

information is obtained via Metamap. Their fi-
nal feature vector includes a combination of: bag-
of-words, bigrams, part-of-speech (POS) tags, se-
mantic information, section headings, sentence
position, and windowed features of the previous
sentences.

Verbeke et al. (Verbeke et al., 2012), on the
other hand, apply a statistical relational learning
approach using a kernel-based learning (kLog)
framework to perform classification using the
NICTA-PIBOSO corpus. They exploit the rela-
tional and background knowledge in abstracts, but
take into account only the sequential information
at word level. More concretely, their feature set in-
cludes a sequence of class labels of the four previ-
ous sentences as well as of the two following ones,
the lemma of the dependency root of the current
sentence and the previous sentence, the position
of the sentence, and the section information.

Finally, Sarker et al. (2013) use a set of bi-
nary Support Vector Machine (SVM) classifiers
in conjunction with feature sets customised for
each classification task to attain the same goal.
Using the same NICTA-PIBOSO corpus, they use
MetaMap to extract medical concepts, and in par-
ticular UMLS Concept Unique Identifiers (CUIs)
and Semantic Types, to be then considered as
domain-specific semantic features. The rest of
the features they employ consist of n-grams, POS
tags, section headings, relative and absolute sen-
tence positions and sequential features adapted
from Kim et al. (2011), as well as class-specific
features for the POPULATION class. Similar to our
approach, they use an SVM classifier.

A key commonality of previous research is that
lexical features and POS tags constitute a set of
core features that are almost always used for this
task. Although some approaches have applied dif-
ferent external resources, from generic dictionar-
ies such as WordNet to domain specific ontologies,
no attempt has been made to leverage large-scale
unlabelled data. The main aim of this work is to
evaluate the feasibility of such an approach.

3 Word Representations

Word representations are mathematical objects as-
sociated with words. This representation is often,
but not always, a vector where each dimension is
a word feature (Turian et al., 2010). Various meth-
ods for inducing word representations have been
proposed. These include distributional represen-
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tations, such as LSA, LSI and LDA, as well as
distributed representations, also known as word
embeddings. Yet another type of representation is
based on inducing a clustering over words, with
Brown clustering (Brown et al., 1992) being the
most well known method. This is the approach
that we take in the present study.

Recent work has demonstrated that unsuper-
vised word representations induced from large un-
labelled data can be used to improve supervised
tasks, a type of semi-supervised learning. Exam-
ples of tasks where this has been applied include
dependency parsing (Koo et al., 2008), Named En-
tity Recognition (NER) (Miller et al., 2004), sen-
timent analysis (Maas et al., 2011) and chunking
(Turian et al., 2010). Such an approach could
also be applied to the clinical information extrac-
tion task where although we only have a very
limited amount of labelled data, large-scale unla-
belled data — hundreds of millions of tokens — is
readily available to us.

Researchers have noted a number of advan-
tages to using word representations in supervised
learning tasks. They produce substantially more
compact models compared to fully lexicalized ap-
proaches where feature vectors have the same
length as the entire vocabulary and suffer from
sparsity. They better estimate the values for words
that are rare or unseen in the training data. During
testing, they can handle words that do not appear
in the labelled training data but are observed in the
test data and unlabelled data used to induce word
representations. Finally, once induced, word rep-
resentations are model-agnostic and can be shared
between researchers and easily incorporated into
an existing supervised learning system.

3.1 Brown Clustering

We use the Brown clustering algorithm (Brown
et al., 1992) to induce our word representations.
This method partitions words into a set of c classes
which are arranged hierarchically. This is done
through greedy agglomerative merges which op-
timize the likelihood of a hidden Markov model
which assigns each lexical type to a single class.
Brown clusters have been successfully used in
tasks such as POS tagging (Owoputi et al., 2013)
and chunking (Turian et al., 2010). They have
been successfully applied in supervised learning
tasks (Miller et al., 2004) and thus we also adopt
their use here.

3.2 Unlabelled Data

To obtain suitable unlabelled data, we followed
two strategies to retrieve data from the PubMed
repository: (1) based on user-defined clinical in-
quiries, and (2) using a generic query. In the first
strategy we employed 456 clinical queries from
the EBMSummariser corpus (Mollá and Santiago-
martinez, 2011). The inquiries in this corpus are
collected from the Clinical Inquiries section of
the Journal of Family Practice.2 This section of
the journal contains a number of queries submit-
ted by the users and their evidence-based answers
by medical experts. We queried PubMed with
these 456 inquiries and retrieved the results using
their PM-IDs (i.e. PubMed’s unique identifiers)
via PubMed’s eUtils API.3 In total, 212,393 ab-
stracts were retrieved, of which 22,873 abstracts
did not contain valid text, leaving 189,520.

For the second retrieval strategy, we queried
PubMed with the term Randomised Controlled
Trial. This results in retrieving publications pre-
senting medical cases and providing evidence (i.e.
desirable for EBM practice). PubMed returned
491,357 results for this query. After removing du-
plicate results, i.e. those retrieved in the first strat-
egy, we downloaded 200,000 abstracts. After re-
moving empty abstracts, 171,662 remained.

The text of each abstract was extracted by pars-
ing the PubMed XML file and it was then seg-
mented into sentences; each sentence was then to-
kenized and lowercased. This resulted in a total
of 96 million tokens across 3.7 million sentences,
with 873k unique tokens.4

We next induced Brown clusters using this data.
Five runs with clusters of size 100, 200, 300, 1000
and 3000 were performed for comparison pur-
poses.

3.3 Clustering Results

We now turn to a brief analysis of the clustering re-
sults. Table 1 shows examples of both generic and
domain-specific clusters taken from the run with
3,000 clusters. We observe that words were clus-
tered according to both their semantic and gram-
matical properties, with some clusters containing
highly domain-specific entries. These results show
that the word clusters are very effective at captur-

2
http://jfponline.com/articles/clinical-inquiries.html

3
http://www.ncbi.nlm.nih.gov/books/NBK25497/

4We also note that this data has a much higher type-token
ratio compared to other domains such as newswire text, indi-
cating greater lexical variation in this domain.
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Cluster Path Top Words
00100111 article paper manuscript chapter commentary essay
001011011010 observations investigations evidences facts explorations
1000000011 evaluating investigating examining exploring
111010111011100 suggests indicates implies posits asserts contends
111010111011101 shows demonstrates reveals confirms concludes argues establishes assumes finds
1111011011001 mg/dl mmhg kg/m2 bpm beats/min u/ml mmol/mol
001111000101 antibiotics analgesics opioids antimicrobials placebos antihypertensives
11000100100 reconstruction dissection ligation instrumentation
010111101011110 oncology cardiology rheumatology psychiatry urology dermatology radiology
010111100011010 vaccination immunization inoculation immunisation immunizations revaccination

Table 1: Some example clusters and their top words (by frequency). Examples include both generic (top)
and domain-specific (bottom) clusters.

ing lexical knowledge and organizing it by syn-
tactic function. We will examine the cluster con-
tents again in §6 as part of our feature analysis.
We make these unsupervised clusters available for
viewing or download from our website.5

4 Experimental Setup

We take a supervised classification approach,
comparing previously used features against the un-
supervised Brown cluster features.

As the primary focus of this work is the evalu-
ation of word representation features, we limit the
scope of our experiment in two ways: (1) we do
not attempt multi-label classification, as explained
in §4.1 and (2) we do not use sentence sequence
information, as outlined in §4.2. These conditions
allow us to focus on systematically comparing fea-
ture types in a controlled manner.

4.1 Data
We use the NICTA-PIBOSO corpus (Kim et al.,
2011) in this experiment. Here each sentence is la-
belled with one or more classes, making it a multi-
label classification task. Table 2 lists a break-
down of the per-class sentence statistics, showing
that 9% of the sentences have more than one la-
bel. The multi-label characteristic of instances as
well as imbalanced distribution of classes are two
most common issues of many corpora in biomed-
ical scientific artefacts classification task (Hassan-
zadeh et al., 2014b). As the scope of our work is
limited to evaluating word representation features,
we simplify our setup by excluding the multi-label
instances, thus reducing the task to a multi-class
classification one. This avoids the use of multi-
label evaluation metrics, making it easier to draw

5http://web.science.mq.edu.au/%7Esmalmasi/data/med3k/

All Multi-label
BACKGROUND 2,557 160 (6%)

INTERVENTION 690 350 (51%)
OUTCOME 4,523 71 (2%)

POPULATION 812 412 (51%)
STUDY DESIGN 228 114 (50%)

OTHER 3,396 0 (0%)
Total 12,206 1,107 (9%)

Table 2: Sentence counts in the NICTA-PIBOSO

corpus. The multi-label column lists the number
of sentences annotated with more than one label.

direct comparisons between the performance of
the standard features and the word representations.
The sentences were tokenized in a preprocessing
step.

4.2 Classifier

We use a linear SVM to perform multi-class clas-
sification. In particular, we use the LIBLINEAR6

package (Fan et al., 2008) which has been shown
to be efficient for highly-dimensional text classifi-
cation problems such as this (Malmasi and Dras,
2014; Malmasi and Dras, 2015b; Malmasi and
Dras, 2015a).

Previous work (see §2) shows that CRF classi-
fiers perform well for this task, exploiting the se-
quential structure of abstracts. As our aim is to
evaluate the effectiveness of intrinsic word repre-
sentation features we focus on the classification of
individual sentences and do not use extrinsic fea-
tures, i.e. the contents or predicted labels of pre-
ceding sentences in an abstract. In practice this
means that the sentences are being classified inde-
pendently.

6http://www.csie.ntu.edu.tw/%7Ecjlin/liblinear/

69



4.3 Features
We compare our proposed word representation
features against the most commonly used features
for this task, which we describe here.

Word n-grams Surface tokens are the most
commonly employed feature type in this task us-
ing both bag-of-words (unigram) and n-grams.
The length of the feature vector equals that of the
vocabulary; n-gram vocabulary grows exponen-
tially. We extracted word n-grams of order 1–3.

Part-of-Speech n-grams POS tags are another
frequently used feature type and capture the syn-
tactic differences between the different classes.7

We tagged the sentences using the Stanford Tag-
ger, which uses the Penn Treebank tagset contain-
ing 36 tags, and extracted n-grams of order 1–3.

Brown Cluster Features Brown clusters are ar-
ranged hierarchically in a binary tree where each
cluster is identified by a bitstring of length ≤ 16
that represents its unique tree path. The bitstring
associated with each word can be used as a fea-
ture in discriminative models, Additionally, pre-
vious work often also uses a p-length prefix of
this bitstring as a feature. When p is smaller than
the bitstring’s length, the prefix represents an an-
cestor node in the binary tree and this superset
includes all words below that node. We follow
the same approach here, using all prefix lengths
p ∈ {2, 4, 6, . . . , 16}. Using the prefix features
in this way enables the use of cluster supersets as
features and has been found to be effective in other
tasks (Owoputi et al., 2013). Each word in a sen-
tence is assigned to a Brown cluster and the fea-
tures are extracted from this cluster’s bitstring.

4.4 Evaluation
We report our results as classification accuracy un-
der k-fold cross-validation, with k = 10. These
results are compared against a majority baseline
and an oracle. The oracle considers the predictions
by all the classifiers in Table 3 and will assign the
correct class label for an instance if at least one
of the the classifiers produces the correct label for
that data point. This approach can help us quan-
tify the potential upper limit of a classification sys-
tem’s performance on the given data and features
(Malmasi et al., 2015).

7e.g. Our own analysis showed that OUTCOME sentences
contained substantially more past tense verbs, comparative
adverbs and comparative adjectives.

Feature Accuracy (%)
Majority Baseline 40.1
Oracle 92.5

Part-of-Speech unigrams 64.6
Part-of-Speech bigrams 68.6
Part-of-Speech trigrams 67.4

Word unigrams 73.3
Word bigrams 66.0
Word trigrams 49.7

Brown (100 clusters) 70.4
Brown (200 clusters) 72.8
Brown (300 clusters) 74.3

Brown (1000 clusters) 74.8
Brown (1000 clusters) bigrams 73.9

Brown (3000 clusters) 75.6
Brown (3000 clusters) bigrams 74.9
Brown (3000 clusters) trigrams 70.7

Table 3: Sentence classification accuracy results
for the features used in this study.

5 Results

The results for all of our experiments are listed
in Table 3. All features performed substantially
higher than the baseline. We first tested the POS
n-gram features, with bigrams providing the best
result of 68.6% accuracy and performance drop-
ping with trigrams. Word n-grams were tested
next, with unigrams achieving the best result
of 73.3%. Unlike the POS features, word feature
performance does not increase with bigrams.

Finally, the Brown cluster features were tested
using clusters induced from the five runs of dif-
ferent cluster different sizes. Accuracy increases
with the number of clusters; 200 clusters match
the performance of the raw unigram features and
the largest cluster of size 3000 yields the best re-
sult of 75.6%, coming within 17% of the oracle
accuracy of 92.5%. Another variation tested was
Brown cluster n-grams. Although they outper-
formed their word n-gram counterparts, they did
not provide any improvement over the standard
Brown features.

In sum, these results show that Brown clus-
ters, using far fewer features, can outperform the
widely used word features.
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Class Clusters of words

BACKGROUND [have has had] — [describes presents examines discusses summarizes addresses]
[objectives goal] — [emerged evolved attracted fallen arisen risen proliferated]

INTERVENTION [received underwent undergoing taking] — [gel cream spray ointment]
[orally intravenously subcutaneously intramuscularly topically intraperitoneally]
[mg/kg mg/kg/day g/kg ml/kg µg/kg mg/kg/d microg/kg µg/kg]

POPULATION [identified enrolled recruited contacted] — [aged] — [randomly]
[twenty thirty forty sixty fifty eighty thirty-two twenty-eight . . .]

OUTCOME [revealed showed suggests indicates implies] — [found observed noted noticed]
[significantly] — [p n r r2] — [demonstrate indicate imply]
[0.002 0.003 0.004 0.006 .02 0.008 0.007 .03 0.009 .04 . . .]

STUDY DESIGN [cross-sectional case-control quasi-experimental sectional mixed-methods
case-crossover case-controlled . . .] — [randomised randomized-controlled]

OTHER [include] — [evaluate assess] — [obtained] — [measured]
[articles papers publications literatures manuscripts]

Table 4: Some highly-weighted clusters associated with the NICTA-PIBOSO classes. Each cluster is a
single feature in the model, but we have expanded them here to include their constituent words.

6 Feature Analysis

In this section we analyze some of the discrimi-
native features in our model to gain better insight
about the knowledge being captured by our mod-
els and the task in general. This was done by
ranking the features according to the weights as-
signed by the SVM model. In this manner, SVMs
have been successfully applied in data mining and
knowledge discovery tasks such as identifying dis-
criminant cancer genes (Guyon et al., 2002).

Table 4 lists several highly weighted Brown
clusters for each of our classes. Although each
cluster is a single feature in the model, we have
expanded the clusters here to include their con-
stituent words.

The BACKGROUND class is associated with
words that are quite common in the introductory
rhetoric of scientific publications. These are de-
scriptive of the current and previous research, and
are mostly in the present/past perfect tense.

The INTERVENTION class is mostly associated
with clusters that include clinical vocabulary, in-
cluding verbs such as received, underwent and tak-
ing; medication-related nouns like gel or ointment;

dosage descriptors such as mg/kg and mg/kg/day;
and adverbs describing the route of administration,
for example orally and intravenously.

For POPULATION sentences, numerical quanti-
ties, likely relating to the number of participants,8

as well as verbs that are related to participation,
are very frequent.

Similarly, reporting verbs are more likely to oc-
cur in OUTCOME sentences. They are organized
into different clusters according to their syntactic
and semantic function. In addition, we also note
that a cluster of decimal numbers is also common.
These numbers are used in the sentences to report
study results, including those from various statis-
tical tests. This is accompanied by another clus-
ter containing relevant tokens for reporting statis-
tics, e.g. “p”, “r”, and “n” which could refer to “p-
value”, “Pearson correlation” and “number”, re-
spectively.

Overall, it can be seen that the clusters associ-
ated with the features are logical. Furthermore,
these examples underline the clustering method’s
effectiveness, enabling us to encode a wide range
of similar tokens (e.g. decimal values or dosage

8These are mostly spelled out as they appear at the start
of a sentence.

71



BACKGROUND

IN
TE

RVENTIO
N

OTH
ER

OUTC
OME

PO
PU

LA
TIO

N

STU
DY DESIG

N

Predicted label

BACKGROUND

INTERVENTION

OTHER

OUTCOME

POPULATION

STUDY DESIGN

T
ru

e
 l
a
b
e
l

Confusion Matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 1: Normalized confusion matrix for results
using Brown features (3000 clusters). The values
are normalized due to the class size imbalance.

amounts) under a single cluster feature. This pro-
vides a substantial reduction in the feature space
without the loss of information.

7 Error Analysis

We now turn to an analysis of the errors be-
ing committed by the classifier. The error dis-
tribution is illustrated by the confusion matrix in
Figure 1. We note that the two largest classes,
OUTCOME and OTHER, are the most correctly
classified. Conversely, INTERVENTION sentences
are highly misclassified and mostly confused for
OUTCOME. To better understand these errors we
segregated the subset of misclassified instances for
analysis. Table 5 lists a number of these sentences
from highly confused classes.

Our analysis suggests that the occurrences
of similar domain-specific terminologies in both
types of sentences, in INTERVENTION sentences
as the explanation of the methodologies, and re-
stating them in OUTCOME sentences in order to
describe the effects of those methodologies, can
be a reason for this confusion.

There is also some confusion between BACK-
GROUND and OUTCOME instances. Both of these
classes commonly describe some challenges and
findings of either previous studies (i.e. BACK-
GROUND sentences) or the current reporting study
(i.e. OUTCOME). This narrative characteristic of
these classes has similar rhetorical and linguis-
tic attributes, e.g. they usually contain past tense
verbs and similar structures. This is demonstrated

by the two example OUTCOME sentences in Ta-
ble 5 which are misclassified. Looking at the sen-
tences, it can be challenging even for a human to
correctly label them without knowing the context;
they both describe the outcome of a study, but it
is not clear if it is the reporting study or previ-
ous work. Only by reading it in the context of the
abstract and the preceding sentence can we con-
fidently determine that they are outcomes of the
present study. This is the case for many of the
misclassified instances.

However, this is not due to the feature types but
rather the classification approach taken here and in
many other studies for this task. The SVM does
not model the sequential characteristics of sen-
tences in an abstract, instead classifying them in-
dependently. It is mostly for these reasons that se-
quence labelling algorithms, e.g. Conditional Ran-
dom Fields (CRF), have been found to be useful
for this task, as we mentioned in §2. Hence, it has
been noted that applying such methods with the
most suitable features can considerably avoid such
contextual errors and improve the overall accuracy
(Jonnalagadda et al., 2015).

8 Discussion

We presented a semi-supervised classification ap-
proach for clinical information extraction based on
unsupervised word representations, outperforming
the most commonly used feature types. This is
the first application of word representation fea-
tures for this task; the promising results here in-
form current research by introducing a new feature
class. We also made our word clusters available.

A positive byproduct of this approach is a sub-
stantial reduction in the feature space, and thus
model sparsity. This has practical implications, re-
sulting in more efficient models and enabling the
use of simpler learning algorithms which are gen-
erally used with smaller feature sets. This would
allow faster and more efficient processing of large
amount of data which is an important practical
facet of this task. For example, we conducted
some preliminary experiments with multinomial
Naı̈ve Bayes and k-NN classifiers and our results
showed that the Brown cluster features achieved
faster and much more accurate results than a bag-
of-words approach.
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Actual Predicted Sentence
INTERVENTION OUTCOME Glucocorticoids were decreased and could be stopped as the

neurologic deficits fully recovered.
INTERVENTION OTHER Subjects were examined before and 1 year after surgical

treatment.
OUTCOME BACKGROUND Negative symptoms are associated with poor outcome, cognitive

impairments, and incapacity in social and work domains.
OUTCOME BACKGROUND Patients suffering from mild TBI are characterized by subtle

neurocognitive deficits in the weeks directly following the trauma.
POPULATION OTHER The aim of this study was to investigate this association in an

Italian OCD study group.
POPULATION OUTCOME Five cases of biopsy- or Kveim test-proved sarcoidosis with

MR findings consistent with MS are reported.

Table 5: Examples of misclassified sentences with their true and predicted labels.

One limitation here was the size of the unla-
belled data we used for inducing the Brown clus-
ters.9 Future work could examine the effects of
using more data on classification accuracy.

Having demonstrated the utility of the features,
there are a number of directions for future work.
We previously described that sequence labelling
approaches have been found to be helpful for this
task given the structured nature of the abstracts. At
the same time, it has been shown that incorporat-
ing word representations can result in significant
improvements for sequence labelling tasks (Huang
and Yates, 2009; Turian et al., 2010; Miller et al.,
2004). Therefore, the combination of these two
approaches for this task seems like a natural ex-
tension.

The evaluation of these Brown cluster features
on other datasets used for this task — such as the
ART corpus (Liakata et al., 2012) — is another
direction for research in order to assess if these
results and patterns can be replicated.

Cross-corpus studies have been conducted for
various data-driven NLP tasks, including pars-
ing (Gildea, 2001), Word Sense Disambiguation
(WSD) (Escudero et al., 2000) and NER (Noth-
man et al., 2009). While most such experiments
show a drop in performance, the effect varies
widely across tasks, making it hard to predict the
expected drop. This is something that could be
evaluated for this task by future work.

9e.g. Owoputi et al. (2013) used approx 850m tokens of
unlabelled text compared to our 96m.

Finally, previous work has also found that com-
bining different word representations can further
improve accuracy, e.g. the results from Turian et
al. (2010, §7.4). This is another avenue for further
research in this area.
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