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Abstract 

Temporality is crucial in understanding the 

course of clinical events from a patient’s 

electronic health records and temporal 

processing is becoming more and more 

important for improving access to content. 

SemEval 2017 Task 12 (Clinical 

TempEval) addressed this challenge using 

the THYME corpus, a corpus of clinical 

narratives annotated with a schema based 

on TimeML2 guidelines. We developed 

and evaluated approaches for: extraction 

of temporal expressions (TIMEX3) and 

EVENTs; EVENT attributes; document-

time relations. Our approach is a hybrid 

model which is based on rule based meth-

ods, semi-supervised learning, and seman-

tic features with addition of manually 

crafted rules. 

1 Introduction 

Extraction and interpretation of temporal infor-

mation from clinical text is essential for clinical 

practitioners and researchers. Extracting temporal 

information from unstructured clinical narratives 

is an important step towards the accurate con-

struction of a patient timeline over the course of 

clinical care. SemEval-2017 Task 12 (Clinical 

TempEval) is a direct successor to 2016 Clinical 

TempEval. Clinical TempEval is designed to ad-

dress the challenge of understanding clinical 

timeline in medical narratives and it is based on 

the THYME corpus which includes temporal an-

notations. 

Researchers have explored ways to extract 

temporal information from clinical text. Lee et al. 

(2016) developed an approach based on linear and 

structural (HMM) support vector machines using 

lexical, morphological, syntactic, discourse, and 

word representation features. P R, Sarath et al. 

(2016) used a hybrid approach(rule-based and 

machine learning) for temporal information ex-

traction from clinical notes. Velupillai et al. (2015) 

developed a pipeline based on ClearTK and SVM 

with lexical features to extract TIMEX3 and 

EVENT mentions. Most of the participants of 

these challenges used CRF and SVM for event 

and time expression extraction with features in-

cluding the information gathered from different 

resources like UMLS (Unified Medical Language 

System), output of TARSQI toolkit, Brown Clus-

tering, Wikipedia and Metamap (Aronson and 

Lang, 2010). Those machine-learning methods are 

complex and they cost much time to run. However, 

they can be not only flexible but also convenient 

when compared to the handcrafting label. Others 

also used some rule based methods, which are fast 

but not flexible enough. It seems that the combi-

nation of those two methods may gain the better 

result. Since in I2b2 2012 temporal challenge, all 

top performing teams used a combination of su-

pervised classification and rule based methods for 

extracting temporal information and relations 

(Sun et al., 2013). Besides THYME corpus, there 

have been other efforts in clinical temporal anno-

tation including works by Roberts et al. (2008), 

Savova et al. (2009), Galescu and Blaylock (2012) 

and so on. Recently, interest in temporal pro-

cessing has moved forward in two directions: 

cross-document timeline extraction (Minard et al., 

2015) and domain adaptation (Sun et al., 2013; 

Bethard et al., 2015). Based on the analysis above, 

our hybrid model utilize machine learning tech-

niques and crafted rules which contains SVM 

(Support Vector Machine) classifier and RNN 

(Recurrent Neural Networks) classifier to extract 

Temporal Information from Clinical documents 

and make classifications. 
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2 Data and Method 

2.1 Data 

We use THYME corpus for training and evaluat-

ing the methods, which consists of clinical and 

pathology notes of patients with colon cancer and 

brain cancer from Mayo Clinic. The THYME 

corpus is split into training, development, and test 

sets based on patient number, with 50% in train-

ing and 25% each in development and test sets. 

Table 2 shows the distributions of the different 

time and event classes in the THYME corpus. 

The training data about colon cancer contains 

3,833 time expressions and 38,890 events, the 

development data contains 2,078 time expres-

sions and 20,974 events. The training data about 

brain cancer contains 350 time expressions and 

2,557 events.  

 

Table 1: different time and event attributes in the 

THYME3 corpus 

The data of colon cancer are more than others 

and the training data of brain cancer is too little 

but the test data is all about brain cancer, so the 

task will focus on domain adaptation. We can also 

see the unbalanced data distribution, for example, 

the data of N/A is 38,698, but the data of MOST 

is only 96, and maybe unbalanced data will have 

an impact on the results. We used the develop-

ment set for optimizing learning parameters, then 

combined it with the training set to build the sys-

tem used for reporting results in Section 4. 

2.2 Task Description 

Clinical TempEval 2017 was focused on design-

ing approaches for information extraction in the 

clinical domain.There were 6 different tasks 

which are listed in Table 2. 

Clinical TempEval is designed to address the 

challenge of understanding clinical timeline in 

medical narratives and it is based on the THYME 

corpus which includes temporal annotations. 

Task Description 

TS TIMEX3 spans 

ES EVENT spans 

TA 

Class 

Attributes of TIMEX3 

<DATE, TIME, DURATION, 

QUANTIFIER, PREPOSTEXP, 

SET> 

EA 

Modality 

Degree 

Polarity 

Type 

Attributes of EVENTs 

<ACTUAL, HYPOTHETICAL, 

HEDGED,GENERIC> 

<MOST, LITTLE,N/A> 

<POS, NEG> 

<ASPECTUAL, EVIDENTIAL, 

N/A> 

DR Relation between EVENT and 

document time <BEFORE, 

OVERLAP, BE-

FORE/OVERLAP, AFTER> 

CR Narrative container relations 

Table 2: Tasks of clinical TempEval 2017 

For extracting temporal information from clini-

cal text, we utilize semi-supervised learning algo-

rithms (SVM and RNN) with diverse sets of fea-

tures for each task. We also utilize manually-

crafted rules to improve the performance of the 

classifiers, when appropriate. We show the effec-

tiveness of the designed features and the rules for 

different tasks. 

3 Methodology 

Our approach to the tasks is a hybrid model that is 

based on rule based methods and supervised 

learning using lexical, syntactic and semantic fea-

tures extracted from the clinical text. We also de-

signed custom rules for some tasks when appro-

priate. Details are outlined below: 

3.1 TIMEX3 Span Detection and Time Ex-

pression Attribute Identification 

Our tasks are about time expression span detec-

tion (TS) and time expression attribute identifica-

tion (TA), which means that we should first ex-

 

 
attribute 

Colonc

ancer-

Train 

Brain-

cancer-

Train 

Colonc

ancer-

Dev 

 

E 

V 

E 

N 

T 

Documents 293 30 147 

ASPECTUAL 546 51 246 

EVIDENTIAL 2,206 85 1,314 

N/A  36,185 2,421 19,414 

MOST 96 2 45 

LITTLE 143 18 65 

N/A 38,698 2,537 20,864 

POSITIVE 34,832 2,386 18,795 

NEGATIVE 4,105 171 2,179 

ACTUAL 35,781 2,172 22,647 

HEDGED 889 81 443 

HYPOTHET-

ICAL 
1,656 88 829 

GENERIC 611 216 611 

T 

I 

M 

E 

X 

Date 2,588 204 1,422 

Duration 434 29 200 

PrePostExp 313 37 172 

Set 218 13 116 

Quantifier 162 9 109 

Time 118 58 59 
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tract the time expression and then identify which 

class it belongs to. As for time span, we use the 

rule based methods to detect the boundary of the 

time expression. We use Stanford NLP package to 

do the pre- processing and we normalize the digi-

tal expressions after it, we change every character 

to “0” as long as it is digit. (e. g. we normalize the 

"12:13" to "00:00".) 

For the rule based methods, firstly we find all 

the prepositions, according to our experience and 

experimental statistics, we  extract five tokens 

behind their own prepositions. Since we thought 

that many time expressions always show up be-

hind a preposition, we then judge whether those 

five words are related to time expressions. We de-

fine a time dictionary to list the words which we 

think can be a part of the time expressions, like 

"month", "week, "day", "hour", "May", "Mon-

day", "morning", "once" and so on. Next, we con-

trast the five tokens with time dictionary, and find 

whether it can represent a date or a precise time. 

Finally, we extract all the continuous tokens that 

we thought may relate to the time expressions ( if 

there is a definite article before those tokens, ex-

tract it as well). There exist some expressions do 

not after a preposition and only contain one word 

and most of them have the same prefix like "pre", 

"post", "peri". So we use this prefix rule to find 

the remain expressions. 

We also use the rule based methods to identi-

fy the classes of the time expression. And here 

are some examples of the rules for each class: 

Class Rules 

Date 1999-11-08, yesterday, last Saturday, 

in 3 years, 3 months ago... 

Duration for 3 days, July to August, since last 

summer.... 

PrePostExp post, preoperative, prior to the sur-

gery.... 

Set Twice per day, 3 times a day... 

Quantifier Twice, once... 

Time 13:56, in the morning.... 

Table 3: examples of rules for each time expression 

class 

3.2 Event Extraction Task 

In this task, we need to extract medical events 

from the clinical text and identify attributes of 

the events which are showed in table 1.  

 
Figure 1 Event Extraction Architecture 

Figure 1 illustrates the architecture of our 

EVENTs extraction system. First, we create word 

embeddings using the Wikipedia database. Then 

we extract event spans with a SVM classifier and 

a remove strategy. Finally we detect type, degree, 

modality, and polarity using four separate SVM 

classifiers and crafted rules. 

3.2.1    Event Spans (ES) Extraction 

To extract EVENT spans, first we train a separate 

Support Vector Machine to complete prediction. 

Then we make a colon corpus about colon cancer 

which comes from training data and Wikipedia. 

Finally, we remove the events which exist in the 

colon corpus from the prediction result.   

The major feature we used for training the 

SVM classifier is word embeddings. We trained 

all word embeddings in this document  with 

word2vec (Mikolov et al., 2013) using the 

Skipgram model on a text window size of 2 to-

kens, to obtain words vector representations of 

dimension 50. We also try to use the words vector 

representations of dimension 300, but the result is 

unexpected. 

3.2.2    Identifying EVENTs Attributes (EA)  

Table 1 shows the EVENTs attributes. Assigning 

these attributes to one of its values is an 

classification task. We train four separate Support 

Vector Machines for each attribute to classify their 

respective classes. We also use word embeddings 

as the major features for training separate SVM 

classifier for each attribute. 

Furthermore, according to our observations of 

the corpus, different types of event mentions may 

show different rules. For instance, events with 

EVIDENTIAL type are usually represented with 

verbs such as “showed”, “reported”, “found”, in 

contrast, the events with N/A type that are usually 

represented medical terms such as “nausea”, 

“chemotherapy” or “colonoscopy”. So we create 

such rules to help classifications. 
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3.3 Document-time Relation (DR) 

Document-time relations (DR) are specific attrib-

utes of EVENTs indicating their temporal relation 

with the document creation time. There are 3 dif-

ferent types of DRs, namely, BEFORE, AFTER, 

and OVERLAP. For identifying the DR attribute 

types, we use RNN. RNN makes up for the inac-

curacy of the convolution kernel and the pool size 

in the process of text processing, therefore, the 

generated RNN classifier has higher accuracy for 

text classification. We train classifier for each DR 

type using an set of features to what was used for 

EVENTs attributes detection. Verb tense and the 

modals in the sentence are also indicative of the 

sentence tense and can help in identifying the 

document-time relation. Figure 1 describes the 

additional features that we use for DR extraction. 

In addition to the base features, we consider fea-

tures specific to the EVENTs annotation. We fur-

thermore expanded the features by considering 

contextual features from the sentence and nearby 

time and date mentions. We try to optimized the 

RNN classifier--thread level speculation. Replace 

the calculated results of the other core to be 

weighted with speculative value, in that way, the 

parallel computing can be carried out smoothly. 

We used this method to classify the colon cancer 

data with golden annotations, the results are 

shown in the following table. 

DR P R F1 

RNN 0.69 0.71 0.70 

RNN+ 0.90 0.91 0.90 

Table 4: Document-time Relation of cancer data 

From this table, we can see the value of preci-

sion, the value of recall and the value of F1 are 

relatively high, so the Optimized RNN classifier 

is effective. But we do not know whether it is 

suitable for the brain cancer data. 

4 Experiments and Results 

The 2017 Clinical TempEval task consisted of 

two evaluation phases. Phase1 is unsupervised 

domain adaptation and phase 2 is supervised do-

main adaptation. In phase 2, we participated in all 

tasks, except for CR. 

We report the results on the test set for all sub-

tasks, Results have been computed in terms of 

Precision (P), Recall (R) and F1. For comparison 

we will also report the maximum scores of the 

participating systems. 

 

 

Subtask P R F1 

TIMEX3_SPAN 0.33 0.52 0.41 

TIMEX3_Class 0.29 0.45 0.35 

Table 5: results for TS and TA subtasks 

However, the result is less than satisfactory. Ta-

ble 5 shows the final result. We compared our re-

sults with the best results on the Semeval website. 

( https://competitions.codalab.org/) We think there 

are three reasons: First, our methods always ex-

tract two different expressions as one if they are 

very close to each other. Secondly, our dictionary 

is too small to cover enough words. Thirdly, we 

extract most of words in the raw text that have the 

prefix "pre", "post", "peri", but some of them are 

not time expressions. As for TA, we think that we 

only focus on the time expression itself but ignore 

much semantic information. 

Subtask P R F1 

ES 0.55 0.69 0.61 

Type 0.53 0.66 0.59 

Degree 0.54 0.67 0.56 

Polarity 0.49 0.61 0.54 

Modality 0.46 0.57 0.51 

Table 6: results for EVENTs subtasks 

The results for EVENTs subtasks also show 

lower performance in comparison with the result 

of best system. Error analysis are as bellowed: 

Firstly, we don’t use a good and effective do-

main adaption method, and we do not have an ef-

fective way to solve the unbalanced data. Second-

ly, we don’t integrate more domain specific fea-

tures.  Thirdly, in the process of Events Attributes 

identification, we ignore the importance of con-

text analysis and Sentiment analysis. For example, 

"bleeding" can be the positive class of the Polarity 

attribute, and it also can be the negative class. 

This is up to the context analysis. In addition, we 

create word embeddings using the Wikipedia da-

tabase. The temporal information from clinical is 

professional. So we need to use more database 

about clinic to improve the performance of the 

word embeddings. In the future, we plan to further 

improve our system to show higher performance 

based on the observations above. 

Subtask P R F1 

DR 0.29 0.36 0.32 

Table 7: results for DR subtasks 

We use the results of EVENT extraction to 

forecast the document-time relation of brain can-

cer. So the results of EVENT_span and 

TIMEX3_span are very important, and we do not 

add the domain adaptation, so the result of DR of 

brain cancer are relatively low, the detailed results 

are shown in table7. We have identified some er-
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rors: first, wrong output of the pre-processing 

modules, especially the parsing process. Second, 

limitations of the features selected. Third, lack of 

domain specific knowledge. 

5 Discussion and Conclusions 

SemEval 2017 task 12 (Clinical TempEval) was 

focused on temporal information extraction from 

clinical narratives. Our methods employed rule 

based methods and machine learning 

classification scheme for all the tasks except for 

CR based on various sets of syntactic, lexical, and 

semantic features. We illustrated that incorporat-

ing manually crafted extraction rules improves 

results, but the rules should be improved. 

For TIMEX3 subtasks, our approach was 

clearly not the best solution as our rules are sim-

ple and not perfect so that the system cannot ob-

tain the high score. For EVENTs subtasks, our 

system is not ideal for unbalanced data classifica-

tion, and we will enhance its effectiveness. For 

DR subtask, we showed that the optimized classi-

fier can improve the accuracy but we do not 

know whether it is suitable for the brain cancer 

data. Besides, we do not consider the domain ad-

aptation and our features were minimal. There are 

many options to improve the system, ranging 

from fine tuning the pre-processing phase in or-

der to avoid offset misalignments, to the genera-

tion of better features for the ES and DR subtasks. 

In future work, we aim to implement all the im-

provements mentioned above. 
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