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Abstract

Distributional semantic models can pre-
dict many linguistic phenomena, including
word similarity, lexical ambiguity, and se-
mantic priming, or even to pass TOEFL
synonymy and analogy tests (Landauer
and Dumais, 1997, Griffiths et al., 2007;
Turney and Pantel, 2010). But what does it
take to create a competitive distributional
model? Levy et al. (2015) argue that the
key to success lies in hyperparameter tun-
ing rather than in the model’s architec-
ture. More hyperparameters trivially lead
to potential performance gains, but what
do they actually do to improve the mod-
els? Are individual hyperparameters’ con-
tributions independent of each other? Or
are only specific parameter combinations
beneficial? To answer these questions, we
perform a quantitative and qualitative eval-
uation of major hyperparameters as identi-
fied in previous research.

1 Introduction

In a rigorous evaluation, (Baroni et al., 2014)
showed that neural word embeddings such as skip-
gram have an edge over traditional count-based
models. However, as argued by Levy and Gold-
berg (2014), the difference is not as big as it ap-
pears, since skip-gram is implicitly factorizing a
word-context matrix whose cells are the pointwise
mutual information (PMI) of word context pairs
shifted by a global constant. Levy et al. (2015)
further suggest that the performance advantage of
neural network based models is largely due to hy-
perparameter optimization, and that the optimiza-
tion of count based models can result in similar
performance gains. In this paper we take this
claim as the starting point. We experiment with

three hyperparameters that have the greatest ef-
fect on model performance according to Levy et
al. (2015): subsampling, shifted PMI and context
distribution smoothing. To get a more detailed pic-
ture, we use a greater range of hyperparameter val-
ues than in previous work, comparing all hyperpa-
rameter value combinations, and perform a quali-
tative analysis of their effect.

2 Hyperparameters Explored

2.1 Context Distribution Smoothing (CDS)

Mikolov et al. (2013b) smoothed the original con-
texts distribution raising unigram frequencies to
the power of alpha. Levy and Goldberg (2015)
used this technique in conjunction with PMI.
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After CDS, either PPMI or Shifted PPMI may
be applied. We implemented CDS by raising every
count to the power of «, exploring several values
for o, from .25 to .95 to 1 (no smoothing).

2.2 Shifted PPMI

Levy and Goldberg introduced Shifted Positive
Pointwise Mutual Information (SPPMI) as an as-
sociation measure more efficient than PPMI. For
every word w and every context ¢, the SPPMI of
w is the higher value between 0 and its PMI value
minus the log of a constant k.

P(w,c)

PPMI(w,c) = max(log Pw)P(0)
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2.3 Subsampling

Subsampling was used by Mikolov et al. as a
means to remove frequent words that provide
less information than rare words (Mikolov et al.,
2013a). Each word in the corpus with frequency
above treshold ¢ can be ignored with probability p,
computed for each word using its frequency f:

t
p=1—4/%
f

Following Mikolov et al., we used ¢ = 107°. In
word2vec, subsampling is applied before the cor-
pus is processed. Levy and Goldberg explored the
possibility of applying subsampling afterwards,
which does not affect the context window’s size,
but found no significant difference between the
two methods. In our experiments, we applied sub-
sampling before processing.

3 Evaluation Setup
3.1 Corpus

For maximum consistency with previous research,
we used the cooccurrence counts of the best count-
based configuration in Baroni et al. (2014), ex-
tracted from the concatenation of the web-crawled
ukWack corpus (Baroni et al., 2009), Wikipedia,
and the BNC, for a total of 2.8 billion tokens, using
a 2-word window and the 300K most frequent to-
kens as contexts. This corpus will be referred to as
WUB. For comparison with a smaller corpus, sim-
ilar to the one in Levy and Goldberg’s setup, we
also extracted cooccurrence data from Wikipedia
alone, leaving the rest of the configuration identi-
cal. This corpus will be referred to as Wiki.

3.2 Evaluation Materials

Three data sets were used to evaluate the mod-
els. The MEN data set contains 3000 word pairs
rated by human similarity judgements. Bruni et al.
(2014) report an accuracy of 78% on this data-set
using an approach that combines visual and tex-
tual features. The WordSim data set is a collec-
tion of word pairs associated with human judge-
ments of similarity or relatedness. The similarity
set contains 203 items (WS sim) and the related-
ness set contains 252 items (WS rel). Agirre et
al. achieved an accuracy of 77% on this data set
using a context window approach (Agirre et al.,
2009). The TOEFL data set includes 80 multiple-
choice synonym questions (Landauer and Dumais,

1997). For this data set, corpus-based approaches
have reached an accuracy of 92.50% (Rapp, 2003).

4 Results

4.1 Context Distribution Smoothing

Our results show that smoothing is largely inef-
fective when used in conjunction with PPMI. It
also becomes apparent that .95 is a better parame-
ter than .75 for smoothing purposes.

MEN WSrel WSsim toefl
WUB 25 .6128 .3740 .5814 .62
S50 .6592 4419 6283 .68
70 .6938 5113 .6708 72
75 7008 .5249 6788 5
80 7069 5393 .6866 .76
85 7119 5517  .6950 77
90 7162 5625  .6998 77
95 7197 5730 .7043 77
1.0 .7208 .5708  .7001 .76
Wiki .75 7194 4410  .6906 .76
.85 7251 4488  .7001 .76
95 7277 4534 7083 77
1.0 .7224 4489  .7158 .76

Table 1: Context Distribution Smoothing

4.2 Shifted PPMI

When using SPPMI, Levy and Goldberg (2014)
tested three values for £: 1, 5 and 15. On the MEN
data set, they report that the best k value was 5
(.721), while on the WordSim data set the best k
value was 15 (.687). In our experiments, where (in
contrast to Levy and Goldberg) all other hyperpa-
rameters are set to ‘vanilla’ values, the best & value
was 3 for all data sets.

4.3 Smoothing and Shifting Combined

The results in Table 3 show that Context Distri-
bution Smoothing is effective when used in con-
junction with Shifted PPMI. With CDS, 5 turns
out to be a better value than 3 for k. These results
are also consistent with the previous experiment:
a smoothing of .95 is in most cases better than .75.

4.4 Subsampling

Under the best shifting and smoothing configura-
tion, subsampling can improve the model’s perfor-
mance score by up to 9.2% (see Table 4). But in



MEN WSrel WSsim toefl MEN WSrel WSsim toefl
WUB 1 .7208 .5708  .7001 .76 WUB
g ;g?i '223(1) ;(ﬁg ;55 log(1) cds(1.0) 7208 .5708 7001 .76
1 : 308 '5 | : 071 .76 log(3) cds(.75) .7319 .5969  .7146 73
. ';291 '52; ';0;4 70 log®)eds(90) 7371 6170 7285 76
10 : 145 ‘5138 .6 31 : 5 log(3) cds(.95) .7379 .6201  .7315 76
7 : 67 7 log(4) cds(75) 7363 6071 7212 .75
15 6961 4707 6464 71 log(4) cds(90) 7398 6222 7351 .76
Wiki 1 7224 4489 7158 .76 log(4) cds(.95) .7403 .6265  .7392 77
3 7281 4575 7380 77 log(5) cds(.75) .7387 .6115  .7281 .76
4 7269 4553 7376 75 log(5) cds(.90) .7412 .6223 7404 77
5 7250 4504 7334 .76 log(5) cds(.95) .7414 .6257 .7434 77
Table 2: Shifted PPMI Wiki
log(1) cds(1.0) .7224 4489  .7158 .76
o . log(5) cds(.75) .7424 4787 7378 75
Jine docs ot produce 4 conssent performance %59 CNED) 7309 4795 741873
change, which ranges from —6.7% to +7%. log(®) cds(93) 7362 4806 7443 73
The nature of the task is also important here: on Table 3: CDS and Shifted PPMI
WS rel, subsampling improves the model’s per-
formance by 9.2%. We assume that diversifying MEN WSrel WS sim toefl
contextual cues is more beneficial in a relatedness
task than in others, especially on a smaller corpus. WUB
L. . log(1) cds(1.0) .7284 .5043  .6750 75
5 Qualitative Analysis log(5) cds(.95) 7577 5539 7505 .73
CDS and SPPMI increase model performance be- Wiki
‘ p £ log(5) cds(.95) 7661 5729 7446 .76

of the word doughnut in the vanilla PPMI config-
uration vs. SPPMI with CDS, in which there are
more semantically related neighbours (in bold).

To visualize which dimensions of the vectors
are discarded when shifting and smoothing, we
randomly selected a thousand word vectors and
compared the number of dimensions with a pos-
itive value for each vector in the vanilla configu-
ration vs. log(5)cds(.95). For instance, the word
segmentation has 1105 positive dimensions in the
vanilla configuration, but only 577 in the latter.

For visual clarity, only vectors with 500 or less
contexts are shown in Figure 1.

This figure indicates that the process of shifting
and smoothing appears to be largely independent
from the number of contexts of a vector: a word
with a high number of positive contexts in the
vanilla configuration may very well end up with
zero positive contexts under SPPMI with CDS.

The independence of the number of positive
contexts under the vanilla configuration from the
probability of having at least one positive context

Table 4: CDS and SPPMI with subsampling

under SPPMI with CDS is confirmed by the Chi-
Square test (x = 344.26, p = .9058).

We further analysed a sample of 1504 vectors
that lose all positive dimensions under SPPMI
with CDS. We annotated a portion of those vec-
tors, and found that the vast majority were numer-
ical expressions, such as dates, prices or measure-
ments, e.g. 1745, which may appear in many dif-
ferent contexts, but is unlikely to have a high num-
ber of occurrences with any of them. This explains
why its number of positive contexts drops to zero
when SPPMI and CDS are applied.

6 Count vs Predict and Corpus Size

We conducted the same  experimenta-
tions on two corpora: the WUB corpus
(Wikipedia+ukWack+BNC) used by Baroni
et al., and the smaller Wiki corpus comparable



log(1) cds(1.0) log(5) cds(.95)
doughnut 1.0  doughnut 1.0
lukeylad  .467 donut 242
ricardo308 .388 doughnuts .213
katie8731  .376 donuts 203
holliejm  .288 kreme 179
donut 200 lukeylad  .167
lumic 187 krispy .149
notveryfast .183 :dance 115
adricsghost .178 bradys 105

doughnuts .178  holliejm  .102

Table 5: Top 10 neighbours of doughnut. Semantically re-
lated neighbors are given in bold.

" model Sy
200 v log(1) cds(1.0) Vc)%
© log(5) cds(.95) @%%

positive dimensions

word vector

Figure 1: Along the X axis, vectors are ordered by the as-
cending number of positive dimensions in the vanilla model.
The Y axis represents the number of positive dimensions in
two models.

to the one that Levy et al. employed. With these
two corpora, we found the same general pattern
of results, with the exception of the WordSim
relatedness task benefitting greatly from a larger
corpus and MEN favoring steeper smoothing (.75)
under the smaller corpus. This suggests that the
smoothing hyperparameter should be adjusted to
the corpus size and the task at hand.

For comparison, we give the results for a
word2vec model trained on the two corpora us-
ing the best configuration reported by Baroni et al.
(2014): CBOW, 10 negative samples, CDS, win-
dow 5, and 400 dimensions. We find that PPMI
is more efficient when using the Wikipedia corpus
alone, but when using the larger corpus the predict
model still outperforms all count models.

7 Conclusion

Our investigation showed that the interaction of
different hyperparameters matters more than the
implementation of any single one. Smoothing
only shows its potential when used in combina-

>0 >300 >750 >1000 >1500
8:23 1900s  e4 1024 51
01-06-2005 7.45pm 8.4 1928.  1981.
ec3n 41. 331 1924. 17
5935 1646 1745 45,000 2500
$1.00 $25 1/3 630 1960s

Table 6: Sample of words with zero positive dimensions after
SPPMI with CDS

predict MEN WSrel WSsim toefl
WUB .80 .70 .80 91
Wiki 7370 4951 7714 .83
bestcount MEN WSrel WSsim toefl
WUB 1577 .6265 7505 77
Wiki 7661 .5729 7446 77

Table 7: Performance of count vs. predict models as a func-
tion of corpus size

tion with shifting. Similarly, subsampling only
becomes interesting when shifting and smoothing
are applied. When it comes to parameter values,
we recommend using .95 as a smoothing hyperpa-
rameter and log(5) as a shifting hyperparameter.

Qualitatively speaking, the hyperparameters
help largely by reducing statistical noise in cooc-
currence data. SPPMI works by removing low
PMI values, which are likely to be noisy. CDS
effectively lowers PMI values for rare contexts,
which tend to be more noisy, allowing for a higher
threshold for SPPMI (log 5 vs. log 3) to be effec-
tive. Subsampling gives a greater weight to under-
exploited data from rare words at the expense of
frequent ones, but it amplifies the noise as well as
the signal, and should be combined with the other
noise-reducing hyperparameters to be useful.

In terms of corpus size, we’ve seen that similar
performance can be achieved with a smaller cor-
pus if the right hyperparameters are used. One ex-
ception is the WordSim relatedness task, in which
models require more data to achieve the same
level of performance, and benefit from subsam-
pling much more than in the similarity task.

While the best predictive model from Baroni et
al. trained on the WUB corpus still outperforms our
best count model on the same corpus, hyperparam-
eter tuning does significantly improve the perfor-
mance of count models and should be used when
a corpus is too small to build a predictive model.
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