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Abstract

This paper presents an overlap-based ap-
proach using bag of words and the Spanish
WordNet to solve the STS-Spanish sub-
task (STS-Es) of SemEval-2014 Task 10.
Since bag of words is the most commonly
used method to ascertain similarity, the
performance is modest.

1 Introduction

The objective of STS-Es is to score a pair of sen-
tences in Spanish on the scale of 0 (the two sen-
tences are on different topics) to 4 (the two sen-
tences are completely equivalent, as they mean the
same thing) (Agirre et al., 2014). The textual sim-
ilarity finds its utility in various NLP applications
such as information retrieval, text categorisation,
word sense disambiguation, text summarisation,
topic detection, etc. (Besancon et al., 1999; Mi-
halcea et al., 2006; Islam and Inkpen, 2008).

The method presented in this paper calculates
the similarity based on the number of words that
are common in two given sentences. This ap-
proach, being simplistic, suffers from various
drawbacks. Firstly, the semantically similar sen-
tences need not have many words in common (Li
et al., 2006). Secondly, even if the sentences have
many words in common, the context in which they
are used can be different (Sahami and Heilman,
2006). For example, based on the bag of words ap-
proach, the sentences in Table 1 would be scored
the same:

However, only sentences [2] and [3] mean the
same.

Despite the flaws, this approach was used be-
cause of the Basic Principle of Compositional-
ity (Zimmermann, 2011), which states that the
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No. | Spanish English

1 El es listo. He is clever.

2 El est4 listo. He is ready.

3 El estéd preparado. | He is prepared.

Table 1: Examples.

meaning of a complex expression depends upon
the meaning of its components and the man-
ner in which they are composed. Furthermore,
mainly nouns were considered in the bag of words
because Spanish is an exocentric language, and
nouns contain more specific, concrete semantic
information than verbs (Michael Herslund, 2010;
Michael Herslund, 2012).

2 Methodology

The training dataset provided for the task con-
sisted of 65 pairs of sentences along with their cor-
responding similarity scores. There were two test
sets: one consisted of 480 sentence pairs from a
news corpus, and the other had 324 sentence pairs
taken from Wikipedia.

The approach consisted of learning the scoring
with the help of linear regression. Two runs were
submitted as solutions. The first run used three-
feature vectors, whereas the second one used four-
feature vectors. The features are the Jaccard in-
dices for the lemmas, noun lemmas, synsets, and
noun subjects in each sentence pair. For both runs,
the sentence pairs were parsed using the TreeTag-
ger (Schmid, 1994). The TreeTagger was used be-
cause it provides the part-of-speech tag and lemma
for each word of a sentence.

Run 1 used these features:

e The fraction of lemmas that were common
between the two sentences. In other words,
the number of unique lemmas common be-
tween the sentences divided by the total num-
ber of unique lemmas of the two sentences.
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e The fraction of noun lemmas common be-
tween the two sentences.

e The fraction of synsets common between the
two sentences. For each noun, its correspond-
ing synset! was extracted from the Span-
ish WordNet (spaWN) of the Multilingual
Central Repository2 (MCR 3.0) (Gonzalez-
Agirre et al., 2012).

Run 2 employed one more feature in addition
to the aforementioned, which was the fraction of
synsets of noun subjects that were common for
each sentence pair. The subject nouns were ex-
tracted from the sentences after parsing them with
the MaltParser (Nivre et al., 2007). Since the Tree-
Tagger PoS tagset® differed from the EAGLES
(Expert Advisory Group on Language Engineer-
ing Standards) tagset* required by the MaltParser,
rules were written to best translate the TreeTag-
ger tags into EAGLES tags. However, one-to-
one mapping was not possible: EAGLES tags are
seven characters long and encode number and gen-
der, whereas TreeTagger tags do not. For example,
using the EAGLES tagset, the masculine singular
common noun drbol ‘tree’ is tagged as NCMS000,
whereas the feminine singular common noun hoja
‘leaf” is tagged as NCFS000; TreeTagger, on the
other hand, tags both as NC.

3 Results and Conclusions

Table 2 presents the performance, measured us-
ing the Pearson correlation, of the approach. Run
1 achieved a weighted correlation of 0.66723 and
ranked 15th among 22 submissions to the task.

Dataset Run 1 Run 2

Training 0.83693 | 0.83773
Wikipedia (Test) | 0.61020 | 0.60425
News (Test) 0.71654 | 0.70974

Table 2: Performance of the Approach.

Given that the approach relied mostly on bag
of words, a modest performance was expected.
The performance was also affected by the fact
that the spaWN did not have synsets for most of

!stored as synset offset in wei_spa-30_variant.tsv
*The resource can be obtained
http://grial.uab.es/descarregues.php
3http://www.cis.uni-muenchen.de/~schmid/tools/
TreeTagger/data/spanish-tagset.txt
*http://nlp.1si.upc.edu/freeling/doc/tagsets/tagset-es.html
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the words. Finally, converting TreeTagger tags to
those required by the MaltParser instead of using
a parser which annotates with EAGLES tags may
also have contributed to the relatively low Run 2
score. However, the confidence intervals of the
two runs obtained after bootstrapping overlapped.
Thus, the difference between the two runs for both
the datasets is not statistically significant.
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