
Proceedings of Recent Advances in Natural Language Processing, pages 270–276,
Hissar, Bulgaria, 7-13 September 2013.

The Extended Lexicon: Language Processing as Lexical Description

Roger Evans
Natural Language Technology Group

Computing Engineering and Mathematics
University of Brighton, UK

R.P.Evans@brighton.ac.uk

Abstract

In this paper we introduce an approach
to lexical description which is sufficiently
powerful to support language processing
tasks such as part-of-speech tagging or
sentence recognition, traditionally consid-
ered the province of external algorith-
mic components. We show how this ap-
proach can be implemented in the lexi-
cal description language, DATR, and pro-
vide examples of modelling extended lex-
ical phenomena. We argue that applying
a modelling approach originally designed
for lexicons to a wider range of language
phenomena brings a new perspective to
the relationship between theory-based and
empirically-based approaches to language
processing.

1 The Extended Lexicon

A lexicon is essentially a structured description of
a set of lexical entries. One of the first tasks when
developing a lexicon is to decide what the lexical
entries are. This task has two dimensions: what
kind of linguistic object does a lexical entry de-
scribe, and what does it say about it. So for exam-
ple, one might decide to produce a lexicon which
describes individual word instances, and provides
the orthographic form and part-of-speech tag for
each form. It is the first of these dimensions that is
most relevant to the idea of the Extended Lexicon.
Conventionally, there are two main candidates for
the type of linguistic object described by a lexi-
con: word forms (such as sings, singing, sang1),
corresponding to actual words in a text and lex-
emes (such as SING, WALK, MAN), describing ab-
stract words, from which word forms are somehow
derived. Choosing between these two candidates

1Typographical conventions for object types: ABSTRACT,
LEXEME, wordform, instance, code.

Figure 1: A simple inheritance-based lexicon

might be a matter of theoretical disposition, or a
practical consideration of how the lexicon is pop-
ulated or used.

In the Extended Lexicon, we introduce a third
kind of linguistic object, called word instances (or
just instances), consisting of word forms as they
occur in strings (sequences of words, typically
sentences). For example, a string such as the cats
sat on the mat contains two distinct instances of
the word the. the cats slept contains further (dis-
tinct) instances of the and cats. However the in-
stances in a repetition of the cats sat on the mat
are the same as those in the original (because in-
stances are defined relative to strings, that is, string
types not string tokens).

So in an extended lexicon, the lexical entries are
word instances, and the lexicon itself is a struc-
tured description of a set of word instances. In or-
der to explore this notion in more detail, it is help-
ful to introduce a more specific notion of a ‘struc-
tured description’. We shall use an inheritance-
based lexicon, in which there are internal abstract
‘nodes’ representing information that is shared by
several lexical entries and inherited by them. Fig-
ure 1 shows the structure of a simple inheritance-
based lexicon with some abstract high-level struc-
ture (CATEGORY, VERB, NOUN), then a layer of
lexemes (WALK, TALK, HOUSE, BANK), and be-
low that a layer of word forms (walks, walking,

270

talked, house, houses, banks, as well as many
more). Thus the word form walks inherits in-
formation from the lexeme WALK, which inherits
from abstract node VERB and then abstract node
CATEGORY.

Figure 2: A lexicon with instance nodes

Adding instances to this model is in principle
very easy: one just creates a further layer of nodes
below the word forms. The word instances are
now the lexical entries, and the word form nodes
are abstractions, representing information shared
by all instances of the form. Figure 2 shows a
first pass at adding an instance layer to a lexicon
supporting the string the cats sat on the mat, by
adding new nodes for each instance in the string.
However, what is missing from this figure is any
representation of the string as a whole – noth-
ing distinguishes the two instance nodes the from
each other, or indeed from their parent word form
node the, and nothing identifies them as members
of a specific string. One way this information
could be added is simply by stipulating it: each
instance node could have a feature whose value is
the string, and another whose value is the index in
the string of the current instance. However, in the
Extended Lexicon, we adopt a structural solution,
by linking the instance nodes of a string together
into a chain, using inheritance links prev (‘pre-
vious’) and next to inherit information from this
instance’s neighbours in the string. Diagrammati-
cally, we represent this as in figure 3.

To summarise, in the Extended Lexicon model,
a lexicon is an inheritance-based structured de-
scription of a set of word instances. This notion
simultaneously captures and combines two impor-
tant modelling properties: first, that instances of
the same word share properties via an abstract
word form node, and second that the lexicon im-

Figure 3: A simple Extended Lexcion, with in-
stance nodes linked into a chain

plicitly encodes word strings, as maximal chains
of linked instances.

2 The Extended Lexicon in DATR

2.1 DATR in brief
DATR (Evans and Gazdar, 1996) is a lexical de-
scription language originally designed to model
the structure of lexicons using default inheritance.
The core descriptive unit in DATR is called a node,
which has a unique node name (capitalised) and
has associated with it a set of definitional path
equations mapping paths (sequences of features)
onto value definitions.

DOG:
<cat> == noun
<form> == dog.

Figure 4: DATR description – version 1

Figure 4 is a simple example of DATR code. This
fragment defines a node called DOG with two path
equations, specifying that the (syntactic) category
is noun, and the (morphological) form is dog.

NOUN:
<cat> == noun
<form> == "<root>".

DOG:
<> == NOUN:<>
<root> == dog.

Figure 5: DATR description – version 2

Figure 5 provides a slightly more complex def-
inition. In this version, there is an abstract node,
NOUN, capturing information shared between all
nouns and a new definition for <form> which is
defined to be the same as the path <root>. DOG
now specifies a value for <root>, and inherits
everything else from NOUN.

271

Inheritance in DATR operates as follows: to de-
termine the value associated with a path at a partic-
ular node, use the definition from the equation for
the longest path that matches a leading (leftmost)
subpath of the desired path (if none matches, the
value is undefined). The definition might give you
a value, or a redirection to a different node and/or
path, or a combination of these. If the definition
contains path values, extend those paths with the
portion of the desired path that did not match the
left-hand-side and seek the value of the resulting
expression.

So in this example, the path <root> at DOG
matches a definition equation path exactly, and so
has value dog. The path <cat> is not defined at
DOG and the longest defined subpath is <>, so this
definition is used. It specifies a value NOUN:<>,
but the path is extended with the unmatched part
of the original path, so the definition becomes
NOUN:<cat>. This has the value noun, so
this is the value for DOG:<cat> as well. Fi-
nally, the path <form> at DOG similarly matches
the <> path and is rewritten to NOUN:<form>.
This matches the definition in NOUN which spec-
ifies "<root>". The quotes here specify this is
evaluated as DOG:<root> (without the quotes it
would be interpreted locally as NOUN:<root>),
and because the entire path matched, there is noth-
ing further to add to the path here, so the value is
DOG:<root>, that is, dog.

NOUN:
<cat> == noun
<num> == sing
<form> == "<table "<num>" >"
<table> == "<root>"
<table plur> == "<root>" s.

DOG:
<> == NOUN:<>
<root> == dog.

Dog:
<> == DOG:<>.

Dogs:
<> == DOG:<>
<num> == plur.

Figure 6: DATR description – version 3

Finally, the version in figure 6 extends the def-
inition of NOUN in several ways: the path <num>
defines morphological number (sing or plur);
the path <form> now defines the morphologi-
cal form in terms of a table of forms indexed
by the number feature2; finally the definition for

2Note the use of embedded path expressions here: the in-
ner expression is evaluated first and the result spliced into the
outer expression

Word1:
<> == The:<>
<next> == "Word2:<>".

Word2:
<> == Dogs:<>
<prev> == "Word1:<>"
<next> == "Word3:<>".

Word3:
<> == Slept:<>
<prev> == "Word2:<>".

Figure 7: Instance node for the dogs slept

<table> has a default value which is just the
root, and a plural value which appends an s to the
morphological root. Two word form nodes have
also been added, Dog whose form will be dog,
and Dogs whose form will be dog s.

2.2 Modelling the Extended Lexicon
Figure 6 provides an example of DATR code to
represent lexeme and word form nodes. Extend-
ing this to represent instance nodes as well is quite
straightforward. The instance nodes themselves
inherit directly from the corresponding word form
nodes. The prev and next links map between
the instance nodes, as shown in figure 7, for the
word string the dogs slept.

As a first simple example of the Extended Lex-
icon approach, figure 8 provides a definition for
the lexeme A which varies the actual form ac-
cording to whether the next word starts with a
vowel or not. This definition presupposes a fea-
ture <vstart> which returns true for words that
start with a vowel, false otherwise3. A evaluates
vstart not on itself, but on the word instance
that follows it (signified by <next vstart>) to
determine whether its own form is a or an.

A:
<> == DET
<form> == <table "<next vstart>">
<table> == a
<table true> == an.

Figure 8: Word form definition for A

This example illustrates some important features
of the approach. First, lexeme (or word form)
nodes can make assertions about instance nodes
which do not hold for the abstract nodes them-
selves – A contains no definition for <next>,
so evaluation of <form> is undefined, but an in-
stance node inheriting from it will define <next>

3We do not define <vstart> here – its default defini-
tion would be at the topmost abstract node, but some lexemes
could override it, for example HISTORIC in some dialects
would set it true (as in an historic event).

272

and hence <form>. Second, these assertions do
not need to make direct reference to other lexical
definitions – they are entirely local to A. Finally,
these assertions do not alter the definition of the
instance nodes – the only properties unique to an
instance node are its parent node and its previous
and next instance nodes.

This last point has considerable practical im-
portance. In the Extended Lexicon the number
of lexical entries (instances) is unbounded, since
the number of possible word strings is unbounded.
This is not significant problem as long as it is pos-
sible to provide an effective procedure for spec-
ifying instance definitions for any desired string
dynamically. But this is straightforward: for each
string create instance nodes such as shown in fig-
ure 7 with unique (but arbitrary) names for each
node. The definition of each of these nodes re-
quires only the names of the previous and next
instance nodes and the name of the parent word
form node. The former are known to the specifi-
cation algorithm, and various conventions are pos-
sible for locating the word form node; in figure 7
we assume the word form itself, capitalised, is the
name of the node.

3 Examples

3.1 Part of speech tagging

A more challenging task is part-of-speech (POS)
tagging. Conventionally, POS taggers are config-
ured as applications which are applied to texts and
use either rule-based algorithms (eg (Brill, 1992))
or statistical algorithms (eg (Garside, 1987)) to
provide POS tags for each word in the text. In
the Extended Lexicon approach, POS tagging is
conceived as a sequence of inferences required to
determine the value of the feature path <pos> for
a given instance node. As before, the definition
is provided entirely by abstract nodes. Figure 9
presents a simple abstract lexicon with five word
form nodes and one common root node. Each
node is annotated with DATR code to support sim-
ple POS tagging.
The definition of the <pos> path is provided
at the root node, WORDFORM, and inherited
by all other nodes. It defines <pos> to be
the value "<table "<prev pos>" "<prev
prev pos>" >". In other words, to determine
pos use the lookup table table, indexed with the
pos of the previous two words. The lookup tables
are defined on a per-word form basis, but inherit

Figure 9: POS tagging

the default definition (the value unknown) from
the root when not specified. Finally the root node
also specifies a catch-all empty value (<> ==)
for unspecified paths (including <prev> paths
from Word1).

With just these definitions, the lexicon defines
<pos> values for the word form nodes without
access to any context (so the <prev paths return
nothing). The <pos> for one is det-s (singu-
lar determiner), for man, saw, and sheep, it is
unknown (inherited from WORDFORM), and for
some, it is det-p. The tables vary this behaviour
for instances according to previous context: one
becomes a card if preceded by a det-s, man is
a noun-s if preceded by a det-s, and a verb if
preceded by a noun-p. saw makes use of the full
context: if preceded by det-s it is a noun, but
it is a verb if preceded by a noun and before that
a determiner4. some is always a plural determiner,
and sheep takes its number from the preceding de-
terminer.

Figures 10 and 11 show what happens when we
add word instances, linked together into strings.
The two strings, one man saw some sheep and
some sheep man one saw, use exactly the same ab-
stract definitions, but derive different POS values
for each word.

In this example, it is interesting to note that the
POS inference model is specified in one place. It
could easily be changed, for example to index on
the previous three parts-of-speech, or to use word
forms instead of parts-of-speech etc., and could be
overridden with a specialised definition for sub-
classes of words (for example, open class versus

4Here DATR variables are used to range over all possible
POS tags associated with nouns and variables.

273

Figure 10: POS mapping for one man saw some
sheep

Figure 11: POS mapping for some sheep man one
saw

closed class words). In addition the table defini-
tions can take advantage of both the longest sub-
path principle (ignoring previous context they do
not care about), and the inheritance hierarchy to
produce compact yet highly detailed POS map-
pings.

3.2 Syntactic recognition
Similar techniques can also be applied to the task
of syntactic recognition, which we exemplify for
the case of regular languages (Hopcroft and Ull-
man, 1979)5. A simple approach is to take a
context-free grammar for a regular language and
transform it into left-regular form, where every
rule has a rightmost lexical daughter and at most
one other non-lexical daughter. Figure 12 illus-
trates the process for a simple context-free gram-
mar. The key steps are expanding any non-lexical
final daughters, introducing new non-terminals to
make rules binary, and weeding out redundant pro-
ductions.

In this form, the grammar rules can be trans-
5The techniques described in this paper are at least pow-

erful enough to recognise anbn, a non-regular language.

Figure 12: Transforming a grammar into left-
regular form

formed into lexical features. For example, the
rule S → NP VI can be interpreted as “VI com-
pletes an S if the previous word completes an
NP”. This can be captured by introducing a path
<completes $cat> (for any non-terminal cat-
egory $cat), which is true for an instance node if
that instance is the final lexical item of the cor-
responding non-terminal. Then the feature defi-
nitions in figure 13 correspond to the application
of the rules. The root node specifies that by de-
fault all <completes> paths are false. The
word form nodes have two kinds of definitions:
for lexical categories or unary productions, simply
set the corresponding <completes> path true.
For binary productions, this instance completes
the parent category if the previous instance com-
pletes the left daughter.

Figure 13: The grammar implemented as recogni-
tion features

Finally figure 14 shows the effect of these rules
in a simple sentence john saw the man. Each in-
stance now has binary features corresponding to
all the categories recognised as terminating at that
instance.

274

Figure 14: Recognising phrases in john saw the
man

4 Discussion

The examples above show some of the potential
for the Extended Lexicon approach: with a quite
small change to the notion of a lexical entry, sub-
stantive language processing tasks can be con-
strued as lexical description. Lexical description
languages like DATR were designed to bring or-
der to a domain, the lexicon, which exhibits quite
a lot of apparent disorder – many regularities, but
also sub-regularities, irregularities, strange corner-
cases etc..6 In the Extended Lexicon we bring
those descriptive techniques to bear on language
processing tasks more broadly, implicitly claim-
ing that grammar is less orderly than grammar-
ians sometimes suggest. Of course, statistical
approaches to language processing have similar
goals: statistical techniques are a powerful tool
for modelling ‘messy’ systems. And indeed many
properties of our model have statistical echoes: in-
heritance relations which provide symbolic ana-
logues of backing off or smoothing etc. In the POS
example above, the processing task was mapped
to a table lookup distributed across a lexical hier-
archy. An interesting next step would be to learn
that table from corpus data, identifying how much
context was required for different situations, how
to generalise effectively from individual cases etc.
This would be empirically-based but purely sym-
bolic NLP.

The approach taken here has some similari-
ties to various forms of Dependency Grammar

6More recent work on lexical description, such as LMF
(Francopoulo et al, 2006) and lemon (McCrae et al, 2012),
is more concerned with representation and standardisation of
surface lexical entries rather than deeper lexical generalisa-
tions, and uses less powerful inference mechanisms such as
description logics.

(Mel’cuk, 1988), in particular because it does not
include an explicit notion of phrase structure, in
the grammatical sense. However, the Extended
Lexicon is intended as a modelling tool, rather
than a linguistic theory, and it has no explicit no-
tion of dependency, or any kind of relationship be-
yond word adjacency.

Construction Grammar is a family of linguis-
tic theories with a common theme that they do
not make a sharp distinction between lexicon and
grammar. Instead, they have a single framework
which can represent words, phrases and sentences
and can easily combine idiosyncratic phenomena
with regular compositional processes. A recent
manifestation of Construction Grammar, Sign-
Based Construction Grammar, or SBCG (Boas
and Sag, 2012), uses the unification-based type-
theoretic framework of HPSG (Pollard and Sag,
1994) to provide a formal foundation for Con-
struction Grammar. Although this framework is
essentially monostratal in a similar way to the Ex-
tended Lexicon, it is far from lexically-oriented,
making use of a considerable range of grammati-
cal description mechanisms to constrain the over-
all behaviour of the system, in the same way that
HPSG does. In essence it has absorbed the lexicon
back into the grammar, rather than vice versa.

5 Future directions

The examples presented here are hugely simpli-
fied. In current work the Extended Lexicon ap-
proach is being applied to Text Mining and Senti-
ment Analysis, with a more sophisticated layered
treatment of the relationships between instances.
The core principle remains the same: that lan-
guage can be described in terms of the behaviour
of word instances and word adjacency relations,
out of which the behaviour of whole sentences
emerges.

Future directions for this work include ex-
ploring the use of corpora to build empirically-
based Extended Lexicon systems; introducing
non-deterministic and statistical processing into
the system; and exploring the use of other ‘topolo-
gies’ for word instances – the word-string-based
topology described here is appropriate for text
processing, but other topologies, such as a lat-
tice topology for speech recognition, or a bag-of-
words topology for generation, are also possible.

275

References
Hans Boas and Ivan A. Sag (eds.). 2012. Sign-Based

Construction Grammar. CSLI Publications, Stan-
ford.

Eric Brill. 1992. “A simple rule-based part of speech
tagger”. In Proceedings of the third conference on
Applied Natural Language Processing (ANLC ’92).
Association for Computational Linguistics, Strouds-
burg, PA, USA,

Roger Evans and Gerald Gazdar. 1996 “DATR: a
Language for Lexical Knowledge Representation.”
Computational Linguistics , 22(2), pp. 167–216.

Gil Francopoulo, Monte George, Nicoletta Calzolari,
Monica Monachini, Nuria Bel, Mandy Pet, and
Claudia Soria 2006 “Lexical markup framework
(LMF).” International Conference on Language Re-
sources and Evaluation – LREC 2006 Genoa

Roger Garside. 1987. “The CLAWS Word-tagging
System.” In: R. Garside, G. Leech and G. Samp-
son (eds), The Computational Analysis of English:
A Corpus-based Approach. Longman, London.

John E. Hopcroft and Jeffrey D. Ullman. 1979. Intro-
duction to Automata Theory, Languages, and Com-
putation. Addison-Wesley.

John McCrae, Guadalupe Aguado-de-Cea, Paul Buite-
laar, Philipp Cimiano, Thierry Declerck, Asunción
Gómez-Pérez, Jorge Gracia, Laura Hollink, Elena
Montiel-Ponsoda, Dennis Spohr and Tobias Wunner,
2012. “Interchanging lexical resources on the se-
mantic web.” Language Resources and Evaluation,
46(4). pp. 701–719 Springer

Igor A. Mel’cuk. 1988. Dependency Syntax: Theory
and Practice. State University of New York Pres,
Albany, NY.

Carl J. Pollard and Ivan A. Sag. 1994. Head-Driven
Phrase Structure Grammar. University of Chicago
Press, Chicago.

276

