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Abstract

Sentence function is a significant factor to
achieve the purpose of the speaker, which,
however, has not been touched in large-
scale conversation generation so far. In
this paper, we present a model to gener-
ate informative responses with controlled
sentence function. Our model utilizes a
continuous latent variable to capture vari-
ous word patterns that realize the expected
sentence function, and introduces a type
controller to deal with the compatibility
of controlling sentence function and gen-
erating informative content. Conditioned
on the latent variable, the type controller
determines the type (i.e., function-related,
topic, and ordinary word) of a word to
be generated at each decoding position.
Experiments show that our model outper-
forms state-of-the-art baselines, and it has
the ability to generate responses with both
controlled sentence function and informa-
tive content.

1 Introduction

Sentence function is an important linguistic feature
and a typical taxonomy in terms of the purpose of
the speaker (Rozakis, 2003). There are four major
function types in the language including interrog-
ative, declarative, imperative, and exclamatory, as
described in (Rozakis, 2003). Each sentence func-
tion possesses its own structure, and transforma-
tion between sentence functions needs a series of
changes in word order, syntactic patterns and other
aspects (Akmajian, 1984; Yule, 2010).

Since sentence function is regarding the purpose
of the speaker, it can be a significant factor indi-
cating the conversational purpose during interac-

∗*Corresponding author: Minlie Huang.

Post I’m really hungry now.
Interrogative What did you have at breakfast?

Response Imperative Let’s have dinner together!
Declarative Me, too. But you ate too much at lunch.

Figure 1: Responses with three sentence func-
tions. Function-related words are in red, topic
words in blue, and others are ordinary words.

tions, but surprisingly, this problem is rather un-
touched in dialogue systems. As shown in Fig-
ure 1, responses with different functions can be
used to achieve different conversational purposes:
Interrogative responses can be used to acquire
further information from the user; imperative re-
sponses are used to make requests, directions, in-
structions or invitations to elicit further interac-
tions; and declarative responses commonly make
statements to state or explain something.1 Inter-
rogative and imperative responses can be used to
avoid stalemates (Li et al., 2016b), which can be
viewed as important proactive behaviors in con-
versation (Yu et al., 2016). Thus, conversational
systems equipped with the ability to control the
sentence function can adjust its strategy for dif-
ferent purposes within different contexts, behave
more proactively, and may lead the dialogue to go
further.

Generating responses with controlled sentence
functions differs significantly from other tasks on
controllable text generation (Hu et al., 2017; Ficler
and Goldberg, 2017; Asghar et al., 2017; Ghosh
et al., 2017; Zhou and Wang, 2017; Dong et al.,
2017; Murakami et al., 2017). These studies, in-
volving the control of sentiment polarity, emotion,
or tense, fall into local control, more or less, be-
cause the controllable variable can be locally re-

1 Note that we did not include the exclamatory category
in this paper because an exclamatory sentence in conversation
is only a strong emotional expression of the original sentence
with few changes.
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flected by decoding local variable-related words,
e.g., terrible for negative sentiment (Hu et al.,
2017; Ghosh et al., 2017), glad for happy emo-
tion (Zhou et al., 2018; Zhou and Wang, 2017),
and was for past tense (Hu et al., 2017). By
contrast, sentence function is a global attribute
of text, and controlling sentence function is more
challenging in that it requires to adjust the global
structure of the entire text, including changing
word order and word patterns.

Controlling sentence function in conversational
systems faces another challenge: in order to gen-
erate informative and meaningful responses, it has
to deal with the compatibility of the sentence func-
tion and the content. Similar to most existing neu-
ral conversation models (Li et al., 2016a; Mou
et al., 2016; Xing et al., 2017), we are also strug-
gling with universal and meaningless responses
for different sentence functions, e.g., “Is that
right?” for interrogative responses, “Please!” for
imperative responses and “Me, too.” for declar-
ative responses. The lack of meaningful topics
in responses will definitely degrade the utility of
the sentence function so that the desired conversa-
tional purpose can not be achieved. Thus, the task
needs to generate responses with both informative
content and controllable sentence functions.

In this paper, we propose a conversation gen-
eration model to deal with the global control of
sentence function and the compatibility of control-
ling sentence function and generating informative
content. We devise an encoder-decoder structure
equipped with a latent variable in conditional vari-
ational autoencoder (CVAE) (Sohn et al., 2015),
which can not only project different sentence func-
tions into different regions in a latent space, but
also capture various word patterns within each
sentence function. The latent variable, supervised
by a discriminator with the expected function la-
bel, is also used to realize the global control of sen-
tence function. To address the compatibility issue,
we use a type controller which lexicalizes the sen-
tence function and the content explicitly. The type
controller estimates a distribution over three word
types, i.e., function-related, topic, and ordinary
words. During decoding, the word type distribu-
tion will be used to modulate the generation distri-
bution in the decoder. The type sequence of a re-
sponse can be viewed as an abstract representation
of sentence function. By this means, the model has
an explicit and strong control on the function and

the content. Our contributions are as follows:

• We investigate how to control sentence func-
tions to achieve different conversational pur-
poses in open-domain dialogue systems. We
analyze the difference between this task and
other controllable generation tasks.

• We devise a structure equipped with a la-
tent variable and a type controller to achieve
the global control of sentence function and
deal with the compatibility of controllable
sentence function and informative content in
generation. Experiments show the effective-
ness of the model.

2 Related Work

Recently, language generation in conversational
systems has been widely studied with sequence-
to-sequence (seq2seq) learning (Sutskever et al.,
2014; Bahdanau et al., 2015; Vinyals and Le,
2015; Shang et al., 2015; Serban et al., 2016,
2017). A variety of methods has been proposed
to address the important issue of content quality,
including enhancing diversity (Li et al., 2016a;
Zhou et al., 2017) and informativeness (Mou et al.,
2016; Xing et al., 2017) of the generated re-
sponses.

In addition to the content quality, controllabil-
ity is a critical problem in text generation. Vari-
ous methods have been used to generate texts with
controllable variables such as sentiment polarity,
emotion, or tense (Hu et al., 2017; Ghosh et al.,
2017; Zhou and Wang, 2017; Zhou et al., 2018) .
There are mainly two solutions to deal with con-
trollable text generation. First, the variables to be
controlled are embedded into vectors which are
then fed into the models to reflect the character-
istics of the variables (Ghosh et al., 2017; Zhou
et al., 2018). Second, latent variables are used to
capture the information of controllable attributes
as in the variational autoencoders (VAE) (Zhou
and Wang, 2017). (Hu et al., 2017) combined the
two techniques by disentangling a latent variable
into a categorical code and a random part to better
control the attributes of the generated text.

The task in this paper differs from the above
tasks in two aspects: (1) Unlike other tasks that
realize controllable text generation by decoding
attribute-related words locally, our task requires to
not only decode function-related words, but also
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Figure 2: Model overview. During training, the latent variable z is sampled from the recognition network
which is supervised by the function label in the discriminator. In the type controller, the latent variable
and the decoder’s state are used to estimate a type distribution which modulates the final generation
distribution. During test, z is sampled from the prior network whose input is only the post. The response
encoder in the dotted box appears only in training.

plan the words globally to realize the function type
to be controlled. (2) The compatibility of control-
lable variables and content quality is less studied
in the literature. The most similar work in (Zhao
et al., 2017) proposed to control the dialogue act
of a response, which is also a global attribute.
However, the model controls dialog act by directly
feeding a latent variable into the decoder, instead,
our model has a stronger control on the genera-
tion process via a type controller in which words
of different types are concretely modeled.

3 Model

3.1 Task Definition and Model Overview
Our problem is formulated as follows: given a post
X = x1x2 · · ·xn and a sentence function cate-
gory l, our task is to generate a response Y =
y1y2 · · · ym that is not only coherent with the spec-
ified function category l but also informative in
content. We denote c as the concatenation of all
the input information, i.e. c = [X; l]. Essentially,
the goal is to estimate the conditional probability:

P (Y,z|c) = P (z|c) · P (Y |z, c) (1)

The latent variable z is used to capture the sen-
tence function of a response. P (z|c), parameter-
ized as the prior network in our model, indicates
the sampling process of z, i.e., drawing z from

P (z|c). And P (Y |z, c) =
∏m
t=1 P (yt|y<t, z, c)

is applied to model the generation of the response
Y conditioned on the latent variable z and the in-
put c, which is implemented by a decoder in our
model.

Figure 2 shows the overview of our model. As
aforementioned, the model is constructed in the
encoder-decoder framework. The encoder takes a
post and a response as input, and obtains the hid-
den representations of the input. The recognition
network and the prior network, adopted from the
CVAE framework (Sohn et al., 2015), sample a la-
tent variable z from two normal distributions, re-
spectively. Supervised by a discriminator with the
function label, the latent variable encodes mean-
ingful information to realize a sentence function.
The latent variable, along with the decoder’s state,
is also used to control the type of a word in gen-
eration via the type controller. In the decoder, the
final generation distribution is mixed by the type
distribution which is obtained from the type con-
troller. By this means, the latent variable encodes
information not only from sentence function but
also from word types, and in return, the decoder
and the type controller can deal with the compat-
ibility of realizing sentence function and informa-
tion content in generation.
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3.2 Encoder-Decoder Framework

The encoder-decoder framework has been widely
used in language generation (Sutskever et al.,
2014; Vinyals and Le, 2015). The encoder trans-
forms the post sequence X = x1x2 · · ·xn into
hidden representations H = h1h2 · · ·hn, as fol-
lows:

ht = GRU(e(xt),ht−1) (2)

where GRU is gated recurrent unit (Cho et al.,
2014), and e(xt) denotes the embedding of the
word xt.

The decoder first updates the hidden states S =
s1s2 · · · sm, and then generates the target se-
quence Y = y1y2 · · · ym as follows:

st = GRU(st−1, e(yt−1), cvt−1) (3)

yt ∼ P (yt|y<t, st) = softmax(Wst) (4)

where this GRU does not share parameters with
the encoder’s network. The context vector cvt−1
is a dynamic weighted sum of the encoder’s hid-
den states, i.e., cvt−1 =

∑n
i=1 α

t−1
i hi, and αt−1i

scores the relevance between the decoder’s state
st−1 and the encoder’s state hi (Bahdanau et al.,
2015).

3.3 Recognition/Prior Network

On top of the encoder-decoder structure, our
model introduces the recognition network and the
prior network of CVAE framework, and utilizes
the two networks to draw latent variable samples
during training and test respectively. The latent
variable can project different sentence functions
into different regions in a latent space, and also
capture various word patterns within a sentence
function.

In the training process, our model needs to sam-
ple the latent variable from the posterior distribu-
tion P (z|Y, c), which is intractable. Thus, the
recognition network qφ(z|Y, c) is introduced to
approximate the true posterior distribution so that
we can sample z from this deterministic parame-
terized model. We assume that z follows a mul-
tivariate Gaussian distribution whose covariance
matrix is diagonal, i.e., qφ(z|Y, c) ∼ N (µ, σ2I).
Under this assumption, the recognition network
can be parameterized by a deep neural network
such as a multi-layer perceptron (MLP):

[µ, σ2] = MLPposterior(Y, c) (5)

During test, we use the prior network pθ(z|c) ∼
N (µ

′
, σ
′2I) instead to draw latent variable sam-

ples, which can be implemented in a similar way:

[µ
′
, σ
′2] = MLPprior(c) (6)

To bridge the gap between the recognition and the
prior networks, we add the KL divergence term
that should be minimized to the loss function:

L1 = KL(qφ(z|Y, c)||pθ(z|c)) (7)

3.4 Discriminator
The discriminator supervises z to encode
function-related information in a response with
supervision signals. It takes z as input instead of
the generated response Y to avoid the vanishing
gradient of z, and predicts the function category
conditioned on z:

P (l|z) = softmax(WD ·MLPdis(z)) (8)

This formulation can enforce z to capture the fea-
tures of sentence function and enhance the influ-
ence of z in word generation. The loss function of
the discriminator is given by:

L2 = −Eqφ(z|Y,c)[logP (l|z)] (9)

3.5 Type Controller
The type controller is designed to deal with the
compatibility issue of controlling sentence func-
tion and generating informative content. As afore-
mentioned, we classify the words in a response
into three types: function-related, topic, and or-
dinary words. The type controller estimates a dis-
tribution over the word types at each decoding po-
sition, and the type distribution will be used in the
mixture model of the decoder for final word gener-
ation. During the decoding process, the decoder’s
state st and the latent variable z are taken as input
to estimate the type distribution as follows:

P (wt|st, z) = softmax(W0 ·MLPtype(st, z))
(10)

Noticeably, the latent variable z introduced to
the RNN encoder-decoder framework often fails
to learn a meaningful representation and has lit-
tle influence on language generation, because the
RNN decoder may ignore z during generation,
known as the issue of vanishing latent variable
(Bowman et al., 2016). By contrast, our model
allows z to directly control the word type at each
decoding position, which has more influence on
language generation.
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3.6 Decoder
Compared with the traditional decoder described
in Section 3.2, our decoder updates the hidden
state st with both the input information c and the
latent variable z, and generates the response in a
mixture form which is combined with the type dis-
tribution obtained from the type controller:

st = GRU(st−1, e(yt−1), cvt−1, c, z) (11)

P (yt|y<t, c, z) = P (yt|yt−1, st, c, z)

=
3∑
i=1

P (wt = i|st, z)P (yt|yt−1, st, c, z, wt = i)

(12)

where wt = 1, 2, 3 stand for function-related
words, topic words, and ordinary words, respec-
tively. The probability for choosing different word
types at time t, P (wt = i|st, z), is obtained from
the type controller, as shown in Equation (10). The
probabilities of choosing words in different types
are introduced as follows:
Function-related Word: Function-related words
represent the typical words for each sentence func-
tion, e.g., what for interrogative responses, and
please for imperative responses. To select the
function-related words at each position, we simul-
taneously consider the decoder’s state st, the latent
variable z and the function category l.

P (yt|yt−1, st, c, z, wt = 1) =

softmax(W1 · [st, z, e(l)]) (13)

where e(l) is the embedding vector of the func-
tion label. Under the control of z, our model can
learn to decode function-related words at proper
positions automatically.
Topic Word: Topic words are crucial for generat-
ing an informative response. The probability for
selecting a topic word at each decoding position
depends on the current hidden state st:

P (yt|yt−1, st, c, z, wt = 2) = softmax(W2st)
(14)

This probability is over the topic words we predict
conditioned on a post. Section 3.8 will describe
the details.
Ordinary Word: Ordinary words play a func-
tional role in making a natural and grammatical
sentence. The probability of generating ordinary
words is estimated as below:

P (yt|yt−1, st, c, z, wt = 3) = softmax(W3st) (15)

The generation loss of the decoder is given as
below:

L3 = −Eqφ(z|Y,c)[logP (Y |z, c)]

= −Eqφ(z|Y,c)[
∑
t

logP (yt|y<t, z, c)] (16)

3.7 Loss Function
The overall loss L is a linear combination of the
KL term L1, the classification loss of the discrim-
inator L2, and the generation loss of the decoder
L3:

L = αL1 + L2 + L3 (17)

We let α gradually increase from 0 to 1. This
technique of KL cost annealing can address the
optimization challenges of vanishing latent vari-
ables in the RNN encoder-decoder (Bowman et al.,
2016).

3.8 Topic Word Prediction
Topic words play a key role in generating an infor-
mative response. We resort to pointwise mutual
information (PMI) (Church and Hanks, 1990) for
predicting a list of topic words that are relevant to
a post. Let x and y indicate a word in a postX and
its response Y respectively, and PMI is computed
as follows:

PMI(x, y) = log
P (x, y)

P (x)P (y)
(18)

Then, the relevance score of a topic word to a
given post x1x2 · · ·xn can be approximated as fol-
lows, similar to (Mou et al., 2016):

REL(x1, ..., xn, y) ≈
n∑
i=1

PMI(xi, y) (19)

During training, the words in a response with high
REL scores to the post are treated as topic words.
During test, we use REL to select the top ranked
words as topic words for a post.

4 Experiment

4.1 Data Preparation
We collected a Chinese dialogue dataset from
Weibo 2. We crawled about 10 million post-
responses pairs. Since our model needs the sen-
tence function label for each pair, we built a clas-
sifier to predict the sentence function automati-
cally to construct large-scale labeled data. Thus,

2http://www.weibo.com



1504

we sampled about 2,000 pairs from the original
dataset and annotated the data manually with four
categories, i.e., interrogative, imperative, declara-
tive and other. This small dataset was partitioned
into the training, validation, and test sets with the
ratio of 6:1:1. Three classifiers, including LSTM
(Hochreiter and Schmidhuber, 1997), Bi-LSTM
(Graves et al., 2005) and a self-attentive model
(Lin et al., 2017), were attempted on this dataset.
The results in Table 1 show that the self-attentive
classifier outperforms other models and achieves
the best accuracy of 0.78 on the test set.

Model Accuracy
LSTM 0.60

Bi-LSTM 0.75
Self-Attentive 0.78

Table 1: Accuracy of sentence function classifica-
tion on the 2,000 post-response pairs.

We then applied the self-attentive classifier to
annotate the large dataset and obtained a dialogue
dataset with noisy sentence function labels3. To
balance the distribution of sentence functions, we
randomly sampled about 0.6 million pairs for each
sentence function to construct the final dataset.
The statistics of this dataset are shown in Table 2.
The dataset4 is available at http://coai.cs.
tsinghua.edu.cn/hml/dataset.

Training

#Post 1,963,382

#Response
Interrogative 618,340
Declarative 672,346
Imperative 672,696

Validation

#Post 24,034

#Response
Interrogative 7,045
Declarative 9,685
Imperative 7,304

Test #Post 6,000

Table 2: Corpus statistics.

4.2 Experiment Settings
Our model was implemented with TensorFlow5.
We applied bidirectional GRU with 256 cells to
the encoder and GRU with 512 cells to the de-
coder. The dimensions of word embedding and
function category embedding were both set to
100. We also set the dimension of latent vari-
ables to 128. The vocabulary size was set to

3Though the labels are noisy, the data are sufficient to
train a generation model in practice.

4Note that we strictly obeyed the policies of Weibo and
anonymized potential private information in dialogues. This
dataset is strictly limited for academic use.

5https://github.com/tensorflow/tensorflow

40,000. Stochastic gradient descent (Qian, 1999)
was used to optimize our model, with a learning
rate of 0.1, a decay rate of 0.9995, and a momen-
tum of 0.9. The batch size was set to 128. Our
codes are available at https://github.com/
kepei1106/SentenceFunction.

We chose several state-of-the-art baselines,
which were implemented with the settings pro-
vided in the original papers:
Conditional Seq2Seq (c-seq2seq): A Seq2Seq
variant which takes the category (i.e., function
type) embedding as additional input at each de-
coding position (Ficler and Goldberg, 2017).
Mechanism-aware (MA): This model assumes
that there are multiple latent responding mecha-
nisms (Zhou et al., 2017). The number of respond-
ing mechanisms is set to 3, equal to the number of
function types.
Knowledge-guided CVAE (KgCVAE): A modi-
fied CVAE which aims to control the dialog act of
a generated response (Zhao et al., 2017).

4.3 Automatic Evaluation
Metrics: We adopted Perplexity (PPL) (Vinyals
and Le, 2015), Distinct-1 (Dist-1), Distinct-2
(Dist-2) (Li et al., 2016a), and Accuracy (ACC)
to evaluate the models at the content and function
level. Perplexity can measure the grammatical-
ity of generated responses. Distinct-1/distinct-2 is
the proportion of distinct unigrams/bigrams in all
the generated tokens, respectively. Accuracy mea-
sures how accurately the sentence function can be
controlled. Specifically, we compared the prespec-
ified function (as input to the model) with the func-
tion of a generated response, which is predicted by
the self-attentive classifier (see Section 4.1).

Model PPL Dist-1 Dist-2 ACC
c-seq2seq 57.14 949/.007 5177/.041 0.973

MA 46.08 745/.005 2952/.027 0.481
KgCVAE 56.81 1531/.009 10683/.070 0.985

Our Model 55.85 1833/.008 15586/.075 0.992

Table 3: Automatic evaluation with perplexity
(PPL), distinct-1 (Dist-1), distinct-2 (Dist-2), and
accuracy (ACC). The integers in the Dist-* cells
denote the total number of distinct n-grams.

Results: Our model has lower perplexity than c-
seq2seq and KgCVAE, indicating that the model is
comparable with other models in generating gram-
matical responses. Note that MA has the lowest
perplexity because it tends to generate generic re-
sponses.

http://coai.cs.tsinghua.edu.cn/hml/dataset
http://coai.cs.tsinghua.edu.cn/hml/dataset
https://github.com/kepei1106/SentenceFunction
https://github.com/kepei1106/SentenceFunction
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Model Interrogative Declarative Imperative
Gram. Appr. Info. Gram. Appr. Info. Gram. Appr. Info.

Ours vs. c-seq2seq 0.534 0.536 0.896* 0.630* 0.573* 0.764* 0.685* 0.504 0.893*
Ours vs. MA 0.802* 0.602* 0.675* 0.751* 0.592* 0.617* 0.929* 0.568* 0.577*
Ours vs. KgCVAE 0.510 0.626* 0.770* 0.546* 0.515* 0.744* 0.780* 0.521* 0.837*

Table 4: Manual evaluation results for different functions. The scores indicate the percentages that
our model wins the baselines after removing tie pairs. The scores of our model marked with * are
significantly better than the competitors (Sign Test, p-value < 0.05).

As for distinct-1 and distinct-2, our model gen-
erates remarkably more distinct unigrams and bi-
grams than the baselines, indicating that our model
can generate more diverse and informative re-
sponses compared to the baselines.

In terms of sentence function accuracy, our
model outperforms all the baselines and achieves
the best accuracy of 0.992, which indicates that
our model can control the sentence function more
precisely. MA has a very low score because there
is no direct way to control sentence function, in-
stead, it learns automatically from the data.

4.4 Manual Evaluation

To evaluate the generation quality and how well
the models can control sentence function, we con-
ducted pair-wise comparison. 200 posts were ran-
domly sampled from the test set and each model
was required to generate responses with three
function types to each post. For each pair of re-
sponses (one by our model and the other by a base-
line, along with the post), annotators were hired
to give a preference (win, lose, or tie). The total
annotation amounts to 200×3×3×3=5,400 since
we have three baselines, three function types, and
three metrics. We resorted to a crowdsourcing ser-
vice for annotation, and each pair-wise compari-
son was judged by 5 curators.
Metrics: We designed three metrics to evaluate
the models from the perspectives of sentence func-
tion and content: grammaticality (whether a re-
sponse is grammatical and coherent with the sen-
tence function we prespecified), appropriateness
(whether a response is a logical and appropriate
reply to its post), and informativeness (whether a
response provides meaningful information via the
topic words relevant to the post). Note that the
three metrics were separately evaluated.
Results: The scores in Table 4 represent the per-
centages that our model wins a baseline after re-
moving tie pairs. A value larger than 0.5 indi-
cates that our model outperforms its competitor.
Our model outperforms the baselines significantly

in most cases (Sign Test, with p-value < 0.05).
Among the three function types, our model per-
forms significantly better than the baselines when
generating declarative and imperative responses.
As for interrogative responses, our model is bet-
ter but the difference is not significant in some set-
tings. This is because interrogative patterns are
more apparent and easier to learn, thereby all the
models can capture some of the patterns to gen-
erate grammatical and appropriate responses, re-
sulting in more ties. By contrast, declarative and
imperative responses have less apparent patterns
whereas our model is better at capturing the global
patterns through modeling the word types explic-
itly.

We can also see that our model obtains particu-
larly high scores in informativeness. This demon-
strates that our model is better to generate more
informative responses, and is able to control sen-
tence functions at the same time.

The annotation statistics are shown in Table
5. The percentage of annotations that at least 4
judges assign the same label (at least 4/5 agree-
ment) is larger than 50%, and the percentage for at
least 3/5 agreement is about 90%, indicating that
annotators reached a moderate agreement.

At least 3/5 At least 4/5
Grammaticality 91.7% 60.1%
Appropriateness 88.6% 52.5%
Informativeness 95.9% 71.2%

Table 5: Annotation statistics. At least n/5 means
there are no less than n judges assigning the same
label to a record during annotation.

4.5 Words and Patterns in Function Control
To further analyze how our model realizes the
global control of sentence function, we presented
frequent words and frequent word patterns within
each function. Specifically, we counted the fre-
quency of a function-related word in the gener-
ated responses. The type of a word is predicted
by the type controller. Further, we replaced the
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Function Frequent Words Frequent Patterns Response Examples
Chinese English Chinese English Chinese English

Interrogative ? ?
be

particle
mean
what

ݔ ݕ Does ݔ mean ?ݕ Do you mean I’m handsome?ݔ ݕ Is ݔ ?ݕ Are you praising me?ݔ ݕ Where does ݔ ?ݕ Where do you work?ݔ ݕ ݖ What ݖ does ݔ want to ݕ? What type do you want to choose?
Imperative ! !

will
can

come
please

ݕ Do ݕ, then. Take care of yourself, then.ݔ ݕ ݖ Let ݔ give ݕ to ݖ. Let me give your house to you.

Declarative be
also/too

think
but
no

ݔ ݕ ݖ ݔ also ݕ, but ݖ I also think so, but I will find a 
person. Ha-ha.ݔ ܽ ܾ ܽ too, and ,ݔ has ܾ. Me, too, and my fans have been 
shocked by me.

Figure 3: Frequent function-related words and frequent patterns containing at least 3 function-related
words. The letters denote the variables which replace ordinary and topic words in the generated re-
sponses. The underlined words in responses are those occurring in patterns.

ordinary and topic words of a generated response
with variables and treated each response as a se-
quence of function-related words and variables.
We then used the Apriori algorithm (Agrawal and
Srikant, 1994) to mine frequent patterns in these
sequences. We retained frequent patterns that con-
sist of at most 5 words and appear in at least 2%
of the generated responses.

Figure 3 presents the most frequent words (the
second and third columns) and patterns (the fourth
and fifth columns) for each function type. Note
that the word patterns can be viewed as an abstract
representation of sentence function. We observed
that:

First, function-related words are distributed at
multiple positions of a sentence, indicating that
realizing a sentence function needs a global con-
trol by not only predicting the word types but also
planning the words of different types properly.

Second, the frequent words clearly reveal the
difference between function types. For in-
stance, interrogatives like 什么(what), ？(?) and
吗(particle) are commonly seen in interrogative
responses, words like 请(please), 来(come), and
要(will) occur frequently in imperative responses.
Further, word patterns in different function types
differ significantly (see the fourth/fifth columns),
indicating that the model is able to learn function-
specific word patterns.

Third, interrogative and imperative responses
have explicit patterns, while declarative responses
are more implicit and divergent in pattern. Inter-
rogative responses fall into Yes-No, Wh-, How-,
and other questions. Imperative responses gener-
ally start with the base form of verbs or imperative

words including 请(please). Our model succeeds
in capturing two typical forms in declarative re-
sponses: adversative and progressive structures.

4.6 Case Study

Post:
What would you do if I suddenly broke up with you 
someday?

Target Function: Interrogative
c-seq2seq:

Who are you?
MA:

Should I investigate the conclusion of judicial 
measure related to the law?

KgCVAE:
Did you miss me?

Our Model:
Do you mean that it’s my fault?

Target Function: Imperative
c-seq2seq:

I’ll be fine!
MA:

Break up with guys. Break up with guys.
KgCVAE:

I will tell you!
Our Model:

Rest assured that I would give your gift to you.
Target Function: Declarative
c-seq2seq:

I think so, too. I feel that I’m a good man.
MA:

I don’t know what to do, but I’m in fear.
KgCVAE:

I think I’m a good man, too.
Our Model:

I would think that I was stupid and I would be 
blamed by my mother.

Figure 4: Generated responses of all the models
for different sentence functions. In the responses
of our model, function-related words are in red
and topic words in blue. The word type is pre-
dicted by the type controller.
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We presented an example in Figure 4 to show
that our model can generate responses of differ-
ent function types better compared to baselines.
We can see that each function type can be real-
ized by a natural composition of function-related
words (in red) and topic words (in blue). More-
over, function-related words are different and are
placed at different positions across function types,
indicating that the model learns function-specific
word patterns. These examples also show that the
compatibility issue of controlling sentence func-
tion and generating informative content is well
addressed by planning function-related and topic
words properly.

Post
What would you do if I suddenly broke up with you someday?

Interrogative
Response #1 Do you mean that it’s my fault?
Interrogative
Response #2 Can you speak normally?
Interrogative
Response #3 What do you think I should do? Shall I break up with you?

Figure 5: Different patterns of interrogative re-
sponses generated by our model.

Furthermore, we verified the ability of our
model to capture fine-grained patterns within a
sentence function. We took interrogative re-
sponses as example and obtained responses by
drawing latent variable samples repeatedly. Figure
5 shows interrogative responses with different pat-
terns generated by our model given the same post.
The model generates several Yes-No questions led
by words such as 吗(do), 会(can) and 要(shall),
and a Wh-question led by 怎样(what). This ex-
ample shows that the latent variable can capture
the fine-grained patterns and improve the diversity
of responses within a function.

5 Conclusion

We present a model to generate responses with
both controllable sentence function and informa-
tive content. To deal with the global control of
sentence function, we utilize a latent variable to
capture the various patterns for different sentence
functions. To address the compatibility issue, we
devise a type controller to handle function-related
and topic words explicitly. The model is thus able
to control sentence function and generate infor-
mative content simultaneously. Extensive exper-
iments show that our model performs better than
several state-of-the-art baselines.

As for future work, we will investigate how to
apply the technique to multi-turn conversational
systems, provided that the most proper sentence
function can be predicted under a given conversa-
tion context.
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