Dependency Hashing for n-best CCG Parsing

Dominick Ng and James R. Curran
9-lab, School of Information Technologies
University of Sydney
NSW, 2006, Australia
{dominick.ng, james.r.curran}@sydney.edu.au

Abstract

Optimising for one grammatical representa-
tion, but evaluating over a different one is
a particular challenge for parsers and n-best
CCG parsing. We find that this mismatch
causes many n-best CCG parses to be semanti-
cally equivalent, and describe a hashing tech-
nique that eliminates this problem, improving
oracle n-best F-score by 0.7% and reranking
accuracy by 0.4%. We also present a compre-
hensive analysis of errors made by the C&C
CCG parser, providing the first breakdown of
the impact of implementation decisions, such
as supertagging, on parsing accuracy.

1 Introduction

Reranking techniques are commonly used for im-
proving the accuracy of parsing (Charniak and John-
son, 2005). Efficient decoding of a parse forest is
infeasible without dynamic programming, but this
restricts features to local tree contexts. Reranking
operates over a list of n-best parses according to the
original model, allowing poor local parse decisions
to be identified using arbitrary rich parse features.
The performance of reranking depends on the
quality of the underlying n-best parses. Huang and
Chiang (2005)’s n-best algorithms are used in a wide
variety of parsers, including an n-best version of the
C&C CCG parser (Clark and Curran, 2007; Brennan,
2008). The oracle F-score of this parser (calculated
by selecting the most optimal parse in the n-best list)
is 92.60% with n = 50 over a baseline 1-best F-
score of 86.84%. In contrast, the Charniak parser
records an oracle F-score of 96.80% in 50-best mode

497

over a baseline of 91.00% (Charniak and Johnson,
2005). The 4.2% oracle score difference suggests
that further optimisations may be possible for CCG.
We describe how n-best parsing algorithms that
operate over derivations do not account for absorp-
tion ambiguities in parsing, causing semantically
identical parses to exist in the CCG n-best list. This
is caused by the mismatch between the optimisa-
tion target (different derivations) and the evaluation
target (CCG dependencies). We develop a hash-
ing technique over dependencies that removes du-
plicates and improves the oracle F-score by 0.7%
to 93.32% and reranking accuracy by 0.4%. Huang
et al. (2006) proposed a similar idea where strings
generated by a syntax-based MT rescoring system
were hashed to prevent duplicate translations.
Despite this improvement, there is still a substan-
tial gap between the C&C and Charniak oracle F-
scores. We perform a comprehensive subtractive
analysis of the C&C parsing pipeline, identifying the
relative contribution of each error class and why the
gap exists. The parser scores 99.49% F-score with
gold-standard categories on section 00 of CCGbank,
and 94.32% F-score when returning the best parse
in the chart using the supertagger on standard set-
tings. Thus the supertagger contributes roughly 5%
of parser error, and the parser model the remaining
7.5%. Various other speed optimisations also detri-
mentally affect accuracy to a smaller degree.

Several subtle trade-offs are made in parsers be-
tween speed and accuracy, but their actual impact
is often unclear. Our work investigates these and the
general issue of how different optimisation and eval-
uation targets can affect parsing performance.

Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, pages 497-505,
Jeju, Republic of Korea, 8-14 July 2012. (©2012 Association for Computational Linguistics

Jack swims the river
NP S\NP ((S\NP)\(S\NP))/NP NP/N N

NP

acCross

(S\NP)\(S\NP)
S\NP
S

Figure 1: A CCG derivation with a PP adjunct, demon-
strating forward and backward combinator application.
Adapted from Villavicencio (2002).

2 Background

Combinatory Categorial Grammar (CCG, Steedman,
2000) is a lexicalised grammar formalism based on
formal logic. The grammar is directly encoded in
the lexicon in the form of categories that govern the
syntactic behaviour of each word.

Atomic categories such as N (noun), NP (noun
phrase), and PP (prepositional phrase) represent
complete units. Complex categories encode subcat-
egorisation information and are functors of the form
X/Y or X\Y. They represent structures which
combine with an argument category Y to produce a
result category X . In Figure 1, the complex category
S\ NP for swims represents an intransitive verb re-
quiring a subject NP to the left.

Combinatory rules are used to combine categories
together to form an analysis. The simplest rules
are forward and backward application, where com-
plex categories combine with their outermost argu-
ments. Forward and backward composition allow
categories to be combined in a non-canonical order,
and type-raising turns a category into a higher-order
functor. A ternary coordination rule combines two
identical categories separated by a conj into one.

As complex categories are combined with their ar-
guments, they create a logical form representing the
syntactic and semantic properties of the sentence.
This logical form can be expressed in many ways;
we will focus on the dependency representation used
in CCGbank (Hockenmaier and Steedman, 2007). In
Figure 1, swims generates one dependency:

(swims, S|dcl]\NP;, 1, Jack, —)

where the dependency contains the head word,
head category, argument slot, argument word, and
whether the dependency is long-range.

498

Jack swims across the river
NP (S\NP)/PP PP/NP NP/N N
NP
PP
>
S\NP
S

Figure 2: A CCG derivation with a PP argument (note the
categories of swims and across). The bracketing is identi-
cal to Figure 1, but nearly all dependencies have changed.

2.1 Corpora and evaluation

CCGbank (Hockenmaier, 2003) is a transformation
of the Penn Treebank (PTB) data into CCG deriva-
tions, and it is the standard corpus for English cCG
parsing. Other CCG corpora have been induced in a
similar way for German (Hockenmaier, 2006) and
Chinese (Tse and Curran, 2010). CCGbank con-
tains 99.44% of the sentences from the PTB, and
several non-standard rules were necessary to achieve
this coverage. These include punctuation absorption
rules and unary type-changing rules for clausal ad-
juncts that are otherwise difficult to represent.

The standard CCG parsing evaluation calculates
labeled precision, recall, and F-score over the de-
pendencies recovered by a parser as compared to
CCGbank (Clark et al., 2002). All components of
a dependency must match the gold standard for it to
be scored as correct, and this makes the procedure
much harsher than the PARSEVAL labeled brackets
metric. In Figure 2, the PP across the river has been
interpreted as an argument rather than an adjunct as
in Figure 1. Both parses would score identically
under PARSEVAL as their bracketing is unchanged.
However, the adjunct to argument change results in
different categories for swims and across; nearly ev-
ery CCG dependency in the sentence is headed by
one of these two words and thus each one changes
as a result. An incorrect argument/adjunct distinc-
tion in this sentence produces a score close to 0.

All experiments in this paper use the normal-form
C&C parser model over CCGbank 00 (Clark and
Curran, 2007). Scores are reported for sentences
which the parser could analyse; we observed simi-
lar conclusions when repeating our experiments over
the subset of sentences that were parsable under all
configurations described in this paper.

2.2 The c&C parser

The C&C parser (Clark and Curran, 2007) is a fast
and accurate CCG parser trained on CCGbank 02-21,
with an accuracy of 86.84% on CCGbank 00 with
the normal-form model. It is a two-phase system,
where a supertagger assigns possible categories to
words in a sentence and the parser combines them
using the CKY algorithm. An n-best version incor-
porating the Huang and Chiang (2005) algorithms
has been developed (Brennan, 2008). Recent work
on a softmax-margin loss function and integrated su-
pertagging via belief propagation has improved this
to 88.58% (Auli and Lopez, 2011).

A parameter 3 is passed to the supertagger as a
multi-tagging probability beam. [is initially set at a
very restrictive value, and if the parser cannot form
an analysis the supertagger is rerun with a lower (3,
returning more categories and giving the parser more
options in constructing a parse. This adaptive su-
pertagging prunes the search space whilst maintain-
ing coverage of over 99%.

The supertagger also uses a tag dictionary, as de-
scribed by Ratnaparkhi (1996), and accepts a cut-
off k. Words seen more than k times in CCGbank
02-21 may only be assigned categories seen with
that word more than 5 times in CCGbank 02-21;
the frequency must also be no less than 1/500th of
the most frequent tag for that word. Words seen
fewer than & times may only be assigned categories
seen with the POS of the word in CCGbank 02-21,
subject to the cutoff and ratio constraint (Clark and
Curran, 2004b). The tag dictionary eliminates infre-
quent categories and improves the performance of
the supertagger, but at the cost of removing unseen
or infrequently seen categories from consideration.

The parser accepts POS-tagged text as input; un-
like many PTB parsers, these tags are fixed and
remain unchanged throughout during the parsing
pipeline. The POS tags are important features for the
supertagger; parsing accuracy using gold-standard
POS tags is typically 2% higher than using automat-
ically assigned POS tags (Clark and Curran, 2004b).

2.3 n-best parsing and reranking

Most parsers use dynamic programming, discard-
ing infeasible states in order to maintain tractability.
However, constructing an n-best list requires keep-

499

ing the top n states throughout. Huang and Chiang
(2005) define several n-best algorithms that allow
dynamic programming to be retained whilst generat-
ing precisely the top n parses — using the observation
that once the 1-best parse is generated, the 2nd best
parse must differ in exactly one location from it, and
so forth. These algorithms are defined on a hyper-
graph framework equivalent to a chart, so the parses
are distinguished based on their derivations. Huang
et al. (2006) develop a translation reranking model
using these n-best algorithms, but faced the issue of
different derivations yielding the same string. This
was overcome by storing a hashtable of strings at
each node in the tree, and rejecting any derivations
that yielded a previously seen string.

Collins (2000)’s parser reranker uses n-best
parses of PTB 02-21 as training data. Reranker fea-
tures include lexical heads and the distances be-
tween them, context-free rules in the tree, n-grams
and their ancestors, and parent-grandparent relation-
ships. The system improves the accuracy of the
Collins parser from 88.20% to 89.75%.

Charniak and Johnson (2005)’s reranker uses a
similar setup to the Collins reranker, but utilises
much higher quality n-best parses. Additional fea-
tures on top of those from the Collins reranker such
as subject-verb agreement, n-gram local trees, and
right-branching factors are also used. In 50-best
mode the parser has an oracle F-score of 96.80%,
and the reranker produces a final F-score of 91.00%
(compared to an 89.70% baseline).

3 Ambiguity in n-best CCG parsing

The type-raising and composition combinators al-
low the same logical form to be created from dif-
ferent category combination orders in a derivation.
This is termed spurious ambiguity, where different
derivational structures are semantically equivalent
and will evaluate identically despite having a differ-
ent phrase structure. The C&C parser employs the
normal-form constraints of Eisner (1996) to address
spurious ambiguity in 1-best parsing.

Absorption ambiguity occurs when a constituent
may be legally placed at more than one location in
a derivation, and all of the resulting derivations are
semantically equivalent. Punctuation such as com-
mas, brackets, and periods are particularly prone to

\ Avg P/sent Distinct P/sent % Distinct

\ Avg P/sent Distinct P/sent % Distinct

10-best 9.8 5.1 52 10-best 9.8 4.4 45
50-best 47.6 16.0 34 50-best 47.6 13.0 27
10-best# 9.0 9.0 100 10-best# 8.9 8.1 91
50-best# 37.9 37.9 100 50-best# 37.1 31.5 85

Table 1: Average and distinct parses per sentence over
CCGbank 00 with respect to CCG dependencies. # indi-
cates the inclusion of dependency hashing

absorption ambiguity in CCG; Figure 3 depicts four
semantically equivalent sequences of absorption and
combinator application in a sentence fragment.

The Brennan (2008) CCG n-best parser differen-
tiates CCG parses by derivation rather than logical
form. To illustrate how this is insufficient, we ran
the parser using Algorithm 3 of Huang and Chiang
(2005) with n = 10 and n = 50, and calculated how
many parses were semantically distinct (i.e. yield
different dependencies). The results (summarised in
Table 1) are striking: just 52% of 10-best parses and
34% of 50-best parses are distinct. We can also see
that fewer than n parses are found on average for
each sentence; this is mostly due to shorter sentences
that may only receive one or two parses.

We perform the same diversity experiment us-
ing the DepBank-style grammatical relations (GRs,
King et al., 2003; Briscoe and Carroll, 2006) out-
put of the parser. GRs are generated via a depen-
dency to GR mapping in the parser as well as a
post-processing script to clean up common errors
(Clark and Curran, 2007). GRs provide a more
formalism-neutral comparison and abstract away
from the raw CCG dependencies; for example, in
Figures 1 and 2, the dependency from swims to Jack
would be abstracted into (subj swims Jack)
and thus would be identical in both parses. Hence,
there are even fewer distinct parses in the GR results
summarised in Table 2: 45% and 27% of 10-best and
50-best parses respectively yield unique GRs.

3.1 Dependency hashing

To address this problem of semantically equivalent
n-best parses, we define a uniqueness constraint
over all the n-best candidates:

Constraint. Ar any point in the derivation, any n-
best candidate must not have the same dependencies
as any candidate already in the list.

500

Table 2: Average and distinct parses per sentence over
CCGbank 00 with respect to GRs. # indicates the inclu-
sion of dependency hashing

Enforcing this constraint is non-trivial as it is in-
feasible to directly compare every dependency in a
partial tree with another. Due to the flexible no-
tion of constituency in CCG, dependencies can be
generated at a variety of locations in a derivation
and in a variety of orders. This means that compar-
ing all of the dependencies in a particular state may
require traversing the entire sub-derivation at that
point. Parsing is already a computationally expen-
sive process, so we require as little overhead from
this check as possible.

Instead, we represent all of the CCG dependencies
in a sub-derivation using a hash value. This allows
us to compare the dependencies in two derivations
with a single numeric equality check rather than a
full iteration. The underlying idea is similar to that
of Huang et al. (2006), who maintain a hashtable
of unique strings produced by a translation reranker,
and reject new strings that have previously been gen-
erated. Our technique does not use a hashtable, and
instead only stores the hash value for each set of de-
pendencies, which is much more efficient but runs
the risk of filtering unique parses due to collisions.

As we combine partial trees to build the deriva-
tion, we need to convolve the hash values in a con-
sistent manner. The convolution operator must be
order-independent as dependencies may be gener-
ated in an arbitrary order at different locations in
each tree. We use the bitwise exclusive OR (&) op-
eration as our convolution operator: when two par-
tial derivations are combined, their hash values are
XOR’ed together. XOR is commonly employed in
hashing applications for randomly permuting num-
bers, and it is also order independent: a & b = b P a.
Using XOR, we enforce a unique hash value con-
straint in the n-best list of candidates, discarding po-
tential candidates with an identical hash value to any
already in the list.

big red ball) big red ball) big red ball) big red ball)
N/N NJN N RRB N/N N/N N RRB N/N N/N N RRB N/N N/N N RRB
N > N > N > T/]V>B
7 > i > 7]\] > 7]\[>
N g N - N > - N >

Figure 3: All four derivations have a different syntactic structure, but generate identical dependencies.

\ Collisions Comparisons %
10-best 300 54861 0.55
50-best 2109 225970 0.93

Table 3: Dependency hash collisions and comparisons
over 00 of CCGbank.

3.2 Hashing performance

We evaluate our hashing technique with several ex-
periments. A simple test is to measure the number of
collisions that occur, i.e. where two partial trees with
different dependencies have the same hash value.
We parsed CCGbank 00 with n = 10 and n = 50
using a 32 bit hash, and exhaustively checked the
dependencies of colliding states. We found that less
than 1% of comparisons resulted in collisions in
both 10-best and 50-best mode, and decided that this
was acceptably low for distinguishing duplicates.

We reran the diversity experiments, and verified
that every n-best parse for every sentence in CCG-
bank 00 was unique (see Table 1), corroborating our
decision to use hashing alone. On average, there
are fewer parses per sentence, showing that hashing
is eliminating many equivalent parses for more am-
biguous sentences. However, hashing also leads to a
near doubling of unique parses in 10-best mode and
a 2.3x increase in 50-best mode. Similar results are
recorded for the GR diversity (see Table 2), though
not every set of GRs is unique due to the many-
to-many mapping from CCG dependencies. These
results show that hashing prunes away equivalent
parses, creating more diversity in the n-best list.

We also evaluate the oracle F-score of the parser
using dependency hashing. Our results in Table 4
include a 1.1% increase in 10-best mode and 0.72%
in 50-best mode using the new constraints, showing
how the diversified parse list contains better candi-
dates for reranking. Our highest oracle F-score was
93.32% in 50-best mode.

501

Experiment \ LP LR LF AF

baseline 8727 86.41 86.84 84091
oracle 10-best 91.50 90.49 90.99 89.01
oracle 50-best 93.17 92.04 92.60 90.68
oracle 10-best” | 92.67 91.51 92.09 90.15
oracle 50-best” | 94.00 92.66 93.32 91.47

Table 4: Oracle precision, recall, and F-score on gold and
auto POS tags for the C&C n-best parser. # denotes the
inclusion of dependency hashing.

Test data
Training data || no hashing | hashing
no hashing 86.83 86.35
hashing 87.21 87.15

Table 5: Reranked parser accuracy; labeled F-score using
gold POS tags, with and without dependency hashing

3.3 CCG reranking performance

Finally, we implement a discriminative maximum
entropy reranker for the n-best C&C parser and
evaluate it when using dependency hashing. We
reimplement the features described in Charniak and
Johnson (2005) and add additional features based on
those used in the C&C parser and on features of CCG
dependencies. The training data is cross-fold n-best
parsed sentences of CCGbank 02-21, and we use the
MEGAM optimiser! in regression mode to predict the
labeled F-score of each n-best candidate parse.

Our experiments rerank the top 10-best parses
and use four configurations: with and without de-
pendency hashing for generating the training and
test data for the reranker. Table 5 shows that la-
beled F-score improves substantially when depen-
dency hashing is used to create reranker training
data. There is a 0.4% improvement using no hash-
ing at test, and a 0.8% improvement using hashing

"http://hal3.name/megam

at test, showing that more diverse training data cre-
ates a better reranker. The results of 87.21% with-
out hashing at test and 87.15% using hashing at test
are statistically indistinguishable from one other;
though we would expect the latter to perform better.

Our results also show that the reranker performs
extremely poorly using diversified test parses and
undiversified training parses. There is a 0.5% per-
formance loss in this configuration, from 86.83%
to 86.35% F-score. This may be caused by the
reranker becoming attuned to selecting between se-
mantically indistinguishable derivations, which are
pruned away in the diversified test set.

4 Analysing parser errors

A substantial gap exists between the oracle F-score
of our improved n-best parser and other PTB n-best
parsers (Charniak and Johnson, 2005). Due to the
different evaluation schemes, it is difficult to directly
compare these numbers, but whether there is further
room for improvement in CCG n-best parsing is an
open question. We analyse three main classes of er-
rors in the C&C parser in order to answer this ques-
tion: grammar error, supertagger error, and model
error. Furthermore, insights from this analysis will
prove useful in evaluating tradeoffs made in parsers.

Grammar error: the parser implements a subset
of the grammar and unary type-changing rules in
CCGbank for efficiency, with some rules, such as
substitution, omitted for efficiency (Clark and Cur-
ran, 2007). This means that, given the correct cat-
egories for words in a sentence, the parser may be
unable to combine them into a derivation yielding
the correct dependencies, or it may not recognise the
gold standard category at all.

There is an additional constraint in the parser that
only allows two categories to combine if they have
been seen to combine in the training data. This seen
rules constraint is used to reduce the size of the chart
and improve parsing speed, at the cost of only per-
mitting category combinations seen in CCGbank 02-
21 (Clark and Curran, 2007).

Supertagger error: The supertagger uses a re-
stricted set of 425 categories determined by a fre-
quency cutoff of 10 over the training data (Clark and
Curran, 2004b). Words with gold categories that are
not in this set cannot be tagged correctly.

502

The [parameter restricts the categories to within
a probability beam, and the tag dictionary restricts
the set of categories that can be considered for each
word. Supertagger model error occurs when the su-
pertagger can assign a word its correct category, but
the statistical model does not assign the correct tag
enough probability for it to fall within the 3.

Model error: The parser model features may
be rich enough to capture certain characteristics of
parses, causing it to select a suboptimal parse.

4.1 Subtractive experiments

We develop an oracle methodology to distinguish
between grammar, supertagger, and model errors.
This is the most comprehensive error analysis of a
parsing pipeline in the literature.

First, we supplied gold-standard categories for
each word in the sentence. In this experiment
the parser only needs to combine the categories
correctly to form the gold parse. In our testing
over CCGbank 00, the parser scores 99.49% F-
score given perfect categories, with 95.61% cover-
age. Thus, grammar error accounts for about 0.5%
of overall parser errors as well as a 4.4% drop in cov-
erage®. All results in this section will be compared
against this 99.49% result as it removes the grammar
error from consideration.

4.2 Supertagger and model error

To determine supertagger and model error, we run
the parser on standard settings over CCGbank 00
and examined the chart. If it contains the gold parse,
then a model error results if the parser returns any
other parser. Otherwise, it is a supertagger or gram-
mar error, where the parser cannot construct the best
parse. For each sentence, we found the best parse in
the chart by decoding against the gold dependencies.
Each partial tree was scored using the formula:

score = ncorrect — nbad

where ncorrect is the number of dependencies
which appear in the gold standard, and nbad is the
number of dependencies which do not appear in the
gold standard. The top scoring derivation in the tree
under this scheme is then returned.

2Clark and Curran (2004a) performed a similar experiment
with lower accuracy and coverage; our improved numbers are
due to changes in the parser.

Experiment | Lp LR LF AF cover ALF AAF
oracle cats 99.72 99.27 9949 9949 9561 0.00 0.00
best in chart -tagdict -seen rules | 96.88 94.81 95.84 94.17 99.01 -3.65 -5.32
best in chart -tagdict 96.13 9472 9542 9356 9937 | -4.07 -593
best in chart -seen rules 96.10 93.66 94.86 93.35 98.85 -4.63 -6.14
best in chart 95.15 93,50 9432 92.60 99.16 | -5.17 -6.89
baseline 87.27 86.41 86.84 8491 99.16 | -12.65 -14.58

Table 6: Oracle labeled precision, recall, F-score, F-score with auto POS, and coverage over CCGbank 00. -tagdict

indicates disabling the tag dictionary, -seen rules indicates disabling the seen rules constraint

¢} k| cats/’word sent/sec LP LR LF AF cover ALF AAF

gold cats - - 9972 99.27 9949 - 9561 0.00 0.00
0.075 20 1.27 40.5 9546 9390 94.68 93.07 9430 | -4.81 -6.42
0.03 20 1.43 33.0 96.23 9487 9554 9401 96.03 | -3.95 -5.48
0.01 20 1.72 19.1 97.02 9582 9642 9502 96.86 | -3.07 -447
0.005 20 1.98 10.7 9726 96.09 96.68 9532 97.23 | -2.81 -4.17
0.001 150 3.57 1.18 98.33 97.37 97.85 96.76 96.13 | -1.64 -2.73

Table 7: Category ambiguity, speed, labeled P, R, F-score on gold and auto POS, and coverage over CCGbank 00 for
the standard supertagger parameters selecting the best scoring parse against the gold parse in the chart.

We obtain an overall maximum possible F-score
for the parser using this scoring formula. The dif-
ference between this maximum F-score and the or-
acle result of 99.49% represents supertagger error
(where the supertagger has not provided the correct
categories), and the difference to the baseline per-
formance indicates model error (where the parser
model has not selected the optimal parse given the
current categories). We also try disabling the seen
rules constraint to determine its impact on accuracy.

The impact of tag dictionary errors must be neu-
tralised in order to distinguish between the types of
supertagger error. To do this, we added the gold
category for a word to the set of possible tags con-
sidered for that word by the supertagger. This was
done for categories that the supertagger could use;
categories that were not in the permissible set of
425 categories were not considered. This is an opti-
mistic experiment; removing the tag dictionary en-
tirely would greatly increase the number of cate-
gories considered by the supertagger and may dra-
matically change the tagging results.

Table 6 shows the results of our experiments. The
delta columns indicate the difference in labeled F-
score to the oracle result, which discounts the gram-
mar error in the parser. We ran the experiment in
four configurations: disabling the tag dictionary, dis-

503

abling the seen rules constraint, and disabling both.
There are coverage differences of less than 0.5% that
will have a small impact on these results.

The “best in chart” experiment produces a result
of 94.32% with gold POS tags and 92.60% with auto
POS tags. These numbers are the upper bound of the
parser with the supertagger on standard settings. Our
result with gold POS tags is statistically identical to
the oracle experiment conducted by Auli and Lopez
(2011), which exchanged brackets for dependencies
in the forest oracle algorithm of Huang (2008). This
illustrates the validity of our technique.

A perfect tag dictionary that always contains the
gold standard category if it is available results in
an upper bound accuracy of 95.42%. This shows
that overall supertagger error in the parser is around
5.2%, with roughly 1% attributable to the use of the
tag dictionary and the remainder to the supertagger
model. The baseline parser is 12.5% worse than the
oracle categories result due to model error and su-
pertagger error, so model error accounts for roughly
7.3% of the loss.

Eliminating the seen rules constraint contributes
to a 0.5% accuracy improvement over both the stan-
dard parser configuration and the -tagdict configura-
tion, at the cost of roughly 0.3% coverage to both.
This is of similar magnitude to grammar error; but

Experiment LF cover ALF
baseline 86.84 99.16 0.00
auto POS parser | 86.57 99.16 -0.27
auto POS super | 8533 99.06 -1.51
auto POS both 8491 99.06 -1.93

Table 8: Labeled F-score, coverage, and deltas over
CCGbank 00 for combinations of gold and auto POS tags.

here accuracy is traded off against coverage.

The results also show that model and supertagger
error largely accounts for the remaining oracle accu-
racy difference between the C&C n-best parser and
the Charniak/Collins n-best parsers. The absolute
upper bound of the C&C parser is only 1% higher
than the oracle 50-best score in Table 4, placing the
n-best parser close to its theoretical limit.

4.3 Varying supertagger parameters

We conduct a further experiment to determine the
impact of the standard (3 and k values used in the
parser. We reran the “best in chart” configuration,
but used each standard § and k value individually
rather than backing off to a lower (3 value to find the
maximum score at each individual value.

Table 7 shows that the oracle accuracy improves
from 94.68% F-score and 94.30% coverage with
6 = 0.075,k = 20 to 97.85% F-score and 96.13%
coverage with § = 0.001,k = 150. At higher
[values, accuracy is lost because the correct cat-
egory is not returned to the parser, while lower (3
values are more likely to return the correct category.
The coverage peaks at the second-lowest value be-
cause at lower [values, the number of categories
returned means all of the possible derivations cannot
be stored in the chart. The back-off approach sub-
stantially increases coverage by ensuring that parses
that fail at higher values are retried at lower ones,
at the cost of reducing the upper accuracy bound to
below that of any individual 3.

The speed of the parser varies substantially in this
experiment, from 40.5 sents/sec at the first 3 level
to just 1.18 sents/sec at the last. This illustrates
the trade-off in using supertagging: the maximum
achievable accuracy drops by nearly 5% for parsing
speeds that are an order of magnitude faster.

504

4.4 Gold and automatic POS tags

There is a substantial difference in accuracy between
experiments that use gold POS and auto POS tags.
Table 6 shows a corresponding drop in upper bound
accuracy from 94.32% with gold POS tags to 92.60%
with auto POS tags. Both the supertagger and parser
use POS tags independently as features, but this re-
sult suggests that the bulk of the performance differ-
ence comes from the supertagger. To fully identify
the error contributions, we ran an experiment where
we provide gold POS tags to one of the parser and
supertagger, and auto POS tags to the other, and then
run the standard evaluation (the oracle experiment
will be identical to the “best in chart™).

Table 8 shows that supplying the parser with auto
POS tags reduces accuracy by 0.27% compared to
the baseline parser, while supplying the supertagger
with auto POS tags results in a 1.51% decrease. The
parser uses more features in a wider context than the
supertagger, so it is less affected by POS tag errors.

5 Conclusion

We have described how a mismatch between the way
CCG parses are modeled and evaluated caused equiv-
alent parses to be produced in n-best parsing. We
eliminate duplicates by hashing dependencies, sig-
nificantly improving the oracle F-score of CCG n-
best parsing by 0.7% to 93.32%, and improving the
performance of CCG reranking by up to 0.4%.

We have comprehensively investigated the
sources of error in the C&C parser to explain the gap
in oracle performance compared with other n-best
parsers. We show the impact of techniques that
subtly trade off accuracy for speed and coverage.
This will allow a better choice of parameters for
future applications of parsing in CCG and other
lexicalised formalisms.

Acknowledgments

We would like to thank the reviewers for their com-
ments. This work was supported by Australian
Research Council Discovery grant DP1097291, the
Capital Markets CRC, an Australian Postgradu-
ate Award, and a University of Sydney Vice-
Chancellor’s Research Scholarship.

References

Michael Auli and Adam Lopez. 2011. Training a
Log-Linear Parser with Loss Functions via Softmax-
Margin. In Proceedings of the 2011 Conference on
Empirical Methods in Natural Language Processing
(EMNLP-11), pages 333-343. Edinburgh, Scotland,
UK.

Forrest Brennan. 2008. k-best Parsing Algorithms for a
Natural Language Parser. Master’s thesis, University
of Oxford.

Ted Briscoe and John Carroll. 2006. Evaluating the Ac-
curacy of an Unlexicalized Statistical Parser on the
PARC DepBank. In Proceedings of the COLING/ACL
2006 Main Conference Poster Sessions, pages 41-48.
Sydney, Australia.

Eugene Charniak and Mark Johnson. 2005. Coarse-
to-Fine n-Best Parsing and MaxEnt Discriminative
Reranking. In Proceedings of the 43rd Annual Meet-
ing of the Association for Computational Linguis-
tics (ACL-05), pages 173—-180. Ann Arbor, Michigan,
USA.

Stephen Clark and James R. Curran. 2004a. Parsing the
WSJ Using CCG and Log-Linear Models. In Proceed-
ings of the 42nd Annual Meeting of the Association for
Computational Linguistics (ACL-04), pages 103—110.
Barcelona, Spain.

Stephen Clark and James R. Curran. 2004b. The Impor-
tance of Supertagging for Wide-Coverage CCG Pars-
ing. In Proceedings of the 20th International Con-
ference on Computational Linguistics (COLING-04),
pages 282-288. Geneva, Switzerland.

Stephen Clark and James R. Curran. 2007. Wide-
Coverage Efficient Statistical Parsing with CCG and
Log-Linear Models. Computational Linguistics,
33(4):493-552.

Stephen Clark, Julia Hockenmaier, and Mark Steedman.
2002. Building Deep Dependency Structures using a
Wide-Coverage CCG Parser. In Proceedings of the
40th Annual Meeting of the Association for Computa-
tional Linguistics (ACL-02), pages 327-334. Philadel-
phia, Pennsylvania, USA.

Michael Collins. 2000. Discriminative Reranking for
Natural Language Parsing. In Proceedings of the
17th International Conference on Machine Learning
(ICML-00), pages 175-182. Palo Alto, California,
USA.

Jason Eisner. 1996. Efficient Normal-Form Parsing for
Combinatory Categorial Grammar. In Proceedings of
the 34th Annual Meeting of the Association for Com-
putational Linguistics (ACL-96), pages 79-86. Santa
Cruz, California, USA.

Julia Hockenmaier. 2003. Parsing with Generative Mod-
els of Predicate-Argument Structure. In Proceedings
of the 41st Annual Meeting of the Association for Com-

505

putational Linguistics (ACL-03), pages 359-366. Sap-
poro, Japan.

Julia Hockenmaier. 2006. Creating a CCGbank and
a Wide-Coverage CCG Lexicon for German. In
Proceedings of the 21st International Conference on
Computational Linguistics and 44th Annual Meet-
ing of the Association for Computational Linguis-
tics (COLING/ACL-06), pages 505-512. Sydney, Aus-
tralia.

Julia Hockenmaier and Mark Steedman. 2007. CCG-
bank: A Corpus of CCG Derivations and Dependency
Structures Extracted from the Penn Treebank. Compu-
tational Linguistics, 33(3):355-396.

Liang Huang. 2008. Forest Reranking: Discriminative
Parsing with Non-Local Features. In Proceedings of
the Human Language Technology Conference at the
45th Annual Meeting of the Association for Compu-
tational Linguistics (HLT/ACL-08), pages 586-594.
Columbus, Ohio.

Liang Huang and David Chiang. 2005. Better k-best Pars-
ing. In Proceedings of the Ninth International Work-
shop on Parsing Technology (IWPT-05), pages 53—64.
Vancouver, British Columbia, Canada.

Liang Huang, Kevin Knight, and Aravind K. Joshi. 2006.
Statistical Syntax-Directed Translation with Extended
Domain of Locality. In Proceedings of the 7th Biennial
Conference of the Association for Machine Transla-
tion in the Americas (AMTA-06), pages 66—73. Boston,
Massachusetts, USA.

Tracy Holloway King, Richard Crouch, Stefan Riezler,
Mary Dalrymple, and Ronald M. Kaplan. 2003. The
PARC 700 Dependency Bank. In Proceedings of the
4th International Workshop on Linguistically Inter-
preted Corpora, pages 1-8. Budapest, Hungary.

Adwait Ratnaparkhi. 1996. A Maximum Entropy Model
for Part-of-Speech Tagging. In Proceedings of the
1996 Conference on Empirical Methods in Natural
Language Processing (EMNLP-96), pages 133—-142.
Philadelphia, Pennsylvania, USA.

Mark Steedman. 2000. The Syntactic Process. MIT Press,
Cambridge, Massachusetts, USA.

Daniel Tse and James R. Curran. 2010. Chinese CCG-
bank: extracting CCG derivations from the Penn
Chinese Treebank. In Proceedings of the 23rd In-
ternational Conference on Computational Linguistics
(COLING-2010), pages 1083-1091. Beijing, China.

Aline Villavicencio. 2002. Learning to Distinguish PP
Arguments from Adjuncts. In Proceedings of the 6th
Conference on Natural Language Learning (CoNLL-
2002), pages 84-90. Taipei, Taiwan.

