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Abstract

We recast dependency parsing as a sequence
labeling problem, exploring several encodings
of dependency trees as labels. While depen-
dency parsing by means of sequence labeling
had been attempted in existing work, results
suggested that the technique was impractical.
We show instead that with a conventional BIL-
STM-based model it is possible to obtain fast
and accurate parsers. These parsers are con-
ceptually simple, not needing traditional pars-
ing algorithms or auxiliary structures. How-
ever, experiments on the PTB and a sample of
UD treebanks show that they provide a good
speed-accuracy tradeoff, with results competi-
tive with more complex approaches.

1 Introduction

The application of neural architectures to syntac-
tic parsing, and especially the ability of long short-
term memories (LSTMs) to obtain context-aware
feature representations (Hochreiter and Schmid-
huber, 1997), has made it possible to parse natural
language with conceptually simpler models than
before. For example, in dependency parsing, the
rich feature models with dozens of features used
in transition-based approaches (Zhang and Nivre,
2011) can be simplified when using feedforward
neural networks (Chen and Manning, 2014), and
even more with BiLSTM architectures (Kiper-
wasser and Goldberg, 2016), where in fact two
positional features can suffice (Shi et al., 2017).
Similarly, in graph-based approaches, Dozat and
Manning (2017) have shown that an arc-factored
model can achieve state-of-the-art accuracy, with-
out the need for the higher-order features used in
systems like (Koo and Collins, 2010).

In the same way, neural feature representations
have made it possible to relax the need for struc-
tured representations. This is the case of sequence-
to-sequence models that translate sentences into

linearized trees, which were first applied to con-
stituent (Vinyals et al., 2015) and later to depen-
dency parsing (Wiseman and Rush, 2016; Zhang
et al., 2017b; Li et al., 2018). Recently, Gómez-
Rodrı́guez and Vilares (2018) have shown that se-
quence labeling models, where each word is asso-
ciated with a label (thus simpler than sequence to
sequence, where the mapping from input to output
is not one to one) can learn constituent parsing.

Contribution We show that sequence labeling is
useful for dependency parsing, in contrast to previ-
ous work (Spoustová and Spousta, 2010; Li et al.,
2018). We explore four different encodings to rep-
resent dependency trees for a sentence of length n
as a set of n labels associated with its words. We
then use these representations to perform depen-
dency parsing with an off-the-shelf sequence la-
beling model. The results show that we produce
models with an excellent speed-accuracy tradeoff,
without requiring any explicit parsing algorithm
or auxiliary structure (e.g. stack or buffer). The
source code is available at https://github.
com/mstrise/dep2label

2 Parsing as sequence labeling

Sequence labeling is a structured prediction prob-
lem where a single output label is generated for
every input token. This is the case of tasks such
as PoS tagging, chunking or named-entity recog-
nition, for which different approaches obtain ac-
curate results (Brill, 1995; Ramshaw and Marcus,
1999; Reimers and Gurevych, 2017).

On the contrary, previous work on dependency
parsing as sequence labeling is vague and reports
results that are significantly lower than those pro-
vided by transition-, graph-based or sequence-to-
sequence models (Dyer et al., 2015; Kiperwasser
and Goldberg, 2016; Dozat and Manning, 2017;
Zhang et al., 2017a). Spoustová and Spousta
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(2010) encoded dependency trees using a relative
PoS-based scheme to represent the head of a node,
to then train an averaged perceptron. They did
not provide comparable results, but claimed that
the accuracy was between 5-10% below the state
of the art in the pre-deep learning era. Recently,
Li et al. (2018) used a relative positional encod-
ing of head indexes with respect to the target to-
ken. This is used to train Bidirectional LSTM-
CRF sequence-to-sequence models (Huang et al.,
2015), that make use of sub-root decomposi-
tion. They compared their performance against an
equivalent BiLSTM-CRF labeling model. The re-
ported UAS for the sequence labeling model was
87.6% on the Penn Treebank, more than 8 points
below the current best model (Ma et al., 2018),
concluding that sequence-to-sequence models are
required to obtain competitive results.

In this work, we show that these results can be
clearly improved if simpler architectures are used.

3 Encoding of trees and labels

Given a sentence w1 . . . wn, we associate the
words with nodes {0, 1, . . . , n}, where the extra
node 0 is used as a dummy root for the sentence.
A dependency parser will find a set of labeled rela-
tions encoded as edges of the form (h, d, l), where
h ∈ {0, 1, . . . , n} is the head, d ∈ {1, . . . , n} the
dependent, and l a dependency label. The result-
ing dependency graph must be acyclic and such
that each node in {1, . . . , n} has exactly one head,
so it will be a directed tree rooted at node 0.

Thus, to encode a dependency tree, it suffices to
encode the unique head position and dependency
label associated with each word of w1 . . . wn. To
do so, we will give each word wi a discrete label of
the form (xi, li), where li is the dependency label
and xi encodes the position of the head in one of
the following four ways (see also Figure 1):

1. Naive positional encoding: xi directly stores the
position of the head, i.e., a label (xi, li) encodes
an edge (xi, i, li). This is the encoding used in
the CoNLL file format.

2. Relative positional encoding: xi stores the dif-
ference between the head index minus that of
the dependent, i.e., (xi, li) encodes an edge
(i + xi, i, li). This was the encoding used
for the sequence-to-sequence and sequence la-
beling models in (Li et al., 2018), as well as

for the sequence-to-sequence model in (Kiper-
wasser and Ballesteros, 2018).

3. Relative PoS-based encoding: xi is a tuple
pi, oi. If oi > 0, the head of wi is the oith clos-
est among the words to the right of wi that have
PoS tag pi. If oi < 0, the head of wi is the−oith
closest among the words to the left of wi that
have PoS tag pi. For example, (V,−2) means
“the second verb to the left” of wi. This scheme
is closer to the notion of valency, and was used
by Spoustová and Spousta (2010).

4. Bracketing-based encoding: based on (Yli-
Jyrä, 2012; Yli-Jyrä and Gómez-Rodrı́guez,
2017). In each label (xi, li), the compo-
nent xi is a string following the regular ex-
pression (<)?((\)*|(/)*)(>)?where the
presence of character < means that wi−1 has an
incoming arc from the right, k copies of charac-
ter \ mean that wi has k outgoing arcs towards
the left, k copies of / mean that wi−1 has k out-
going arcs towards the right, and the presence of
> means that wi has an incoming arc from the
left. Thus, each right dependency from a word
i to j is encoded by a (/,>) pair in the label
components xi+1 and xj , and each left depen-
dency from j to i by a (<,\) pair in the label
components xi+1 and xj . Note that the intu-
ition that explains why information related to
a word is encoded in a neighboring node is that
each xi corresponds to a fencepost position (i.e.,
xi represents the space between wi−1 and wi),
and the character pair associated to an arc is en-
coded in the most external fencepost positions
covered by that arc. These pairs act as pairs of
matching brackets, which can be decoded using
a stack to reconstruct the dependencies.

The first three encodings can represent any de-
pendency tree, as they encode any valid head posi-
tion for each node, while the bracketing encoding
only supports projective trees, as it assumes that
brackets are properly nested. All the encodings are
total and injective, but they are not surjective: head
indexes can be out of range in the first three en-
codings, brackets can be unbalanced in encoding
4, and all the encodings can generate graphs with
cycles. We will deal with ill-formed trees later.

4 Model

We use a standard encoder-decoder network, to
show that dependency parsing as sequence label-
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<ROOT> Alice ate an apple
N V D N
1 2 3 4

Naive positional: (2,nsubj) (0,root) (4,det) (2,dobj)

Rel. positional: (+1,nsubj) (-2,root) (+1,det) (-2,dobj)

Rel. PoS-based: (V,+1,nsubj) (ROOT,-1,root) (N,+1,det) (V,-1,dobj)

Bracketing-based: (∅,nsubj) (<\,root) (/,det) (<\>,dobj)

nsubj
dobj

det
root

Figure 1: Types of encoding on an example tree.

ing works without the need of complex models.

Encoder We use bidirectional LSTMs (Hochre-
iter and Schmidhuber, 1997; Schuster and Pali-
wal, 1997). Let LSTMθ(x) be an abstraction of
a long short-term memory network that processes
the sequence of vectors x = [x1, ...,x|x|], then
output for xi is defined as hi = BiLSTMθ(x, i)
= LSTMl

θ(x[1:i])◦ LSTMr
θ(x[|x|:i]). We consider

stacked BiLSTMs, where the output hmi of the
mth BiLSTM layer is fed as input to the m+1th
layer. Unless otherwise specified, the input to-
ken at a given time step is the concatenation of
a word, PoS tag, and another word embedding
learned through a character LSTM.

Decoder We use a feed-forward network, which
is fed the output of the last BiLSTM. The output
is computed as P (yi|hi) = softmax(W · hi + b).

Well-formedness (i) Each token must be as-
signed a head (one must be the dummy root), and
(ii) the graph must be acyclic. If no token is the
real root (no head is the dummy root), we search
for candidates by relying on the three most likely
labels for each token.1 If none is found, we assign
it to the first token of the sentence. The single-
head constraint is ensured by the nature of the
encodings themselves, but some of the predicted
head indexes might be out of bounds. If so, we at-
tach those tokens to the real root. If a cycle exists,
we do the same for the leftmost token in the cycle.

5 Experiments

We use the English Penn Treebank (PTB) (Marcus
et al., 1993) and its splits for parsing. We trans-
form it into Stanford Dependencies (De Marn-
effe et al., 2006) and obtain the predicted PoS
tags using Stanford tagger (Toutanova et al.,
2003). We also select a sample of UDv2.2 tree-
banks (Nivre et al., 2018): Ancient-GreekPROIEL,
CzechPDT, ChineseGSD, EnglishEWT, FinnishTDT,

1If single-rooted trees are a prerequisite, the most proba-
ble node will be selected among multiple root nodes.

Encoding UAS LAS

Li et al. (2018) (sequence labeling) 87.58 83.81
Li et al. (2018) (seq2seq) 89.16 84.99
Li et al. (2018) (seq2seq+beam+subroot) 93.84 91.86

Naive positional 45.41 42.65
Rel. positional 91.05 88.67
Rel. PoS-based 93.99 91.76
Bracketing-based 93.45 91.17

Table 1: Performance of our encodings on the PTB dev
set with hyperparameters from Gómez-Rodrı́guez and
Vilares (2018). We compare against previous sequence
labeling and seq2seq models with more complex archi-
tectures, beam search and subroot decomposition.

HebrewHTB, KazakhKTB and TamilTTB, as a rep-
resentative sample, following (de Lhoneux et al.,
2017). As evaluation metrics, we use Labeled
(LAS) and Unlabeled Attachment Score (UAS).
We measure speed in sentences/second, both on
a single core of a CPU2 and on a GPU3.

Setup We use NCRFpp as our sequence labeling
framework (Yang and Zhang, 2018). For PTB, we
use the embeddings by Ling et al. (2015), for com-
parison to BIST parser (Kiperwasser and Gold-
berg, 2016), which uses a similar architecture, but
also needs a parsing algorithm and auxiliary struc-
tures. For UD, we follow an end-to-end setup and
run UDPipe4 (Straka and Straková, 2017) for tok-
enization and tagging. We use the pretrained word
embeddings by Ginter et al. (2017). Appendix A
contains additional hyperparameters.

5.1 Encoding evaluation and model selection

We first examine the four encodings on the PTB
dev set. Table 1 shows the results and also com-
pares them against Li et al. (2018), who proposed
seq2seq and sequence labeling models that use a
relative positional encoding.

As the relative PoS-based encoding and
bracketing-based encoding provide the best re-
sults, we will conduct the rest of our experiments
with these two encodings. Furthermore, we per-
form a small hyperparameter search involving en-
coding, number of hidden layers, their dimension
and presence of character embeddings, as these
parameters influence speed and accuracy. From
now on, we write P z

x,y for a PoS-based encoding
model and Bz

x,y for a bracketing-based encoding

2Intel Core i7-7700 CPU 4.2 GHz.
3GeForce GTX 1080.
4The pretrained models from the CoNLL18 Shared Task.
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Figure 2: UAS/speed Pareto front on the PTB dev set.

model, where z indicates whether character repre-
sentation was used in the model, x the number of
BiLSTM layers, and y the word hidden vector di-
mension. We take as starting points (1) the hyper-
parameters used by the BIST parser (Kiperwasser
and Goldberg, 2016), as it uses a BiLSTM archi-
tecture analogous to ours, with the difference that
it employs a transition-based algorithm that uses a
stack data structure instead of plain sequence la-
beling without explicit representation of structure,
and (2) the best hyperparameters used by Gómez-
Rodrı́guez and Vilares (2018) for constituent pars-
ing as sequence labeling, as it is an analogous task
for a different parsing formalism.

From there, we explore different combinations
of parameters and evaluate 20 models on the PTB
development set, with respect to accuracy (UAS)
and speed (sentences/second on a single CPU
core), obtaining the Pareto front in Figure 2. The
two starting models based on previous literature
(P2,250 and PC

2,800, respectively) happen to be in
the Pareto front, confirming that they are reason-
able hyperparameter choices also for this setting.
In addition, we select two more models from the
Pareto front (models PC

2,400 and B2,250) for our test
set experiments on PTB, as they also provide a
good balance between speed and accuracy.

5.2 Results and discussion

Table 2 compares the chosen models, on
the PTB test set, against state-of-the-art mod-

5In Hebrew, UPoS and XPoS tags are the same.
6Kazakh is missing a development set. The scores are

based on the test set.
7Tamil was run on gold segmented and tokenized inputs,

as there is no pretrained UDpipe model. We did not use pre-
trained word embeddings either.

Model sent/s UAS LASCPU GPU
P2,250 267±1 777±24 92.95 90.96
PC
2,400 165±1 700±5 93.34 91.34

PC
2,800 101±2 648±20 93.67 91.72

B2,250 310±30 730±53 92.64 90.59

KG (transition-based) 76±1 93.90 91.90
KG (graph-based) 80±0 93.10 91.00
CM 654� 91.80 89.60
DM 411� 95.74 94.08
Ma et al. (2018) 10±0 95.87 94.19

Table 2: Comparison of models on the PTB test set.
KG refers to Kiperwasser and Goldberg (2016), CM to
Chen and Manning (2014) and DM to Dozat and Man-
ning (2017). � indicates the speed is taken from their
paper.

UPoS-based XPoS-based
Treebank UAS LAS # UPoS UAS LAS # XPoS
Ancient Greek 76.58 71.70 14 77.00 72.14 23
Chinese 61.01 57.28 15 60.98 57.14 42
Czech 89.82 87.63 17 88.33 85.46 1417
English 82.22 78.96 17 82.05 78.70 50
Finnish 80.31 76.39 15 80.19 76.28 12
Hebrew5 67.23 62.86 17 67.23 62.86 17
Kazakh6 32.14 17.03 15 32.93 17.07 26
Tamil 73.24 66.51 13 59.70 52.57 210

Table 3: Performance of the PC
2,800 model with UPoS-

and XPoS-based encoding for each language on the dev
set. # UPoS/XPoS represents the number of distinct
UPoS/XPoS tags in the training set for each language.

els. Contrary to previous dependency-parsing-
as-sequence-labeling attempts, we are competitive
and provide a good speed-accuracy tradeoff. For
instance, the PC

2,800 model runs faster than the
BIST parser (Kiperwasser and Goldberg, 2016)
while being almost as accurate (-0.18 LAS). This
comes in spite of its simplicity. While our BiL-
STM architecture is similar to that of BIST, the
sequence labeling approach does not need a stack,
a specific transition system or a dynamic oracle.
Using the BIST hyperparameters for our model
(P2,250) yields further increases in speed, at some
cost to accuracy: 3.34x faster and -0.04 LAS score
than the graph-based model, and 3.51x faster and

Treebank
PC

2,800 KG (transition-based)
PoS type (sent/s) UAS LAS (sent/s) UAS LASCPU CPU

Ancient Greek XPOS 123±1 75.31 70.87 116±4 69.43 64.41
Chinese UPOS 105±0 63.20 59.12 73±1 64.69 60.45
Czech UPOS 125±1 89.10 86.68 94±3 89.25 86.11
English UPOS 139±1 81.48 78.64 120±2 82.22 79.00
Finnish UPOS 168±0 80.12 76.22 127±3 80.99 76.63
Hebrew equal PoS 120±0 63.04 58.66 70±1 63.56 58.80
Kazakh XPOS 283±3 32.93 17.07 178±5 23.09 12.73
Tamil7 UPOS 150±2 71.59 64.00 127±3 75.41 68.58

Table 4: Comparison on UD-CoNLL18 test sets.
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Figure 3: Impact of the PTB data size available for
parsers during training on the results from the test set.

-0.94 LAS score than their transition-based one.
We now extend our experiments to the sample

of UD-CoNLL18 treebanks. To this end, we focus
on the PC

2,800 model and since our PoS tag-based
encoding can be influenced by the specific PoS
tags used, we first conduct an experiment on the
development sets to determine what tag set (UPoS,
the universal PoS tag set, common to all lan-
guages, or XPoS, extended language-specific PoS
tags) produces the best results for each dataset.

Table 3 shows how the number of unique UPoS
and XPoS tags found in the training set differs in
various languages. The results suggest that the
performance of our system can be influenced by
the size of the tag set. It appears that a very
large tag set (for instance the XPoS tag set for
Czech and Tamil) can hurt the performance of the
model and significantly slow down the system, as
it results into a large number of distinct labels for
the sequence labeling model, increasing sparsity
and making the classification harder. In case of
Ancient Greek and Kazakh, the best performance
is achieved with the XPoS-based encoding. In
these corpora, the tag set is slightly bigger than
the UPoS tag set. One can argue that the XPoS
tags in this case were possibly more fine-grained
and hence provided additional useful information
to the system facilitating a correct label predic-
tion, without being so large as to produce exces-
sive sparsity.

Table 4 shows experiments on the UD test sets,
with the chosen PoS tag set for each corpus. PC

2,800

outperforms transition-based BIST in LAS in 3 out
of 8 treebanks,8 and is clearly faster in all analyzed

8For Ancient Greek, this may be related to the large

languages. We believe that the variations between
languages in terms of LAS difference with respect
to BIST can be largely due to differences in the
accuracy and granularity of predicted PoS tags,
since our chosen encoding relies on them to en-
code arcs. The bracketing-based encoding, which
does not use PoS tags, may be more robust to this.
On the other hand, finding the optimal granularity
of PoS tags for the PoS-based encoding can be an
interesting avenue for future work.

In this work, we have also examined the im-
pact of the training data size on the performance of
our system compared to the performance of BIST
parser. The results in Figure 3 suggest that our
model requires more data during the training than
BIST parser in order to achieve similar perfor-
mance. The performance is slightly worse when
little training data is available, but later on our
model reduces the gap when increasing the train-
ing data size.

6 Conclusion

This paper has explored fast and accurate de-
pendency parsing as sequence labeling. We
tested four different encodings, training a stan-
dard BiLSTM-based architecture. In contrast to
previous work, our results on the PTB and a sub-
set of UD treebanks show that this paradigm can
obtain competitive results, despite not using any
parsing algorithm nor external structures to parse
sentences.
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A Model parameters

During the training we use Stochastic Gradient
Descent (SGD) optimizer with a batch size of 8,
and the model is trained for up to 100 iterations.
We keep the model that obtains the highest UAS
on the development set. Additional hyperparame-
ters are shown in Table 5.

Word embedding dimension 100
Char embedding dimension 30
PoS tag embedding dimension 25

Word hidden vector dimension 250,400,600,
800,1000,1200

Character hidden vector dimension 50
Initial learning rate 0.02
Time-based learning rate decay 0.05
Momentum 0.9
Dropout 0.5

Table 5: Common hyperparameters for the sequence
labeling models.


