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Abstract

Traditional relation extraction predicts rela-
tions within some fixed and finite target
schema. Machine learning approaches to this
task require either manual annotation or, in
the case of distant supervision, existing struc-
tured sources of the same schema. The need
for existing datasets can be avoided by us-
ing a universal schema: the union of all in-
volved schemas (surface form predicates as in
OpenIE, and relations in the schemas of pre-
existing databases). This schema has an al-
most unlimited set of relations (due to surface
forms), and supports integration with existing
structured data (through the relation types of
existing databases). To populate a database of
such schema we present matrix factorization
models that learn latent feature vectors for en-
tity tuples and relations. We show that such
latent models achieve substantially higher ac-
curacy than a traditional classification ap-
proach. More importantly, by operating simul-
taneously on relations observed in text and in
pre-existing structured DBs such as Freebase,
we are able to reason about unstructured and
structured data in mutually-supporting ways.
By doing so our approach outperforms state-
of-the-art distant supervision.

1 Introduction

Most previous work in relation extraction uses a pre-
defined, finite and fixed schema of relation types
(such as born-in or employed-by). Usually some tex-
tual data is labeled according to this schema, and
this labeling is then used in supervised training of
an automated relation extractor, e.g. Culotta and
Sorensen (2004). However, labeling textual rela-

tions is time-consuming and difficult, leading to sig-
nificant recent interest in distantly-supervised learn-
ing. Here one aligns existing database records with
the sentences in which these records have been “ren-
dered”––effectively labeling the text—and from this
labeling we can train a machine learning system as
before (Craven and Kumlien, 1999; Mintz et al.,
2009; Bunescu and Mooney, 2007; Riedel et al.,
2010). However, this method relies on the availabil-
ity of a large database that has the desired schema.

The need for pre-existing datasets can be avoided
by using language itself as the source of the schema.
This is the approach taken by OpenIE (Etzioni et al.,
2008). Here surface patterns between mentions of
concepts serve as relations. This approach requires
no supervision and has tremendous flexibility, but
lacks the ability to generalize. For example, Ope-
nIE may find FERGUSON–historian-at–HARVARD

but does not know FERGUSON–is-a-professor-at–
HARVARD. OpenIE has traditionally relied on a
large diversity of textual expressions to provide good
coverage. But this diversity is not always available,
and, in any case, the lack of generalization greatly
inhibits the ability to support reasoning.

One way to gain generalization is to cluster tex-
tual surface forms that have similar meaning (Lin
and Pantel, 2001; Pantel et al., 2007; Yates and
Etzioni, 2009; Yao et al., 2011). While the clus-
ters discovered by all these methods usually contain
semantically related items, closer inspection invari-
ably shows that they do not provide reliable impli-
cature. For example, a typical representative clus-
ter may include historian-at, professor-at, scientist-
at, worked-at. Although these relation types are in-
deed semantically related, note that scientist-at does
not necessarily imply professor-at, and worked-at
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certainly does not imply scientist-at. In fact, we
contend that any relational schema would inherently
be brittle and ill-defined––having ambiguities, prob-
lematic boundary cases, and incompleteness.1 For
example, Freebase, in spite of its extensive effort to-
wards high coverage, has no critized nor scientist-at
relation.

In response to this problem, we present a new ap-
proach: implicature with universal schemas. Here
we embrace the diversity and ambiguity of original
inputs; we avoid forcing textual meaning into pre-
defined boxes. This is accomplished by defining
our schema to be the union of all source schemas:
original input forms, e.g. variants of surface pat-
terns similarly to OpenIE, as well as relations in
the schemas of many available pre-existing struc-
tured databases. But then, unlike OpenIE, our fo-
cus lies on learning asymmetric implicature among
relations. This allows us to probabilistically “fill
in” inferred unobserved entity-entity relations in
this union. For example, after observing FERGU-
SON–historian-at–HARVARD our system infers that
FERGUSON–professor-at–HARVARD, but not vice
versa.

At the heart of our approach is the hypothesis that
we should concentrate on predicting source data––a
relatively well defined task that can be evaluated and
optimized––as opposed to modeling semantic equiv-
alence, which we believe will always be illusive.

Note that by operating simultaneously on rela-
tions observed in text and in pre-existing structured
databases such as Freebase, we are able to reason
about unstructured and structured data in mutually-
supporting ways. For example, we can predict sur-
face pattern relations that effectively serve as addi-
tional features when predicting Freebase relations,
hence improving generalization. Also notice that
users of our system will not have to study and un-
derstand the complexities of a particular schema in
order to issue queries; they can ask in whatever form
naturally occurs to them, and our system will likely
already have that relation in our universal schema.

Our technical approach is based on extensions
to probabilistic models of matrix factorization and

1At NAACL 2012 Lucy Vanderwende asked “Where do the
relation types come from?” There was no satisfying answer. At
the same meeting, and in line with Brachman (1983), Ed Hovy
stated “We don’t even know what is-a means.”

collaborative filtering (Collins et al., 2001; Koren,
2008; Rendle et al., 2009). We represent the prob-
abilistic knowledge base as a matrix with entity-
entity pairs in the rows and relations in the columns
(see figure 1). The rows come from running cross-
document entity resolution across pre-existing struc-
tured databases and textual corpora. The columns
come from the union of surface forms and DB rela-
tions. We present a series of models that learn lower
dimensional manifolds for tuples, relations and enti-
ties, and a set of weights that capture direct correla-
tions between relations. Weights and lower dimen-
sional representations act, through dot products, as
the natural parameters of a single log-linear model
to derive per-cell probabilities.

In experiments we show that our models can ac-
curately predict surface patterns relationships which
do not appear explicitly in text, and that learning la-
tent representations of entities, tuples and relations
substantially improves results over a traditional clas-
sifier approach. Moreover, we can improve accu-
racy by simultaneously operating on relations ob-
served in the New York Times corpus and in Free-
base. In particular, our model outperforms the cur-
rent state-of-the-art distant supervision method (Sur-
deanu et al., 2012) by 10% points Mean Average
Precision through joint implicature among surface
patterns and Freebase relations.

2 Model

Before we present our approach in more detail, we
briefly introduce some notation. We use R to de-
note the set of relations we seek to predict (such as
works-written in Freebase, or the X–historian-at–Y
pattern), and T to denote the set of input tuples. For
simplicity we assume each relation to be binary, al-
though our approach can be easily generalized to the
n-ary case. Given a relation r ∈ R and a tuple t ∈ T
the pair 〈r, t〉 is a fact, or relation instance. The in-
put to our model is a set of observed facts O, and
the observed facts for a given tuple is denoted by
Ot := {〈r, t〉 ∈ O}.

Our goal is a model that can estimate, for a
given relation r (such as X–historian-at–Y) and a
given tuple t (such as <FERGUSON,HARVARD>),
the probability p (yr,t = 1) where yr,t is a binary
random variable that is true iff t is in relation r. We
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Figure 1: Filling up a database of universal schema.
Dark circles are observed facts, shaded circles are in-
ferred facts. Relation Extraction (RE) maps surface pat-
tern relations (and other features) to structured relations.
Surface form clustering models correlations between pat-
terns, and can be fed into RE (Yao et al., 2011). Database
alignment and integration models correlations between
structured relations (not done in this work). Reasoning
with the universal schema incorporates these tasks in a
joint fashion.

introduce a series of exponential family models that
estimate this probability using a natural parameter
θr,t and the logistic function:

p (yr,t = 1|θr,t) := σ (θr,t) =
1

1 + exp (−θr,t)
.

We will first describe our models through differ-
ent definitions of the natural parameter θr,t. In each
case θr,t will be a function of r, t and a set of weights
and/or latent feature vectors. In section 2.5 we will
then show how these weights and vectors can be es-
timated based on the observed facts O.

Notice that we can interpret p (yr,t = 1) as the
probability that a customer t likes product r. This
analogy allows us to draw from a large body of work
in collaborative filtering, such as work in probabilis-
tic matrix factorization and implicit feedback.

2.1 Latent Feature Model
One way to define θr,t is through a latent feature
model F. Here we measure compatibility between
relation r and tuple t as dot product of two latent
feature representations of size KF: ar for relation r,
and vt for tuple t. This gives:

θF
r,t :=

KF∑
k

ar,kvt,k.

This corresponds to generalized PCA (Collins et al.,
2001), a model were the matrix Θ = (θr,t) of natural
parameters is defined as the low rank factorization
AV.

Notice that we intentionally omit any per-relation
bias-terms. In section 4 we evaluate ranked answers
to queries on a per-relation basis, and a per-relation
bias term will have no effect on ranking facts of the
same relation. Also consider that such latent feature
models can capture asymmetry by assigning more
peaked vectors to specific relations, and more uni-
form vectors to general relations.

2.2 Neighborhood Model
We can interpolate the confidence for a given tuple
and relation based on the trueness of other similar
relations for the same tuple. In collaborative filter-
ing this is referred to as a neighborhood-based ap-
proach (Koren, 2008). In terms of our natural pa-
rameter, we implement a neighborhood model N via
a set of weights wr,r′ , where each corresponds to a
directed association strength between relations r and
r′. For a given tuple t and relation r we then sum
up the weights corresponding to all relations r′ that
have been observed for tuple t:

θN
r,t :=

∑
(r′,t)∈O\{(r,t)}

wr,r′ .

Notice that the neighborhood model amounts to
a collection of local log-linear classifiers, one for
each relation r with feature functions fr,r′ (t) =
I [r′ 6= r ∧ (r′, t) ∈ O] and weights wr. This means
that in contrast to model F, this model cannot har-
ness any synergies between textual and pre-existing
DB relations.
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2.3 Entity Model
Relations have selectional preferences: they allow
only certain types in their argument slots. While
knowledge bases such as Freebase or DBPedia have
extensive ontologies of types of entities, these are of-
ten not sufficiently fine to allow relations to discrim-
inate (Yao et al., 2012b). Hence, instead of using a
predetermined set of entity types, in our entity model
E we learn a latent entity representation from data.
More concretely, for each entity e we introduce a la-
tent feature vector te of dimension KE. In addition,
for each relation r and argument slot i we introduce
a feature vector di of the same dimension. For ex-
ample, binary relations have feature representations
d1 for argument 1, and d2 for argument 2. Mea-
suring compatibility of an entity tuple and relation
amounts to measuring, and summing up, compati-
bility between each argument slot representation and
the corresponding entity representation. This leads
to:

θE
r,t :=

arity(r)∑
i=1

KE∑
k

di,ktti,k.

Note that due to entity resolution, tuples may
share entities, and hence parameters are shared
across rows.

2.4 Combined Model
In practice all the above models can capture impor-
tant aspects of the data. Hence we also use various
combinations, such as:

θNFE
r,t := θN

r,t + θF
r,t + θE

r,t.

2.5 Parameter Estimation
Our models are parametrized through weights and
latent component vectors. We could estimate these
parameters by maximizing the loglikelihood of the
observed data akin to Collins et al. (2001). How-
ever, as we do not have access to negative facts, the
model would simply learn to predict all facts to be
true. In our initial attempt to overcome this issue
we sampled a set of unobserved facts as designated
negative facts, as is done in related distant supervi-
sion approaches. However, we found that (a) our
results were sensitive to the choice of negative data
and (b) runtime was increased substantially because
of a large number of required negative facts.

In collaborative filtering positive-only data is also
known as implicit feedback. This type of feedback
arises, for example, when users buy but not rate
items. One successful approach to learning with im-
plicit feedback is based on the observation that the
actual task is not necessarily one of prediction (here:
to predict a number between 0 and 1) but one of
(generally simpler) ranking: to give true “user-item”
cells higher scores than false ones. Bayesian Person-
alized Ranking (BPR) uses a variant of this ranking:
giving observed true facts higher scores than unob-
served (true or false) facts (Rendle et al., 2009). This
relaxed constraint is to be contrasted with the log-
likelihood setting that essentially requires (randomly
sampled) negative facts to score below a globally de-
fined threshold.

2.5.1 Objective
We first create a dataset of ranked pairs: for each

relation r and each observed fact f+ := 〈r, t+〉 ∈ O
we choose all tuples t− such that f− := 〈r, t−〉 /∈
O—that is, tuples we have not observed to be in
relation r. For each pair of facts f+ and f− we
want p (f+) > p (f−) and hence θf+ > θf− . In
BPR this is achieved by maximizing a sum terms of
the form Objf+,f− := log

(
σ
(
θf+ − θf−

))
, one for

each ranked pair:

Obj :=
∑

〈r,t+〉∈O

∑
〈r,t−〉/∈O

Obj〈r,t+〉,〈r,t−〉. (1)

Notice that this objective differs slightly from the
one used by Rendle et al. (2009). Consider tuples
as users and items as relations. We rank different
users with respect to the same item, while BPR ranks
items with respect to the same user. Also notice that
the BPR objective is an approximation to the per-
relation AUC (area under the ROC curve), and hence
directly correlated to what we want to achieve: well-
ranked tuples per relation.

Note that all parameters are regularized with
quadratic penalty which we omit here for brevity.

2.5.2 Optimization
To maximize the objective2 in equation 1 we fol-

low Rendle et al. (2009) and employ Stochastic Gra-
dient Descent (SGD). In particular, in each epoch

2This objective is non-convex for all models excluding the
N model.
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we sample |O| facts with replacement from O. For
each sampled fact 〈r, t+〉 we then sample a tuple
t− ∈ T such that 〈r, t−〉 /∈ O is not an observed
fact. This gives us |O| fact pairs 〈f+, f−〉, and for
each pair we do an SGD update using the corre-
sponding gradients of Objf+,f− . For the F model
the gradients correspond to those presented by Ren-
dle et al. (2009). The remaining gradients are easy
to derive; we omit details for brevity.

3 Related Work

This work extends a previous workshop paper (Yao
et al., 2012a) by introducing the neighborhood and
entity model, by working with the BPR objective,
and by more extensive experiments.

Relational Clustering There is a large body of
work aiming to discover latent relations by clus-
tering surface patterns (Hasegawa et al., 2004;
Shinyama and Sekine, 2006; Kok and Domingos,
2008; Yao et al., 2011; Takamatsu et al., 2011), or
by inducing synonymy relationships between pat-
terns independently of the entities (Yates and Et-
zioni, 2009; Pantel et al., 2007; Lin and Pantel,
2001). Our approach has a fundamentally different
objective: we are not (primarily) interested in clus-
ters of patterns or their semantic representation, but
in predicting patterns where they are not observed.
Moreover, these related methods rely on a symmetric
notion of synonymy in which clustered patterns are
assumed to have the same meaning. Our approach
rejects this assumption in favor of a model which
learns that certain patterns, or combinations thereof,
entail others in one direction, but not necessarily the
other. This is similar in spirit to work on learning
entailment rules (Szpektor et al., 2004; Zanzotto et
al., 2006; Szpektor and Dagan, 2008). However, for
us even entailment rules are just a by-product of our
goal to improve prediction, and it is this goal we di-
rectly optimize for and evaluate.

Matrix Factorization Our approach is also re-
lated to work on factorizing YAGO to predict new
links (Nickel et al., 2012). The primary differences
are that we include surface patterns in our schema,
use a ranking objective, and learn latent vectors for
entities and tuples. Likewise, matrix factorization in
various flavors has received significant attention in

the lexical semantics community, from LSA to re-
cent work on non-negative sparse embeddings (Mur-
phy et al., 2012). In our problem columns corre-
spond to relations, and rows correspond to entity tu-
ples. By contrast, there columns are words, and rows
are contextual features such as “words in a local win-
dow.” Consequently, our objective is to complete
the matrix, whereas their objective is to learn better
latent embeddings of words (which by themselves
again cannot capture any sense of asymmetry).

OpenIE Open IE (Etzioni et al., 2008) extracts
facts mentioned in text, but does not predict poten-
tial facts not mentioned in text. Finding answers
requires explicit mentions, and hence suffers from
lower recall for not-so-frequently mentioned facts.
Methods that learn rules between textual patterns in
OpenIE aim at a similar goal as our proposed ap-
proach (Schoenmackers et al., 2008; Schoenmack-
ers et al., 2010). However, their approach is sub-
stantially more complex, requires a categorization
of entities into fine grained entity types, and needs
inference in high tree-width Markov Networks. By
contrast, our approach is based on a single unified
model, requires no entity types, and for us inferring
a fact amounts to not more than a few dot products.
In addition, in our Universal Schema approach Ope-
nIE surface patterns are just one kind of relations,
and our aim is populate relations of all kinds. In the
future we may even include relations between enti-
ties and continuous attributes (say, gene expression
measurements).

Distant Supervision In Distant Supervision (DS)
a set of facts from pre-existing structured sources
is aligned with surface patterns mentioned in
text (Bunescu and Mooney, 2007; Mintz et al., 2009;
Riedel et al., 2010; Hoffmann et al., 2011; Surdeanu
et al., 2012), and this alignment is then used to train
a relation extractor. A core difference to our ap-
proach is the number of target relations: In DS it
is the relatively small schema size of the knowledge
base, while we also include surface patterns. This
allows us to answer more expressive queries. More-
over, by learning from surface-pattern correlations,
our latent models induce feature representations for
patterns that do not appear in the DS training set. As
we will see in section 4, this allows us to outperform
state-of-the-art DS models.
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Never-Ending Learning and Bootstrapping Our
latent feature models are capable of never-ending
learning (Carlson et al., 2010). That is, we can con-
tinue to train these models with incoming data, even
if no structured annotation is available. In bootstrap-
ping approaches the current model is used to predict
new relations, and these hypothesized relations are
used as new supervision targets (i.e. self-training).
By contrast, our model only strengthens the correla-
tions between incoming co-occurring observations.
This has the advantage that wrong predictions are
less likely be reinforced, hence reducing the risk of
semantic drift.

4 Experiments

How accurately can we fill a database of Universal
Schema, and does reasoning jointly across a uni-
versal schema help to improve over more isolated
approaches? In the following we seek to answer
this question empirically. To this end we train our
models on observed facts in a newswire corpus and
Freebase, and then manually evaluate ranked predic-
tions: first for structured relations and then for sur-
face form relations.

4.1 Data

Following previous work (Riedel et al., 2010),
our documents are taken from the NYTimes cor-
pus (Sandhaus, 2008). Articles after 2000 are used
as training corpus, articles from 1990 to 1999 as
test corpus. We also split Freebase facts 50/50 into
train and test facts, and their corresponding tuples
into train and test tuples. Then we align training tu-
ples with the training corpus, and test tuples with the
test corpus. This alignment relies on a preprocessing
step that links NER mentions in text with entities in
Freebase. In our case we use a simple string-match
heuristic to find this linking. Now we align an entity
tuple 〈t1, t2〉 with a pair of mentions 〈m1,m2〉 in
the same sentence if m1 is linked to t1 and m2 to t2.
Based on this alignment we filter out all relations for
which we find fewer than 10 tuples with mentions in
text.

The above alignment and filtering process reduces
the total number of tuples related according to Free-
base to 16k: approximately 8k tuples with facts
mentioned in the training set, and approximately 8k

such tuples for the test set. In addition we have a
set of approximately 200k training tuples for which
both arguments appear in the same sentence and
both can be linked to Freebase entities, but for which
no Freebase fact is recorded. This can either be be-
cause they are not related, or simply because Free-
base does not contain the relationship yet. We also
have about 200k such tuples in the test set. To sim-
plify evaluation, we create a subsampled test set by
randomly choosing 10k of the original test set tuples.

The above alignment allows us to determine, for
each tuple t, the observed facts Ot as follows. To
find the surface pattern facts OPAT

t for the tuple t =
〈t1, t2〉 we extract, for each mention m = 〈m1,m2〉
of t, the lexicalized dependency path p between m1

and m2. Then we add 〈p, t〉 to OPAT
t . For example,

we get “<-subj<-head->obj->” for “M1 heads M2.”
Filtering out patterns with fewer than 10 mentions
in text yields approximately 4k patterns. For train-
ing tuples we add as Freebase facts OFB

t all facts
〈r, t〉 that appear in Freebase, and for which r has
not been filtered out beforehand. For the test setOFB

t

remains empty. The total set of observed facts Ot is
OFB

t ∪OPAT
t , and their union over all tuples forms the

set of observed facts O.

4.2 Evaluation

For evaluation we use collections of relations: sur-
face patterns in one experiment and Freebase re-
lations in the other. In either case we compare
the competing systems with respect to their ranked
results for each relation in the collection. Given
this ranking task, our evaluation is inspired by the
TREC competitions and work in information re-
trieval (Manning et al., 2008). That is, we treat
each relation as query and receive the top 1000 (run
depth) entity pairs from each system. Then we pool
the top 100 (pool depth) answers from each system
and manually judge their relevance or “truth.” This
gives a set of relevant results that we can use to cal-
culate recall and precision measures. In particular,
we can use these annotations to measure an average
precision across the precision-recall curve, and an
aggregate mean average precision (MAP) across all
relations. This metric has shown to be very robust
and stable (Manning et al., 2008). In addition we
also present a weighted version of MAP (weighted
MAP) in which the average precision for each re-

79



Relation # MI09 YA11 SU12 N F NF NFE
person/company 103 0.67 0.64 0.70 0.73 0.75 0.76 0.79
location/containedby 74 0.48 0.51 0.54 0.43 0.68 0.67 0.69
author/works_written 29 0.50 0.51 0.52 0.45 0.61 0.63 0.69
person/nationality 28 0.14 0.40 0.13 0.13 0.19 0.18 0.21
parent/child 19 0.14 0.25 0.62 0.46 0.76 0.78 0.76
person/place_of_death 19 0.79 0.79 0.86 0.89 0.83 0.85 0.86
person/place_of_birth 18 0.78 0.75 0.82 0.50 0.83 0.81 0.89
neighborhood/neighborhood_of 12 0.00 0.00 0.08 0.43 0.65 0.66 0.72
person/parents 7 0.24 0.27 0.58 0.56 0.53 0.58 0.39
company/founders 4 0.25 0.25 0.53 0.24 0.77 0.80 0.68
film/directed_by 4 0.06 0.15 0.25 0.09 0.26 0.26 0.30
sports_team/league 4 0.00 0.43 0.18 0.21 0.59 0.70 0.63
team/arena_stadium 3 0.00 0.06 0.06 0.03 0.08 0.09 0.08
team_owner/teams_owned 2 0.00 0.50 0.70 0.55 0.38 0.61 0.75
roadcast/area_served 2 1.00 0.50 1.00 0.58 0.58 0.83 1.00
structure/architect 2 0.00 0.00 1.00 0.27 1.00 1.00 1.00
composer/compositions 2 0.00 0.00 0.00 0.50 0.67 0.83 0.12
person/religion 1 0.00 1.00 1.00 0.50 1.00 1.00 1.00
film/produced_by 1 1.00 1.00 1.00 1.00 0.50 0.50 0.33
MAP 0.32 0.42 0.56 0.45 0.61 0.66 0.63
Weighted MAP 0.48 0.52 0.57 0.52 0.66 0.67 0.69

Table 1: Average and (weighted) Mean Average Precisions for Freebase relations based on pooled results. The #
column shows the number of true facts in the pool. NFE is statistically different to all but NF and F according to the
sign test. Bold faced are winners per relation, italics indicate ties.

lation is weighted by the relation’s number of true
facts.

Notice that we deviate from previous work in dis-
tant supervision that (a) combines the results from
several relations in a single precision recall curve,
and (b) uses held-out evaluation to measure how
well the predictions match existing Freebase facts.
This has several benefits. First, when aggregating
across relations results are often dominated by a few
very frequent relations, such as containedby, provid-
ing little information about how the models perform
across the board. Second, evaluating with Freebase
held-out data is biased. For example, we find that
frequently mentioned entity pairs are more likely to
have relations in Freebase. Systems that rank such
tuples higher receives higher precision than those
that do not have such bias, regardless of how cor-
rect their predictions are. Third, we can aggregate
per-relation comparisons to establish statistical sig-
nificance, for example via the sign test.

Also note that while we run our models on the
complete training and test set, evaluation is re-
stricted to the subsampled test set.

4.3 Predicting Freebase Relations
Table 1 shows our results for Freebase relations,
omitting those for which none of the systems can
find any relevant facts. Our first baseline is MI09,
a distantly supervised classifier based on the work
of Mintz et al. (2009). This classifier only learns
from observed pattern-relation pairs in the training
set (of which we only have about 8k). By contrast,
our latent feature models can learn pattern-pattern
correlations both on the unlabeled training and test
set (comparable to bootstrapping). We hence also
compare against YA11, a version of MI09 that uses
preprocessed cluster features according to Yao et al.
(2011). The third baseline is SU12, the state-of-the-
art Multi-Instance Multi-Label system by Surdeanu
et al. (2012).

The remaining systems are our neighborhood

80



 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1

Pr
ec

is
io

n

Recall

Averaged 11-point Precision/Recall

MI09
YA11
SU12

N
F

NF
NFE

Figure 2: Averaged 11-point precision recall curve for
Freebase relations in table 1.

model (N), the factorized model (F), their combi-
nation (NF) and the combined model with a latent
entity representation (NFE). For all our models we
use the same number of components when applica-
ble (KF = KE = 100), 1000 epochs, and 0.01 as
regularizer for component weights and 0.1 for neigh-
borhood weights.

Table 1 shows that adding pattern cluster features
(and hence incorporating more data) helps YA11
to improve over MI09. Likewise, we see that the
factorized model F improves over N, again learn-
ing from unlabeled data. This improvement is big-
ger than the corresponding change between MI09
and YA11, possibly indicating that our latent rep-
resentations are optimized directly towards improv-
ing prediction performance. The combination of N,
F and E outperforms all other models in terms of
weighted MAP, indicating the power of selectional
preferences learned from data. Note that NFE is
significantly different (p � 0.05 in sign test) to all
but the NF and F models. In terms of MAP the NF
model outperforms NFE, indicating that it does not
do as well for frequent relations, but better for infre-
quent ones.

Figure 2 shows an averaged 11-point precision re-
call graph (Manning et al., 2008) for Freebase re-
lations. We notice that our latent models outper-
form all remaining models across all recall levels,
and that combining neighborhood and latent models
is helpful. This finding is consistent with our MAP
results. Figure 3 shows the recall-precision curve for
the works_written relation with respect to our three
baselines and the NFE model. Observe how preci-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Pr
ec

is
io

n

Recall

Recall/Precision

MI09
YA11
SU12
NFE

Figure 3: Precision and recall for works_written(X,Y).

Relation # N F NF NFE
visit 80 0.19 0.68 0.49 0.42
attend 69 0.23 0.10 0.07 0.10
base 61 0.46 0.87 0.81 0.68
head 38 0.47 0.67 0.70 0.68
scientist 36 0.25 0.84 0.79 0.73
support 18 0.16 0.29 0.32 0.38
adviser 11 0.19 0.15 0.19 0.28
criticize 9 0.09 0.60 0.67 0.64
praise 4 0.01 0.03 0.05 0.10
vote 3 0.18 0.18 0.34 0.34
MAP 0.22 0.44 0.44 0.43
Weighted MAP 0.28 0.56 0.50 0.46

Table 2: Average and (weighted) Mean Average Preci-
sions for surface patterns.2

sion drops for both MI09 and SU12 at about 50%
recall. At this point the remaining unretrieved facts
have patterns that have not been seen together with
works_written in the training set. By using cluster
features, YA11 can overcome this problem partly,
but not as dramatically as NFE—a pattern we ob-
serve for many relations.

All our models are fast to train. The slowest
model trains in just 45 minutes. By contrast, training
the topic model in YA11 alone takes 4 hours. Train-
ing SU12 takes two hours (on less data). Also notice
that our models not only learn to predict Freebase
relations, but also approximately 4k surface pattern
relations.

4.4 Predicting Surface Patterns

Table 2 presents a comparison of our models with re-
spect to 10 surface pattern relations. These relations
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Figure 4: Averaged 11-point precision recall curve for
surface pattern relations in table 2.

were chosen according to what we believe are inter-
esting questions not currently captured in Freebase.
We again see that learning a latent representation (F,
NF and NFE) from additional data helps quite sub-
stantially over the N model. For in the weighted
MAP metric we note that incorporating entity rep-
resentations (in the NFE model) in fact hurts total
performance.3 One reason may be the fact that Free-
base relations are typed—they require very specific
types of entities as arguments. By contrast, for a
surface pattern like “X visits Y” X could be a person
or organization, and Y could be a location, organi-
zation or person. However, in terms of MAP score
this time there is no obvious winner among the la-
tent models. This is also confirmed by the averaged
11-point precision recall curve in figure 4.

Notice that we can accurately predict the X–
scientist-at–Y surface pattern relation in table 2,
as well as the more general person/company (em-
ployedBy) relation in table 1. This indicates that
our models can capture asymmetry—a symmetric
model would either over-predict X–scientist-at–Y
or under-predict person/company.

5 Conclusion

We present relation extraction into universal
schemas. Such schemas contain surface patterns
as relations, as well as relations from structured
sources. By predicting missing tuples for surface
pattern relations we can populate a database with-
out any labelled data, and answer questions not sup-

3Due to the small set of relations only N is significantly dif-
ferent to F, NF and NFE (p� 0.05 in sign test).

ported by the structured schema alone. By predict-
ing missing tuples in the structured schema we can
expand a knowledge base of fixed schema, and only
require a set of existing facts from this schema. Cru-
cially, by predicting and modeling both surface pat-
terns and structured relations simultaneously we can
improve performance. We show this experimentally
by contrasting a series of the popular weakly super-
vised models to our collaborative filtering models
that learn latent feature representations across sur-
face patterns and structured relations. Moreover, our
models are computationally efficient, requiring less
time than comparable methods, while learning more
relations.

Reasoning with universal schemas is not merely a
tool for information extraction. It can also serve as
a framework for various data integration tasks. For
example, we could integrate facts from one schema
(say, Freebase) into another (say, the TAC KBP
schema) by adding both sets of relations to the set
of surface patterns. Reasoning with this schema
will mean populating each database with facts from
the other, and would leverage information in surface
patterns to improve integration. In future work we
also plan to integrate universal entity types and at-
tributes into the model.

The source code of our system, its output, and
all data annotations are available at http://www.
riedelcastro.org/uschema.
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