
Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 653–656,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Enlarged Search Space for SITG Parsing

Guillem Gascó, Joan-Andreu Sánchez, José-Miguel Benedí
Institut Tecnològic d’Informàtica, Universitat Politècnica de València

Camí de Vera s/n, València, 46022, Spain
ggasco@iti.upv.es , {jandreu,jbenedi}@dsic.upv.es

Abstract

Stochastic Inversion Transduction Grammars
constitute a powerful formalism in Machine
Translation for which an efficient Dynamic
Programming parsing algorithm exists. In this
work, we review this parsing algorithm and
propose important modifications that enlarge
the search space. These modifications allow
the parsing algorithm to search for more and
better solutions.

1 Introduction

Syntax Machine Translation has received great at-
tention in the last few years, especially for pairs of
languages that are sufficiently non-monotonic. Sev-
eral works have explored the use of syntax for Ma-
chine Translation (Wu, 1997; Chiang, 2007). In
(Wu, 1997), Stochastic Inverse Transduction Gram-
mars (SITGs) were introduced for describing struc-
turally correlated pairs of languages. SITGs can be
used to simultaneously analyze two strings from dif-
ferent languages and to correlate them. An efficient
Dynamic Programming parsing algorithm for SITGs
was presented in (Wu, 1997). This algorithm is sim-
ilar to the CKY algorithm for Probabilistic Context
Free Grammars. The parsing algorithm does not al-
low the association of two items that have the empty
string in one of their sides. This limitation restricts
the search space and prevents the algorithm from ex-
ploring some valid parse trees.

In this paper, we review Wu’s parsing algorithm
for SITGs (referred to as the original algorithm) and
propose some modifications to increase the search
space in order to make it possible to find these valid
parse trees.

2 SITG Parsing

SITGs (Wu, 1997) can be viewed as a restricted
subset of Stochastic Syntax-Directed Transduction
Grammars (Maryanski and Thomason, 1979). For-
mally, a SITG in Chomsky Normal Form can be
defined as a set of lexical rules that are noted as
A → x/ǫ, A → ǫ/y, A → x/y; direct syntac-
tic rules that are noted asA → [BC]; and inverse
syntactic rules that are noted asA → 〈BC〉, where
A,B,C are non-terminal symbols,x, y are terminal
symbols,ǫ is the empty string, and each rule has a
probability valuep attached. The sum of the proba-
bilities of the rules with the same non-terminal in the
left side must be equal to 1. When a direct syntactic
rule is used in parsing, both strings are parsed with
the syntactic ruleA → BC. When an inverse rule is
used in parsing, one string is parsed with the syntac-
tic ruleA → BC, and the other string is parsed with
the syntactic ruleA → CB.

An efficient Viterbi-like parsing algorithm that is
based on a Dynamic Programming Scheme was pro-
posed in (Wu, 1997). It allows us to obtain the most
probable parse tree that simultaneously analyzes two
strings,X = x1...x|X| andY = y1...x|Y |, i.e. the
bilingual stringX/Y . It has a time complexity of
O(|X|3|Y |3|R|), where|R| is the number of rules
of the grammar.

The parsing algorithm is based on the definition
of:

δijkl(A) = P̂r(A
∗
⇒ xi+1 · · · xj/yk+1 · · · yl)

as the maximum probability of any parsing tree that
simultaneously generates the substringsxi+1 · · · xj

andyk+1 · · · yl from the non-terminal symbolA .
In (Wu, 1997), the parsing algorithm was defined

as follows:

653

1. Initialization

δi−1,i,k−1,k(A) = p(A → xi/yk)

1 ≤ i ≤ |X|, 1 ≤ k ≤ |Y |,

δi−1,i,k,k(A) = p(A → xi/ǫ)

1 ≤ i ≤ |X|, 0 ≤ k ≤ |Y |,

δi,i,k−1,k(A) = p(A → ǫ/yk)

0 ≤ i ≤ |X|, 1 ≤ k ≤ |Y |,

2. Recursion

For all A ∈ N and
i, j, k, l such that






0 ≤ i < j ≤ |X|,
0 ≤ k < l ≤ |Y |,
j − i + l − k > 2,

(1)

δijkl(A) = max(δ
[]
ijkl(A), δ

〈〉
ijkl(A))

where
δ
[]
ijkl(A)

= max
B,C∈N

i≤I≤j,k≤K≤l

(I−i)(j−I)+(K−k)(l−K)>0

p(A → [BC])δiIkK(B)δIjKl(C) (2)

δ
〈〉
ijkl(A)

= max
B,C∈N

i≤I≤j,k≤K≤l

(I−i)(j−I)+(K−k)(l−K)>0

p(A → 〈BC〉)δiIKl(B)δIjkK(C) (3)

This algorithm cannot provide the correct parsing
tree in some situations. For example, consider the
SITG shown in Fig. 1. If the input pair isa/b,

p S → [SS] p S → 〈SS〉
q S → ǫ/b q S → a/ǫ

1− 2p− 2q S → a/b

Figure 1: Example SITG.

this SITG provides the parse tree (a) that is shown in
Fig. 2 with probability1 − 2p − 2q. However, the
parse tree (b) is more likely if1 − 2p − 2q < 2pq.
The above parsing algorithm is not able to obtain
this parse tree due to the restrictionj− i+ l−k > 2
in (1). This restriction does not allow the algo-
rithm to consider two subproblems in which each
substring has length1 which have not been previ-
ously considered in the initialization step. Chang-
ing this restriction toj − i + l − k ≥ 2 is not
enough to tackle this situation since the restriction

(b)(a)

SS

SS

a/b

a/ǫ ǫ/b

Figure 2: Parse tree (a) can be obtained with Wu’s algo-
rithm for a/b, but parse tree (b) cannot be obtained.

(I−i)(j−I)+(K−k)(l−K) 6= 0 in expression (2)
is not accomplished given thatI = i or I = j, and
K = k or l = K (similarly in expression (3)).

From now on, we will use the termnon-explored
trees to denote the set of trees that are possible when
rules of the grammar are applied but cannot be ex-
plored with Wu’s algorithm. In fact, this situation
appears for other paired strings (see Fig. 3) in which
a string in one side is associated with the empty
string in the other side through rules that are not lexi-
cal rules. For example, in Fig. 3b, substringaa could
be associated withǫ. However,this parse tree cannot
be obtained with the algorithm due to the search re-
strictions described above.

(b)(a)

SS

S

S

S

SS

S

a/ba/ǫ

a/ǫa/ǫ

ǫ/b

Figure 3: Parse tree (a) can be obtained with Wu’s algo-
rithm for aa/b, but parse tree (b) would be more probable
if pq2 > 1− 2p− 2q.

The changes needed in the algorithm to be able to
find the sort of parsing trees described above are the
following:

• Changing restrictionj − i + l− k > 2 in (1) to
j− i+ l−k ≥ 2. Note that this new restriction
is redundant and could be removed.

• Changing restriction(I− i)(j−I)+(K−k)(l−

K) 6= 0 to ((j−I)+(l−K))∗((I−i)+(K−k)) 6=

0 in (2) and to((j − I) + (K − k)) ∗ ((I − i) +

(l − K)) 6= 0 in (3) in order to guarantee the
algorithm’s termination.

3 Search under SITG Constraints

The modifications that have been introduced in Sec-
tion 2 enlarge the search space and allow the parsing

654

algorithm to explore a greater number of possible so-
lutions. We illustrate this situation with an example.
Consider the SITG introduced in Figure 1. Fig. 4
shows the possible complete matched trees for the
input paira/b that are considered in the search pro-
cess with the modifications introduced.

(b)(a) (c) (d) (e)

S

S

SS

S

SS

S

S

S

S

S

Sa/b

aaaa

bbbb

ǫ

ǫ

ǫ

ǫǫ

ǫǫ

ǫ

Figure 4: Parse trees for input paira/b that are taken into
account in the search process with the modifications.

Without these modifications, the parsing algo-
rithm only takes into account tree (a) of Fig. 4. For
this grammar, we have computed the growth in num-
ber of complete matched trees. Table 1 shows how
the search space grows notably with the modifica-
tions introduced.

n Wu’s alg. Modified alg. ratio
1 1 5 0.200
2 34 290 0.117
3 1,928 34,088 0.057
4 131,880 5,152,040 0.026
5 10,071,264 890,510,432 0.011
6 827,969,856 167,399,588,160 0.005

Table 1: Growth in number of explored trees for the orig-
inal and modified parsing algorithms (n is the length of
the input pair strings and the last column represents the
ratio between columns two and three).

As a preliminary experiment and in order to eval-
uate empirically the Wu’s parsing algorithm versus
the modified algorithm, we parsed first 100K sen-
tence of German-English Europarl corpus. The lex-
ical rules in the Bracketing SITG used for pars-
ing were obtained from a probabilistic dictionary
by aligning with IBM3 model (NULL aligments
were also included). In this experiment, the modi-
fied algorithm obtained a more probable parse tree
for 6% of the sentences. If we added brackets to
the sentences separately with monolingual parsers,
we could use a parsing algorithm similar to the al-
gorithm that is described in (Sánchez and Benedí,
2006). The monolingual brackets restricted the
parse tree to those that were compatible with the

brackets. In that case the modified algorithm ob-
tained a more probable parse tree for 14% of the
sentences.

4 Inside Probability

The parsing algorithm described above computes
the most likely parse tree for a given paired string
X/Y . However, in some cases (Wu, 1995; Huang
and Zhou, 2009), we need the inside probability
(β0,|X|,0,|Y |(S)), i.e., the probability that the gram-
mar assigns to the whole set of parse trees that yield
X/Y . If the maximizations are replaced by sums,
the algorithm can be used to compute the inside
probability. However, as stated above, the origi-
nal algorithm cannot find the whole set of trees for
a given paired string in some cases. These non-
explored trees have a probability greater than 0.

As an example, we computed the amount of prob-
ability lost in the inside computation using the origi-
nal algorithm with the grammar shown in Fig. 1. Let
Γ be the amount of probability of the non-explored
trees (the lost probability). It must be noted that
since height 1 trees are all reachable, we must accu-
mulate lost probability for trees of height 2 or more.
Hence, letγ be the amount of lost probability for
trees of height 2 or more. Note that all such trees
must have initially used the productionS → SS in-
versely or directly. Thus,Γ = 2p · γ. Fig. 5 shows
the kinds of non-explored trees. Thenγ is:

γ = 4·q2+2·2p·(1−2p)·γ+(2p)2 ·(2γ(1−γ)+γ2)

The first addend is the probability of the non-
explored trees of height 2 (Fig. 5a). The second ad-
dend is the probability that one of the subtrees uses
a syntactic production, this new subtree produces
a non-explored tree (2p · γ) and the other subtree

(a) (b) (c)

S

S

SS

S

SS

S

S

Figure 5: Partial representation of non-explored parse
trees from the non-terminal stringSS introduced after
the first derivation step: (a) both non-terminals yield a
terminal in one side and the empty string in the other;
(b) one of the non-terminals uses a lexical production
and the other non-terminal yields a non-explored tree; (c)
both non-terminals use a syntactic production and one (or
both) yields a non-explored tree.

655

Figure 6: Amount of lost probability for values of p and q.

rewrites itself using a lexical production (1 − 2p).
Note that the non-explored tree can be yielded from
either the left or the right non-terminal, (Fig. 5b).
The third addend is the probability that both non-
terminals use a syntactic production(2p)2 and ei-
ther one (2(γ)(1−γ)) or both (γ2) subtrees are non-
explored trees (Fig. 5c). If we isolateΓ, we get

Γ = 2p ·
1− 4p ±

√
16p2 − 8p + 1 + 64p2q2

4p2

Since the solution with the positive square root
takes values greater than 1, we can discard it.

Fig. 6 shows the probability accumulated in the
non-explored trees for values ofp and q between
0 and0.25 (higher values ofp produce inconsistent
SITGs). That is the amount of probability lost in the
inside parsing for the whole language generated by
the grammar shown in Fig. 1.

In order to prove the loss of probability produced
by the original algorithm, we use the grammar in
Fig. 1 with p = q = 0.2. We parse all the paired
stringsX/Y such that|X| + |Y | ≤ l, wherel is a
fixed maximum length. We repeat the same exper-
iment using the modified algorithm. Fig. 7 shows
the accumulated inside probabilities for both origi-
nal and modified algorithms and the theoretical max-
imums (1−Γ for the original algorithm and 1 for the
modified algorithm). Note that the computed results
approach the theoretical maximums and the modi-
fied algorithm covers the whole search space.

5 Conclusions

SITGs have proven to be a powerful tool in Syntax
Machine Translation. However, the algorithms have
been proposed do not explore all the possible parse
trees. This work proposes modifications of the algo-
rithms to be able to explore the whole search space.

Figure 7: Accumulated inside probability for the original
and modified algorithms.

Using an example, we have shown that the modifi-
cations allow a complete search. As future work, we
plan to proove the correctness of the modified algo-
rithm and to study the impact of these modifications
on the use of SITGs for Machine Translation, and
the estimation of SITGs.

Acknowledgments

Work supported by the EC (FSE), the Spanish Gov-
ernment (MICINN, "Plan E") under grants MIPRCV
"Consolider Ingenio 2010" CSD2007-00018, iTrans2
TIN2009-14511 and the Generalitat Valenciana grant
Prometeo/2009/014 and BFPI/2007/117.

References

D. Chiang. 2007. Hierarchical phrase-based translation.
Computational Linguistics, 33(2):201–228.

S. Huang and B. Zhou. 2009. An em algorithm for scfg
in formal syntax-based translation. InICASSP, pages
4813–4816, Taiwan, China, April.

F.J. Maryanski and M.T. Thomason. 1979. Properties of
stochastic syntax-directed tranlation schemata.Jour-
nal of Computer and Information Sciences, 8(2):89–
110.

J.A. Sánchez and J.M. Benedí. 2006. Stochastic in-
version transduction grammars for obtaining word
phrases for phrase-based statistical machine transla-
tion. In Proc. of Workshop on Statistical Machine
Translation. HLT-NAACL 06, pages 130–133.

D. Wu. 1995. Trainable coarse bilingual grammars for
parallel text bracketing. InProceedings of the Third
Annual Workshop on Very Large Corpora, pages 69–
81.

D. Wu. 1997. Stochastic inversion transduction gram-
mars and bilingual parsing of parallel corpora.Com-
putational Linguistics, 23(3):377–404.

656

