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Abstract

Maximum entropy models are a common mod-
eling technique, but prone to overfitting. We
show that using an exponential distribution as
a prior leads to bounded absolute discounting
by a constant. We show that this prior is better
motivated by the data than previous techniques
such as a Gaussian prior, and often produces
lower error rates. Exponential priors also lead
to a simpler learning algorithm and to easier to
understand behavior. Furthermore, exponential
priors help explain the success of some previ-
ous smoothing techniques, and suggest simple
variations that work better.

1 Introduction

Conditional Maximum Entropy (maxent) models have
been widely used for a variety of tasks, including lan-
guage modeling (Rosenfeld, 1994), part-of-speech tag-
ging, prepositional phrase attachment, and parsing (Rat-
naparkhi, 1998), word selection for machine translation
(Berger et al., 1996), and finding sentence boundaries
(Reynar and Ratnaparkhi, 1997). They are also some-
times called logistic regression models, maximum likeli-
hood exponential models, log-linear models, and are even
equivalent to a form of perceptrons/single layer neural
networks. In particular, perceptrons that use the standard
sigmoid function, and optimize for log-loss are equivalent
to maxent. Multi-layer neural networks that optimize log-
loss are closely related, and much of the discussion will
apply to them implicitly.

Conditional maxent models have traditionally either
been unregularized or regularized by using a Gaussian
prior on the parameters. We will show that by using an
exponential distribution as the prior, several advantages
can be gained. We will show that in at least one case, an
exponential prior experimentally better matches the ac-
tual distribution of the parameters. We will also show that
it can lead to improved accuracy, and a simpler learning

algorithm. In addition, the exponential prior inspires an
improved version of Good Turing discounting with lower
perplexity.

Conditional maxent models are of the form

PΛ(y|x) =
exp

∑F
i=1 λifi(x, y)∑

y′ exp
∑

i λifi(x, y′)

where x is an input vector, y is an output, the f i are the so-
called indicator functions or feature values that are true
if a particular property of x, y is true, F is the number
of such features, Λ represents the parameter set λ1...λn,
and λi is a weight for the indicator fi. For instance,
if trying to do word sense disambiguation for the word
“bank”, x would be the context around an occurrence of
the word; y would be a particular sense, e.g. financial or
river; fi(x, y) could be 1 if the context includes the word
“money” and y is the financial sense; and λi would be a
large positive number.

Maxent models have several valuable properties
(Della Pietra et al. (1997) give a good overview.) The
most important is constraint satisfaction. For a given f i,
we can count how many times fi was observed in the
training data with value y, observed[i] =

∑
j fi(xj , yj).

For a model PΛ with parameters Λ, we can see how many
times the model predicts that fi would be expected to
occur: expected[i] =

∑
j,y PΛ(y|xj)fi(xj , y). Maxent

models have the property that expected[i] = observed[i]
for all i and y. These equalities are called constraints.
The next important property is that the likelihood of the
training data is maximized (thus, the name maximum
likelihood exponential model.) Third, the model is as
similar as possible to the uniform distribution (minimizes
the Kullback-Leibler divergence), given the constraints,
which is why these models are called maximum entropy
models.

This last property – similarity to the uniform distribu-
tion – is a form of regularization. However, it turns out to
be an extremely weak one – it is not uncommon for mod-
els, especially those that use all or most possible features,
to assign near-zero probabilities (or, if λs may be infi-



nite, even actual zero probabilities), and to exhibit other
symptoms of severe overfitting. There have been a num-
ber of approaches to this problem, which we will discuss
in more detail in Section 3. The most relevant approach,
however, is the work of Chen and Rosenfeld (2000), who
implemented a Gaussian prior for maxent models. They
compared this technique to most of the previously im-
plemented techniques, on a language modeling task, and
concluded that it was consistently the best. We thus use it
as a baseline for our comparisons, and similar considera-
tions motivate our own technique, an exponential prior.

Chen et al. place a Gaussian prior with 0 mean and σ 2
i

variance on the model parameters (the λ is), and then find
a model that maximizes the posterior probability of the
data and the model. In particular, maxent models without
priors use the parameters Λ that maximize

argmax
Λ

n∏
j=1

PΛ(yj |xj)

where xj , yj are training data instances. With a Gaussian
prior we find

arg max
Λ

n∏
j=1

PΛ(yj|xj) ×
F∏

i=1

1√
2πσ2

i

exp
(
− λ2

i

2σ2
i

)

In this case, a trained model does not satisfy the con-
straints expected[i] = observed[i], but, as Chen and
Rosenfeld show, instead satisfies constraints

expected[i] = observed[i] − λi

σ2
i

(1)

That is, instead of a model that matches the observed
count, we get a model matching the observed count minus
λi

σ2
i

: in language modeling terms, this is “discounting.”

We do not believe that all models are generated by
the same process, and therefore we do not believe that
a single prior will work best for all problem types.
In particular, as we will describe in our experimen-
tal results section, when looking at one particular set
of parameters, we noticed that it was not at all Gaus-
sian, but much more similar to a 0 mean Laplacian,

f(λi) = 1
2βi

exp
(
− |λi|

βi

)
, or to an exponential distri-

bution f(λi) = αi exp (−αiλi), which is non-zero only
for non-negative λi. In some cases, learned parameter
distributions will not match the prior distribution, but in
some cases they will, so it seemed worth exploring one
of these alternate forms. Later, when we try to optimize
our models, the parameter seach will turn out to be much
simpler with an exponential prior, so we focus on that
distribution.

With an exponential prior, we maximize

arg max
Λ≥0

n∏
j=1

PΛ(yj |xj) ×
F∏

i=1

αi exp (−αiλi) (2)

As we will describe, it is significantly simpler to perform
this maximization than the Gaussian maximization. Fur-
thermore, as we will describe, models satisfying Equa-
tion 2 will have the property that, for each λ i, either
a) λi = 0 and expected[i] ≥ observed[i] − αi or b)
expected[i] = observed[i]−αi. In other words, we essen-
tially just discount the observed counts by the constant
αi (which is the reciprocal of the standard deviation),
subject to the constraint that λi is non-negative. This is
much simpler and more intuitive than the constraints with
the Gaussian prior (Equation 1), since those constraints
change as the values of λi change. Furthermore, as we
will describe in Section 3, discounting by a constant is a
common technique for language model smoothing (Ney
et al., 1994; Chen and Goodman, 1999), but one that has
not previously been well justified; the exponential prior
gives some Bayesian justification.

In Section 5 we will show that on two very different
tasks – grammar checking and a collaborative filtering
task – the exponential prior yields lower error rates than
the Gaussian.

2 Learning algorithms and discounting

In this section we derive a learning algorithm for expo-
nential priors, with provable convergence properties, and
show that it leads to a simple discounting formula. Note
that the simple learning algorithm is an important con-
tribution: the algorithm for a Gaussian prior is quite a
bit more complicated, and previous related work with the
Laplacian prior (two-sided exponential) has had a diffi-
cult time finding learning algorithms; because the Lapla-
cian does not have a continuous first derivative, and be-
cause the exponential prior is bounded at 0, standard gra-
dient descent type algorithms may exhibit poor behav-
ior. Williams (1995) devotes a full ten pages to describ-
ing a somewhat heuristic approach for solving this prob-
lem, and even this discussion concludes “In summary it
is left to the reader to supply the algorithms for deter-
mining successive search directions and the initially pre-
ferred value of” the step size (page 130).1 We show that
a very simple variation on a standard algorithm, General-
ized Iterative Scaling (GIS) (Darroch and Ratcliff, 1972),
solves this problem. In particular, as we will show, while
GIS uses an update rule of the form

λi := λi +
1

f#
log

observed[i]
expected[i]

1Williams’ algorithm is for the much more complex case of
a multi-layer network, while ours is for the one layer case, but
there are no obvious simplifications to his approach for the one
layer case.



our modified algorithm uses a rule of the form

λi := max
(

0,

(
λi +

1
f#

log
observed[i] − αi

expected[i]

))
(3)

Note that there are two different styles of model that
one can use, especially in the common case that there are
two outputs (values for y.) Consider a word sense disam-
biguation problem, trying to determine whether a word
like “bank” means the river or financial sense, with ques-
tions like whether or not the word “water” occurs nearby.
One could have a single indicator function f1(x, y) =
1 if water occurs nearby and values in the range −∞ <
λ1 < ∞. We call this style “double sided” indicators.
Alternatively, one could have two indicator functions,
f1(x, y) = 1 if water occurs nearby and y=river and
f2(x, y) = 1 if water occurs nearby and y=financial. In
this case, one could allow either −∞ < λ1, λ2 < ∞ or
0 ≤ λ1, λ2 < ∞ . We call the style with two indicators
“single sided.” With a Gaussian prior, it does not mat-
ter which style one uses – one can show that by chang-
ing σ2, exactly the same results will be achieved. With a
Laplacian (double sided exponential), one could also use
either style. With an exponential prior, only positive val-
ues are allowed, so one must use the double sided style,
so that one can learn that some indicators push towards
one sense, and some push towards the other – that is,
rather than having one weight which is positive or neg-
ative, we have two weights which are positive or zero,
one of which pushes towards one answer, and the other
pushing towards the other.

We derive our constraints and learning algorithm by
very closely following the derivation of the algorithm by
Chen and Rosenfeld. It will be convenient to maximize
the log of the expression in 2 rather than the expression
itself. This leads to an objective function:

L(Λ)=
∑

j

log PΛ(yj |xj) −
F∑

i=1

αiλi + log αi

=
∑

j

F∑
i=1

λifi(xj , yj) (4)

−
∑

j

log
∑

y

exp

(
F∑

i=1

λifi(xj , y)

)
−

F∑
i=1

αiλi+logαi

Note that this objective function is convex (since it is the
sum of two convex functions.) Thus, there is a global
maximum value for this objective function.

Now, we wish to find the maximum. Normally, we
would do this by setting the derivative to 0, but the bound
of λk ≥ 0 changes things a bit. The maximum can then
occur at the discontinuity in the derivative (λk = 0) or
when λk > 0. We can explicitly check the value of the
objective function at the point λk = 0. When there is a

maximum with λk > 0 we know that the partial deriva-
tive with respect to λk will be 0.

∂
∂λk

∑
j

∑F
i=1 λifi(xj , yj)

−∑j log
∑

y exp
(∑F

i=1 λifi(xj , y)
)

−∑F
i=1 αiλi + const(Λ)

=
∑

j fk(xj , yj)

−∑j

∑
y

fk(xj ,y) exp(
∑F

i=1
λifi(xj ,y))∑

y
exp
(∑

F

i=1
λifi(xj ,y)

) − αk

=
∑

j fk(xj , yj)−
∑

j

∑
y fk(xj , y)PΛ(y|xj)−αk

This implies that at the optimum, when λk > 0,∑
j

fk(xj , yj) −
∑

j

∑
y

fk(xj , y)PΛ(y|xj) − αk = 0

observed[k] − expected[k] − αk = 0

observed[k] − αk = expected[k] (5)

In other words, we discount the observed count by α k –
the absolute discounting equation. Sometimes it is better
for λk to be set to 0 – another possible optimal point is
when λk = 0 and observed[k] − αk < expected[k]. One
of these two cases must hold at the optimum.

Notice an important property of exponential priors
(analogous to a similiar property for Laplace priors
(Williams, 1995; Tibshirani, 1994)): they often favor pa-
rameters that are exactly 0. This leads to a kind of natu-
ral pruning for exponential priors, not found in Gaussian
priors, which are only very rarely 0. (Note, however, that
one should not increase the α’s in the exponential prior
to control pruning, as this may lead to oversmoothing. If
additional pruning is needed for speed or memory sav-
ings, feature selection techniques should be used, such
as pruning small or infrequent parameters, instead of a
strengthened prior.)

Now, we can derive the update equations. The deriva-
tion is exactly the same as Chen and Rosenfeld’s (2000)
with the minor change of an exponential prior instead of
a Gaussian prior (we include it in the appendix.) Let
f#(x, y) =

∑
i fi(x, y). Then, in the end, we get an

update equation of the form

λk := max
(

0, λk +
1

f#
log

observed[k] − αk

expected[k]

)

Compare this equation to the corresponding equation
with a Gaussian prior (Chen and Rosenfeld., 2000). With
a Gaussian prior, one can derive an equation of the form

observed[k] − λk

σ2
k

= expected[k] exp
(
f#δk

)
and then solve for δk. There is no closed form solution:
it must be solved using numerical methods, such as New-
ton’s method, making this update much more complex
and time consuming than the exponential prior.



One can also derive variations on this update. For in-
stance, in the Appendix, we derive an update for Im-
proved Iterative Scaling (Della Pietra et al., 1997) with
an exponential prior. Perhaps more importantly, one can
also derive updates for Sequential Conditional General-
ized Iterative Scaling (SCGIS) (Goodman, 2002), which
is several times faster than GIS. The SCGIS update for
binary features with an exponential prior is simply

λk := max
(

0, λk + log
observed[k] − αk

expected[k]

)

One might wonder why we simply don’t use conju-
gate gradient (CG) methods, which have been shown to
converge quickly for maxent. There has not been a for-
mal comparison of SCGIS to conjugate gradient methods.
In our own pilot studies, SCGIS is sometimes faster and
sometimes slower. Also, some versions of CG use heuris-
tics for the step size, and lose convergence guarantees.
Finally, SCGIS is simpler to implement than conjugate
gradient, and even for those with a conjugate gradient li-
brary, because of the parameter constraints (for an expo-
nential prior) or discontinuous derivatives (for a Lapla-
cian) standard conjugate gradient techniques need to be
at least somewhat modified.

Good-Turing discounting has been used or suggested
for language modeling several times (Rosenfeld, 1994,
page 38), (Lau, 1994). In particular, it has been suggested
to use an update of the form

λk := λk +
1

f#
log

observed[k]∗

expected[k]

where observed[k]∗ is the Good-Turing discounted value
of observed[k]. This update has a problem, as noted by its
proponents: the constraints are probably now inconsistent
– there is no model that can simultaneously satisfy them.
We note that a simple variation on this update, inspired
by the exponential prior, does not have these problems:

λk := max 0,

(
λk +

1
f#

log
observed[k]∗

expected[k]

)

In particular, this can be thought of as picking an
αobserved[k] for each observed[k]. This does not con-
stitute a Bayesian prior, since the value is picked after the
counts are observed, but it does lead to a convex objective
function with a global maximum, and the update function
will converge towards this maximum. Variations on the
constraints of Equation 5 will apply for this modified ob-
jective function. Furthermore, in the experimental results
section, we will see that on a language modeling task,
this modified update function outperforms the traditional
update. By using a well motivated approach inspired by
exponential priors, we can find a simple variation that has
better performance both theoretically and empirically.

3 Previous Work

There has been a fair amount of previous work on regu-
larization of maxent models. Early approaches focused
on feature selection (Della Pietra et al., 1997) or, simi-
larly, count cutoffs (Rosenfeld, 1994). By not using all
features, there is typically extra probability left-over for
unobserved events, which is distributed in a maximum
entropy fashion. The problem with this approach is that
it ignores useful information – although low count or low
discrimination features may cause overfitting, they do
contain valuable information. Because of this, more re-
cent approaches (Rosenfeld, 1994, page 38), (Lau, 1994)
have tried techniques such as Good-Turing discounts
(Good, 1953).

There are a number of other approaches (Khudanpur,
1995; Newman, 1997) based on the fuzzy maxent frame-
work (Della Pietra and Della Pietra, 1993). Chen and
Rosenfeld (Chen and Rosenfeld., 2000) give a more com-
plete discussion of those approaches.

Chen and Rosenfeld (2000), following a suggestion of
Lafferty, implemented a Gaussian prior for maxent mod-
els. They compared this technique to most of the previ-
ously discussed techniques, on a language modeling task,
and concluded that it was consistently the best technique.

Tibshirani (1994) introduced Laplacian priors for lin-
ear models (linear regressions) and showed that an ob-
jective function that minimizes the absolute values of the
parameters corresponds to a Laplacian prior. He called
this the Least Absolute Shrinkage and Selection Operator
(LASSO) and showed that it leads to a type of feature se-
lection. Exponential priors are sometimes called single-
sided Laplacians, so obviously, the two techniques are
very closely related, so closely that we would not want to
claim that either was better than the other.

Williams (1995) introduced a Laplacian prior for neu-
ral networks. Single layer neural networks with cer-
tain loss functions are equivalent to logistic regres-
sion/maximum entropy models. Williams’ algorithm was
for a more general case, and much more complex than the
one we describe.

More recently, Figueiredo et al. (2003) in unpublished
independent work also examined Laplacian priors for lo-
gistic regression, deriving a somewhat more complex al-
gorithm than ours, but one that they extended to partially
supervised learning. He has shown that the results are
comparable to transductive SVMs.

Perkins and Theiler (2003) used logisitic regression
with a Laplacian prior as well. Their learning algorithm
was conjugate gradient descent. Normally, conjugate gra-
dient methods are only used on data that has a continuous
first derivative, so the code was modified to prune weights
that go exactly to zero.

Our main contribution then is not the use of Laplacian



priors with logistic regression, nor even the first good
learning algorithm for the model type. Our contributions
are performing an explicit comparison to a Gaussian prior
and showing improved performance on real data; noticing
that the fixed point of the models leads to absolute dis-
counting; showing that iterative-scaling style algorithms
including GIS, IIS, and SCGIS can be trivially modified
to use this prior; and explicitly showing that in at least one
case, parameters are actually consistent with this prior.

4 Kneser-Ney smoothing

In this section, we help explain the excellent performance
of Kneser-Ney smoothing, the best performing language
model smoothing technique. This justification not only
answers an important question – why do discounting
methods work well – but also gives guidance for extend-
ing Kneser-Ney smoothing to problems with fractional
counts, where solutions were not previously known.

Chen and Goodman (1999) performed an extensive
comparison of different smoothing (regularization) tech-
niques for language modeling. They found that a ver-
sion of Kneser-Ney smoothing (Kneser and Ney, 1995)
consistently was the best performing technique. Unfortu-
nately, while there are partial theoretical justifications for
Kneser-Ney smoothing, in terms of preserving marginals,
one important part has previously had no justification:
Kneser-Ney smoothing discounts counts, while most con-
ventional regularization techniques, justified by Dirichlet
priors, add to counts. Given that discounting was pre-
viously unjustified, it is exciting that we have found a
way to explain it. In fact, we can show that the Back-
off version of Kneser-Ney smoothing is an excellent ap-
proximation to a maximum entropy model with an ex-
ponential prior. In particular, Kneser-Ney smoothing is
derived by assuming absolute discounting, and then find-
ing the distribution that preserves marginals, i.e. mak-
ing expected = observed - discount. The differences be-
tween Backoff Kneser-Ney smoothing and maxent mod-
els with exponential priors are twofold. First, the backoff
version does not exactly preserve marginals – an approx-
imation is made. Second, Backoff Kneser-Ney always
performs discounting, even when this effectively results
in lowering the probability, e.g. the equivalent of a neg-
ative value for λ. There is also an interpolated version
of Kneser-Ney smoothing. The interpolated version of
Kneser Ney smoothing works even better. It exactly pre-
serves marginals (except for discounting.) Also, the sec-
ondary distribution is combined with the primary distri-
bution; this has several effects, including that it is un-
likely to get the equivalent of a large negative λ value.

5 Experimental Results

In this section, we detail our experimental results, show-
ing that exponential priors outperform Gaussian priors on
two different data sets, and inspire improvements for a
third. For all experiments, except the language model ex-
periments, we used a single variance for both the Gaus-
sian and the exponential prior, rather than one per param-
eter, with the variance optimized on held out data. For the
language modeling experiments, we used three variances,
one each for the unigram, bigram, and trigram models,
again optimized on held out data.

We were inspired to use an exponential prior by an
actual examination of a data set. In particular, we used
the grammar-checking data of Banko and Brill (2001).
We chose this set because there are commonly used ver-
sions both with small amounts of data (which is when
we expect the prior to matter) and with large amounts of
data (which is required to easily see what the distribu-
tion over “correct” parameter values is.) For one exper-
iment, we trained a model using a Gaussian prior, using
a large amount of data. We then found those parameters
(λ’s) that had at least 35 training instances – enough to
typically overcome the prior and train the parameter re-
liably. We then graphed the distribution of these param-
eters. While it is common to look at the distribution of
data, the NLP and machine learning communities rarely
examine distributions of model parameters, and yet this
seems like a good way to get inspiration for priors to try,
using those parameters with enough data to help guess
the priors for those with less, or at least to determine the
correct form for the prior, if not the exact values. 2 The
results are shown in Figure 1, which is a histogram of λ’s
with a given value. If the distribution were Gaussian, we
would expect this to look like an upside-down parabola.
If the distribution were Laplacian, we would expect it to
appear as a triangle (the bottom formed from the X-axis.)
Indeed, it does appear to be roughly triangular, and to the
extent that it diverges from this shape, it is convex, while
a Gaussian would be concave. We don’t believe that the
exponential prior is right for every problem – our argu-
ment here is that based on both better accuracy (our next
experiment) and a better fit to at least some of the param-
eters, that the exponential prior is better for some models.

We then tried actually using exponential priors with
this application, and were able to demonstrate improve-

2Of course, those parameters with lots of data might be gen-
erated from a different prior than those with little data. This
technique is meant as a form of inspiration and evidence, but
not of proof. Similarly, all parameters may be generated by
some other process, e.g. a mixture of Gaussians. Finally, a prior
might be accurate but still behave poorly, because it might in-
teract poorly with other approximations. For instance, it might
interact poorly with the fact that we use arg max rather than the
true Bayesian posterior over models.
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Figure 1: Histogram of λ values

ments in error rate. We used a small data set, 100,000
sentences of training data and ten different confusable
word pairs. (Most training sentences did not contain ex-
amples of the confusable word pairs of interest, so the
actual number of training examples for each word-pair
was less than 100,000). We tried different priors for
the Gaussian and exponential prior, and found the best
single prior on average across all ten pairs. With this
best setting, we achieved a 14.51% geometric average
error rate with the exponential prior, and 15.45% with
the Gaussian. To avoid any form of cheating, we then
tried 10 different word pairs (the same as those used by
Banko and Brill (2001)) with this best parameter setting.
The results were 18.07% and 19.47% for the exponen-
tial and Gaussian priors respectively. (The overall higher
rate is due to the test set words being slightly more dif-
ficult.) We also tried experiments with 1 million and 10
million words, but there were not consistent differences;
improved smoothing mostly matters with small amounts
of training data.

We also tried experiments with a collaborative-filtering
style task, television show recommendation, based on
Nielsen data. The dataset used, and the definition of a col-
laborative filtering (CF) score is the same as was used by
Kadie et al. (2002), although our random train/test split
is not the same, so the results are not strictly comparable.
We first ran experiments with different priors on a held-
out section of the training data, and then using the single
best value for the prior (the same one across all features),
we ran on the test data. With a Gaussian prior, the CF
score was 42.11, while with an exponential prior, it was
45.86, a large improvement.

Finally, we ran experiments with language modeling,
with mixed success. We used 1,000,000 words of train-
ing data (a small model, but one where smoothing mat-
ters) from the WSJ corpus and a trigram model with a

cluster-based speedup (Goodman, 2001). We evaluated
on test data using the standard language modeling mea-
sure, perplexity, where lower scores are better. We tried
five experiments: using Katz smoothing (a widely used
version of Good-Turing smoothing) (perplexity 238.0);
using Good Turing discounting to smooth maxent (per-
plexity 224.8); using our variation on Good-Turing, in-
spired by exponential priors, where λ’s are bounded at 0
(perplexity 204.5); using an exponential prior (perplex-
ity 190.8); using a Gaussian prior (perplexity 183.7); and
using interpolated modified Kneser-Ney smoothing (per-
plexity 180.2). On the one hand, an exponential prior is
worse than a Gaussian prior in this case, and modified in-
terpolated Kneser-Ney smoothing is still the best known
smoothing technique (Chen and Goodman, 1999), within
noise of a Gaussian prior. On the other hand, searching
for parameters is extremely time consuming, and Good-
Turing is one of the few parameter-free smoothing meth-
ods. Of the three Good-Turing smoothing methods, the
one inspired by exponentials priors was the best.

Note that perplexity is 2entropy and in general, we
have found that exponential priors work slightly worse
on entropy measures than the Gaussian prior, even when
they are better on accuracy. This may be due to the fact
that an exponential prior “throws away” some informa-
tion, whenever the λ would be negative. (In a pilot exper-
iment with a variation that does not throw away informa-
tion, the entropies are closer to the Gaussian.)

6 Conclusion

We have shown that an exponential prior for maxent mod-
els leads to a simple update formula that is easy to im-
plement, and to models that are easy to understand: ob-
servations are discounted, subject to the constraint that
λ ≥ 0. We have also shown that in at least one case,
this prior better matches the underlying model, and that
for two applications, it leads to improved accuracy. The
prior also inspired an improved version of Good-Turing
smoothing with lower perplexity. Finally, an exponential
prior explains why models that discount by a constant
can be Bayesian, giving an alternative to Dirichlet pri-
ors which add a constant. This helps justify Kneser-Ney
smoothing, the best performing smoothing technique in
language modeling. In the future, we would like to use
our technique of examining the distribution of model pa-
rameters to see if other problems exhibit other priors be-
sides Gaussian and Laplacian/exponential, and if perfor-
mance on those problems can be improved through this
observation.
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A Derivation of Update Equation

In each iteration, we try to find ∆ = {δi} that maximizes
the increase in the objective function (subject to the con-
straint that δi + λi ≥ 0). From Equation 4,

L(Λ + ∆) − L(Λ) =∑
j

∑
i

δifi(xj , yj)

−
∑

j

log
∑

y

PΛ(y|xj) exp

(∑
i

δifi(xj , y)

)

−
∑

i

αiδi

As with the Gaussian prior, it is not clear how to maxi-
mize this function directly, so instead we use an auxiliary
function, B(∆), with three important properties: first, we
can maximize it; second, it bounds this function from be-
low; third, it is larger than zero whenever Λ is not at a lo-
cal optimum, i.e. does not satisfy the constraints in Equa-
tion 5. Using the well-known inequality log x ≤ x − 1,
which implies −logx ≥ 1 − x, we get

LX(Λ + ∆) − LX(Λ) ≥



∑
j

∑
i

δifi(xj , yj)

+
∑

j

1−
∑

y

PΛ(y|xj) exp

(∑
i

δifi(xj , y)

)

−
∑

i

αiδi (6)

Let f#(x, y) =
∑

i fi(x, y). Modify Equation 6 to:

LX(Λ + ∆) − LX(Λ) ≥
∑

j

∑
i

δifi(xj , yj)+

∑
j

1 −
∑

y

PΛ(y|xj) exp

(
f#(xj , y)

∑
i

δi
fi(xj , y)
f#(xj , y)

)

−
∑

i

αiδi (7)

Now, recall Jensen’s inequality, which states that for a
convex function g,

∑
y

p(x)g(x) ≥ g

(∑
x

p(x)x

)

Notice that fi(x,y)
f#(x,y) is a probability distribution. Thus, we

get

LX(Λ + ∆) − LX(Λ) ≥
∑

j

∑
i

δifi(xj , yj)+

∑
j

1 −
∑

y

PΛ(y|xj)
∑

i

fi(xj , y)
f#(xj , y)

exp
(
f#(xj , y)δi

)
−
∑

i

αiδi (8)

Now, we would like to find ∆ that maximizes Equation
8. Thus, we take partial derivatives and set them to zero,
remembering to also check whether a maximum occurs
when δk = 0.

∂

∂δk


∑

j

∑
i

δifi(xj , yj) +
∑

j

1

−
∑

y

PΛ(y|xj)
∑

i

fi(xj , y)
f#(xj , y)

exp
(
f#(xj , y)δi

)−∑
i

αiδi

)

=
∑

j

fk(xj , yj)

+
∑

j

−
∑

y

PΛ(y|xj)
fk(xj , y)
f#(xj , y)

∂

∂δk
exp

(
f#(xj , y)δk

)−αk

=
∑

j

fk(xj , yj)

−
∑

j

∑
y

PΛ(y|xj)fk(xj , y) exp
(
f#(xj , y)δk

)− αk

= 0

This gives us a version of Improved Iterative Scaling with
an exponential Prior. In general, however, we prefer vari-
ations of Generalized Iterative Scaling, which may not
converge as quickly, but lead to simpler algorithms. In
particular, we set f# = maxx,y f#(x, y). Then, instead
of Equation 7, we get

LX(Λ + ∆) − LX(Λ)

≥
∑

j

∑
i

δifi(xj , yj) +

∑
j

1 −
∑

y

PΛ(y|xj) exp

(
f#
∑

i

δi
fi(xj , y)

f#

)

−
∑

i

αiδi (9)

We can follow essentially the same derivation from there.
(Technically, we need to add in a slack parameter; the
slack parameter can then be given a near-zero variance
prior so that its value stays at 0, and thus in practice it can
be ignored.) We thus get:

∂

∂δk


∑

j

∑
i

δifi(xj , yj)+

∑
j

1−
∑

y

PΛ(y|xj)
∑

i

fi(xj , y)
f#

exp

(
f#δi −

∑
i

αiδi

)


=
∑

j

fk(xj , yj)

−
∑

j

∑
y

PΛ(y|xj)fk(xj , y) exp
(
f#δk

)− αk

= observed[k] − expected[k] exp
(
f#δk

)− αk

= 0 (10)

From Equation 10 we get

δk =
1

f#
log

observed[k] − αk

expected[k]

Now, δk + λk may be less than 0; in this case, an illegal
new value for λk would result. We know, however, from
the monotonicity of all the equations with respect to δk

that the lowest legal value of δk will be the best, and we
thus arrive at

δk = max
(
−λk,

1
f#

log
observed[k] − αk

expected[k]

)

or equivalently

λk := max
(

0, λk +
1

f#
log

observed[k] − αk

expected[k]

)


