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Abstract
Abbreviation is a common phenomenon across languages, especially in Chinese. In most cases, if an expression can be abbreviated,
its abbreviation is used more often than its fully expanded forms, since people tend to convey information in a most concise way. For
various language processing tasks, abbreviation is an obstacle to improving the performance, as the textual form of an abbreviation does
not express useful information, unless it’s expanded to the full form. Abbreviation prediction means associating the fully expanded forms
with their abbreviations. However, due to the deficiency in the abbreviation corpora, such a task is limited in current studies, especially
considering general abbreviation prediction should also include those full form expressions that do not have general abbreviations, namely
the negative full forms (NFFs). Corpora incorporating negative full forms for general abbreviation prediction are few in number. In order
to promote the research in this area, we build a dataset for general Chinese abbreviation prediction, which needs a few preprocessing
steps, and evaluate several different models on the built dataset. The dataset is available at https://github.com/lancopku/

Chinese—-abbreviation—-dataset!
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1. Introduction

Abbreviation processing mainly consists of three tasks, that
is, abbreviation expansion, abbreviation recognition, and
abbreviation prediction. Expanding the short form of an
expression to its full form is called abbreviation expansion.
Extracting the short form and full form pairs from the con-
text is called abbreviation recognition. Abbreviation pre-
diction refers to predicting the short form of an expression
according to its full form. In this paper, we focus on the
last task, i.e., abbreviation prediction. Abbreviation predic-
tion plays an important role in various language processing
tasks, because accurate abbreviation prediction will help
improve performance. [Sun et al. (2009) shows that better
abbreviation prediction will help improve the performance
of abbreviation recognition. Abbreviation prediction also
benefits other tasks. For example, in an information re-
trieval (IR) system, a large number of the web pages con-
tain only abbreviations. It will be helpful if we can esti-
mate abbreviations of a query, because successful abbrevi-
ation prediction may improve the recall of IR systems as
Sun et al. (2013a)) showed. In addition, |Yang et al. (2012)
showed that Chinese abbreviation prediction can improve
voice-based search quality.

[ERE B Tl

(Mount Qomolangma)
BRI SEhz ]
(Olympic Games)

HERRE

(Peking University )
[EHER

(Tsinghua University )

HETH

(gold market)

Figure 1: Different cases of generating abbreviations

English abbreviations are usually formed as acronyms.
Studies for English abbreviation proposed various heuris-
tics for abbreviation prediction (Park and Byrd, 2001;|Wren
et al., 2002; Schwartz and Hearst, 2002). For example, use
of initials, capital letters, syllable boundaries, stop words,
etc. These studies performed well for English abbrevia-
tions. While Chinese abbreviations are quite different from
English ones. |Yang et al. (2012) showed that Chinese ab-
breviations are usually generated by three methods, reduc-
tion, elimination, and generalization. Characters are se-
lected from the expanded full name to form the abbrevia-
tion. However, there are no general rules to convert a com-
plete term into an abbreviation. As shown in Figure [T} an
abbreviation may be generated using the first character and
the last character. Sometimes, characters in the middle can
be included while the last abbreviation takes the first two
characters of the words. However, it is not necessary for
Chinese abbreviations to take the first characters of words.
They frequently take non-initial characters, like the last ex-
ample in Figure[I] Chinese abbreviations are derived via a
customary lexical process. Native speakers may associate
a fully expanded term with its abbreviation by some intu-
ition. But the process can not be adequately explained by
any linguistic theory: [Chang and Lai (2004) and|/Chang and
Teng (2000).

Besides the irregularity of abbreviating phrases and terms,
another main problem is caused by negative full forms. A
word annotated with a negative full form means the word
has no abbreviation at all. We usually recognize abbrevia-
tions or make abbreviation predictions in the text. Unfor-
tunately, NFFs take up a large portion of Chinese words
or phrases in the real world. With the strong noise, dis-
tinguishing the full forms with valid abbreviations is more
difficult. This undoubtedly increases the difficulty of ab-
breviation prediction.

Many approaches have been proposed in the post studies.
Sun et al. (2008) employed Support Vector Regression
(SVR) for scoring abbreviation candidates. This method
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outperforms the hidden Markov model (HMM) in abbrevi-
ation prediction. [Yang et al. (2009) proposed to formulate
abbreviation generation as a character tagging problem and
the conditional random field (CRF) then can be used as the
tagging model. |Sun et al. (2009) combined latent vari-
able model and global information to predict abbreviations.
Zhang et al. (2016) used a recurrent neural networks to
predict abbreviations for Chinese named entities.
However, most studies of abbreviation prediction focus on
positive full form, which means a word has a valid abbrevi-
ation. Apparently, this implicit lab assumption is not practi-
cal. Nonetheless, we barely see studies that consider NFFs.
One of the main reasons is the shortage of abbreviation pre-
diction data with NFFs, which is one of the main issues this
work tries to solve.

Apart from the annotation of a dataset with NFFs, we also
conduct a few preprocessing steps to facilitate the usage of
the dataset. Chinese does not insert spaces between words
or word forms after morphological changes. Hence, most
of the Chinese natural language processing methods as-
sume a Chinese word segmenter is used in a preprocess-
ing step to produce word-segmented Chinese sentences as
inputs. There is no exception for abbreviation prediction.
Given original texts, we should first recognize the bound-
aries of words. After segmentation, we annotate the part-of-
speech information of phrases and terms, because the part-
of-speech information can serve as features to help make
abbreviation prediction.

This paper details how the dataset is created and evaluates
some frequently used models on the abbreviation prediction
task.

2. Dataset
2.1. Considerations

Commonness Our intention is to build a dataset with NFFs,
so it can be widely used for general abbreviation predic-
tion. This requires that dataset contains most frequently-
used full forms regardless of whether or not the form has
valid abbreviations. The data sources should be reliable
and accredited. Thus, we extract long phrases and terms
in popular Chinese natural language processing corpora,
which include People’s Daily corpora and SIGHAN word
segmentation corpora.

Usability We also provide assisting information that is
helpful for the abbreviation task in our dataset. Most ex-
isting methods treat abbreviation prediction as a sequence
labeling problem. To make better tag predictions of char-
acters, we usually need to extract some features.The word
segmentation information and part-of-speech information
are the most commonly used features. Unlike English, the
smallest Chinese unit is a character rather than a word.
There are no explicit boundaries between Chinese words.
Since a full form usually can be segmented into several
words and abbreviations often take characters from these
words, segmentation information is most useful for abbre-
viation prediction. Another annotation is part-of-speech in-
formation. Many language processing tasks take part-of-
speech information as features, including abbreviation pre-
diction. The choice of characters which are used to form

abbreviations may be related to their part-of-speech infor-
mation. For example, if a full form composed of an adjec-
tive and a noun has an abbreviation, the abbreviation usu-
ally takes a character of the adjective and a character of the
noun. The same issue applies to a full form composed of an
adverb and a verb when the full form has an abbreviation.
Representativeness

Heilongjiang Province, Jilin Province, Liaoning Province

R=F @ BRIE M4 UTH

Figure 2: A special case for abbreviation.

As the dataset should be representative of the common con-
struction of abbreviations, we do not include special and
irregular abbreviations, which include words outside the
full form. As shown in Figure 2| “ 7R =4 “represents
three provinces of China. It is a special type of abbrevi-
ations, since an abbreviation could represent several differ-
ent terms. Without some background knowledge, what the
abbreviation stands for can not be understood. Sometimes
the characters of the abbreviation are not taken from orig-
inal characters of the full form and the sequence labeling
method is no longer applicable for this case. This kind of
“abbreviation” is more like a general name for some terms.
We do not include these special abbreviations in our dataset.

2.2. Data Source

Our text is from People’s Daily corpora and SIGHAN word
segmentation corpora. We extract the long phrases and
terms in the text. Then we classify the collected phrases and
terms into two forms. One is the positive full form, which
means the phrase or term has a valid abbreviation. Then
its abbreviation is annotated. The other is the negative full
form, which means the phrase or term does not have a gen-
eral short form. Their abbreviations are “NULL”. Samples
of the data are shown in Figure 3]

As mentioned before, we annotate word segmentation in-
formation and part-of-speech information for every phrase
or term. Word segmentation is a fundamental task in Chi-
nese processing. Many practical Chinese processing appli-
cations rely on Chinese word segmentation. Part-of-speech
information is often used as features for further prediction.
Most methods formulate these tasks as a sequence labeling
problem. Various models achieved good performance on
these tasks and some open source tools have been published
for use. We used ICTCLAS, one of the best Chinese Lexi-
cal analyzers, to label the segmentation and part-of-speech
information.

2.3. Statistics

We build a dataset that is made up of phrases and terms.
There are 10,786 full forms in this dataset, including 8,015
positive full forms and 2,661 negative full forms. The
phrases contain noun phrases, verb phrases, organization
names, location names, and so on. The distribution is
shown in Table[2] For experiments, we randomly sampled
7,551 samples as the training set, 1078 samples as the de-
velopment set and 2,157 samples as the testing set. We cal-
culate the number of the words and characters (including
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Positive / Negative Full Forms Abbreviation
+ A ¥ AT
(Chinese Academy of Sciences)

— A BE NULL
(Phosgene)

DL ARE OAT 3 e
(Australia Open Tennis Championships)

A3 ALE 2 B AR
(Singapore Airlines)

AT IR NULL
(One-child family)

F—R R K& — %,
(The First World War)

A AR BN Bk 39 AF AL AL R SR AN
(Coronary atherosclerotic heart disease)

7 8 T NULL
(office automation)

Figure 3: Samples of the collected data with NFFs. The
“NULL” means no valid abbreviation.

Full Forms

total entries 10,786
NFFs 2,661
total words 30,100
distinct words 8,293
total characters 60,877
distinct characters 2,557
average word length 5.644
Abbreviations

total characters 23,077
distinct characters 1,687
average abbreviation length | 2.140

Table 1: The statistics of the data. The results are count for
full forms and abbreviations separately.

duplicates) in the data. We also count the number of dis-
tinct words and distinct characters. Then total characters of
full forms divided by total entries is the average full form
length. The average abbreviation length can be calculated
in a similar way.

Category Portion(%)
Noun Phrase 52.01%
Organization Name | 26.84%
Verb Phrase 13.72%
Location Name 5.28%
Person Name 0.32%
Others 1.80%

Table 2: Distribution of the full forms in the data.

3. Models
3.1. CRF

Tsuruoka et al. (2005) formalized the process of abbre-
viation prediction as a sequence labeling problem. Each

P: Produce the current character
S: Skip the current character

(Beijing Office)

FiEHEL
PSPPSS — LImf

Figure 4: Chinese abbreviation generation as a sequential
labeling problem.

character in the expanded form is tagged with a label, y €
{P, S}, where the label P produces the current character
and the label S skips the current character. In Figure
the abbreviation is generated using the first character, skip-
ping the flowing character and then using the subsequent
two characters. Because our task is general abbreviation
prediction, we add another label “N” to the tag set to la-
bel the characters in negative full forms. A number of re-
cent studies have investigated the use of machine learning
techniques. Traditional models like MEMM, peceptron and
conditional random field perform well on such sequence la-
beling tasks. We use the well-known conditional random
field (CRF) proposed by [Lafferty et al. (2001) for sequen-
tial labeling.

We use features as follows:

e character feature : Input characters z;_1, x; and x;41

e character bi-gram : The character bigrams starting at
(i—2)--i.

e Numeral: Whether or not the x; is a numeral.

e Organization name suffix: Whether or not the x; is a
suffix of traditional Chinese organization names.

e [ocation name suffix: Whether or not the z; is a suffix
of traditional Chinese location names.

e Word segmentation information: After the word seg-
mentation step, whether or not the z; is the beginning
character of a word.

e Part-of-speech information: The part-of-speech tag in-
formation of x; .

In our abbreviation prediction task, the input sequence x
represents characters of a full form and output sequence
y represents symbolic labels based on abbreviations. The
probability is defined as follows:

el f@)
Polew) =5 et o)

where w is the weight vector and f is the mapping func-
tion.

Given a training set that consists of n labeled sequences
(', y") fort = 1-- - n, the objective function is:

L(w) = logP(y'|’, w) — R(w) ©)
i=1

where the second term is the Lo regularizer.
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Method Discriminate Acc(%) | All-Acc(%) | Char-Acc(%)
Heuristic System | 73.20 25.77 65.79
Perc 87.48 54.89 87.02
MEMM 86.97 50.16 85.92
CRF-ADF 87.80 56.69 87.20
BLSTM 91.47 56.98 81.73

Table 3: Results on comparing different methods on generalized abbreviations.

3.2. BLSTM

As mentioned above, traditional methods depend heavily
on features which need to be designed elaborately. Nowa-
days, more and more research focuses on neural networks,
such as recurrent neural network (RNN), convolutional
neural network (CNN) and some variants of RNN. These
neural network models can extract features automatically.
In natural language processing, traditional RNNs usually
take the previous state h;_; and the embedding x; as the
t-th input to calculate current state h,. Formally, we have

ht :f(W~xt+V~ht,1 +bh) (3)

where W and V' are weight matrices, respectively. by, is a
bias term and f is a non-linear activation function.

In theory, RNN can keep a memory of previous informa-
tion. However, it was difficult to train RNNs to capture
longterm dependencies because the gradients tend to either
vanish or explode. Therefore, some sophisticated variants
of RNN were proposed. Long-short term memory units
are proposed in |[Hochreiter and Schmidhuber (1997). This
model introduces a gating mechanism, which controls the
proportions of information to forget and to pass on to the
next time step. Concretely, the LSTM-based recurrent neu-
ral network comprises four components: an input gate 4,
a forget gate f;, an output gate o;, and a memory cell c;.
LSTM memory cell is implemented as following:

ft ZO’(Wf -xt—l—Uf-ht,l —‘y—bf)

it =0(W; -x¢+U; - hy—y + bi)

Cy = tanh(We - 24 4+ Ue - hy—1 + be)
Ci=f; ®Cio1 + i ® G,

or=0(Wy -zt +Us-hi—1+by)

hi = o @ tanh(C)

“

LSTM can solve the long-distance dependencies problem
to some extent. However, the LSTM’s hidden state h; takes
information only from the past, knowing nothing about
the future. An elegant solution whose effectiveness has
been proven by previous work (Dyer et al., 2015) is bi-
directional LSTM(BLSTM). The basic idea is to present
each sequence forwards and backwards to two separate hid-
den states to capture past and future information, respec-
tively. Then the two hidden states are concatenated to form
the final output. In this paper, we employ a bi-directional
LSTM, which could capture the contextual information of
the current input, to predict the abbreviations of full terms.
Since we give a specific segmentation tag and a pos tag
for every character, each segmentation tag and pos tag can

be mapped to a real-valued vector by looking up their own
embedding tables. These embeddings and character em-
beddings are all initialized randomly. At current time-step
t, the character embedding, segmentation tag embedding
and pos tag embedding are concatenated as the input x;.
Embeddings of segmentation tag and pos tag are both 20-
dimensional. Character embedding is 50-dimensional. The
hidden layer size of BLSTM is 200, 100 for forward LSTM
and 100 for backward LSTM.

4. Evaluation
4.1. Evaluation Metrics

For evaluating abbreviation prediction quality, the systems
are evaluated using the following two metrics:

e Discriminate accuracy: The discriminate accuracy
checks the accuracy of discriminating positive and
negative full forms, without comparing the generated
abbreviations with the gold-standard abbreviations.

e All-match accuracy (All-Acc): The number of cor-
rect outputs (i.e., label strings) generated by the sys-
tem divided by the total number of full forms in the
test set.

e Character accuracy (Char-Acc): The number of cor-
rect labels (i.e., a classification on a character) gen-
erated by the system divided by the total number of
characters in the test set.

4.2. Simple Heuristic Baseline System

The simple heuristic system means always choosing initial
characters of words in the segmented full form. This is be-
cause the most natural abbreviating heuristic is to produce
the first character of each word in the original full form.
This is just the simplest baseline.

4.3. Evaluation

To study the performance of other machine learning mod-
els, we also implement other well known sequential label-
ing models, including maximum entropy Markov models
(MEMMs) (McCallum et al., 2000) and averaged percep-
trons (Perc) (Collins, 2002)). Besides these traditional mod-
els, we also implement a bidirectional LSTM(BLSTM) to
evaluate the performance of neural networks on this task.

The experimental results are shown in Table [3| In the ta-
ble, the overall accuracy is most important and it means
the final accuracy achieved by the systems in generalized
abbreviation prediction with NFFs. For the completeness
of experimental information, we also show the discrimi-
nate accuracy. The CRF model outperforms the MEMM
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and averaged perceptron models. The CRF model achieves
best overall character accuracy. BLSTM outperforms other
models in both discriminate accuracy and all-match accu-
racy. However, training a neural network always needs a
large amount of data. With a dataset that is not so large, the
ability of a neural network may be limited.

5. Conlusions and Future Work

This paper proposes a novel abbreviation prediction dataset
with NFFs. Different machine learning methods are evalu-
ated on this general abbreviation task. LSTM shows com-
petitive performance in this task. However, neural networks
usually need large data for training. The related corpora are
not sufficient and researches for general abbreviation pre-
diction using neural networks are encouraged.
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