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Abstract

We propose BeamSeg, a joint model for seg-
mentation and topic identification of docu-
ments from the same domain. The model as-
sumes that lexical cohesion can be observed
across documents, meaning that segments de-
scribing the same topic use a similar lexical
distribution over the vocabulary. The model
implements lexical cohesion in an unsuper-
vised Bayesian setting by drawing from the
same language model segments with the same
topic. Contrary to previous approaches, we as-
sume that language models are not indepen-
dent, since the vocabulary changes in consec-
utive segments are expected to be smooth and
not abrupt. We achieve this by using a dy-
namic Dirichlet prior that takes into account
data contributions from other topics. BeamSeg
also models segment length properties of doc-
uments based on modality (textbooks, slides,
etc.). The evaluation is carried out in three
datasets. In two of them, improvements of up
to 4.8% and 7.3% are obtained in the segmen-
tation and topic identifications tasks, indicat-
ing that both tasks should be jointly modeled.

1 Introduction

Documents exhibit a content organization that ag-
gregates related text passages in topically coher-
ent segments. Understanding the document struc-
ture at the segment level enables efficient content
navigation. This has become more relevant with
the number of available documents on the Web.
The current information landscape allows access
to documents describing the same subject, provid-
ing alternative views or complementary informa-
tion. This is advantageous in a variety of scenar-
ios. For example, students have at their disposal
several learning materials and might need to find a
particular topic segment that best suits their learn-
ing needs. Finding such documents is an easy task
since search engines are capable of returning doc-

uments conveying related information. However,
if search engines are effective in retrieving these
documents, the task of putting them into a co-
herent picture remains a challenge (Shahaf et al.,
2012). Automatically finding document segments
– text segmentation – and identifying which ones
discuss the same topic – topic identification – ad-
dresses this issue (Jeong and Titov, 2010).

Text segmentation and topic identification have
been used as intermediate steps in a variety of nat-
ural language processing tasks, including summa-
rization (Radev et al., 2004), opinion mining (Mu-
rakami et al., 2009), semantic and information re-
trieval (Purver, 2011; Amoualian et al., 2017). The
improvements they brought spurred research in
text segmentation. Invariably, all works resort to
the lexical cohesion theory (Halliday and Hasan,
1976), which postulates that discourse structure
is correlated to the use of cohesive vocabulary.
Thus, segments can be identified by detecting vo-
cabulary changes. Most approaches either con-
sider segmentation and identification separately
and/or do not take into account all documents in
the dataset (single-document approach). Recently,
some works studied these phenomena in collec-
tions of related documents (Jeong and Titov, 2010;
Mota et al., 2016). These multi-document mod-
els assume that documents describing the same
topic have similar lexical cohesion properties; an
example of this phenomenon with similar seg-
ments but in different documents is depicted in
Figure 1. Thus, better likelihood estimations can
be obtained if all documents are taken into ac-
count (Mota et al., 2016). In this work, we expand
the multi-document lexical cohesion idea by hy-
pothesizing that vocabulary relationships between
different segments exist. For example, if a word is
heavily used in one segment, it is likely that it con-
tinues to appear in the following one, though less
frequently. Modeling such interactions can lever-
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age topic segmentation algorithms. We also ex-
plore the role of modality in the multi-document
scenario. Previous approaches treat all documents
equally, but it is plausible that we can improve seg-
mentation by making assumptions about the ex-
pected segment length on a document modality ba-
sis. For example, segments in slide presentations
are expected to be shorter than in video lectures.

We propose BeamSeg, a Bayesian unsupervised
topic modeling approach to breaking documents in
coherent segments while identifying similar top-
ics. The generative process assumes that segments
can share the same topic and, consequently, are
generated from the same lexical distribution. Lex-
ical cohesion is achieved by having higher seg-
mentation likelihoods when the probability mass
is concentrated in a narrow subset of words. This
is in the same spirit as topic modeling approaches
such as Latent Dirichlet Allocation (LDA) (Blei
et al., 2003), but here the inherent topics are con-
strained to the linear discourse structure. To model
interactions between lexical distributions, we use
a dynamic prior, which assumes that the word
probabilities change smoothly across topics. To
model segment length characteristics, we assign
prior variables conditioned on document modality.

The linear segmentation constraint has been
used to make inference tractable by exhaustively
exploring the segmentation space to obtain the
exact maximum-likelihood estimation (Eisenstein
and Barzilay, 2008). Given a multi-document set-
ting, this is not feasible, as segments can share top-
ics. We address this issue using a beam search
algorithm, which allows the inference procedure
to recover from early mistakes. In our experi-
ments, we show that BeamSeg is able to perform
well when segmenting learning materials, where
previously single-document models obtained bet-
ter results (Mota et al., 2018). We also observe that
topic identification is more accurately determined
in a joint model, as opposed to a pipeline approach
(performing the tasks sequentially), indicating that
both problems should be modeled simultaneously.

We summarize our contributions as follows:

• A novel joint model for topic segmentation
and identification with a dynamic prior.

• An inference procedure based on a beam
search algorithm.

• A study on how different modality-based seg-
ment length priors influence segmentation.

The source code is available in the following
repository: github.com/pjdrm/BeamSeg.

2 Related Work

Following the lexical cohesion theory, segmenta-
tion algorithms identify spans of text with promi-
nent vocabulary changes. The main difference be-
tween algorithms is how lexical cohesion is im-
plemented: some resort to lexical similarity; the
remaining follow a probabilistic approach.

Lexical approaches rely on a similarity metric
between sentences, usually the cosine. A clas-
sic method is TextTiling (Hearst, 1997), which as-
sumes that topic boundaries are found in consec-
utive sentences with a low similarity value; sev-
eral other works built on this idea (Galley et al.,
2003; Balagopalan et al., 2012). C99 (Choi, 2000)
is another lexical approach, and uses a similar-
ity matrix in a divisive clustering to obtain seg-
ments. MinCut (Malioutov and Barzilay, 2006)
casts segmentation in a minimum cut graph par-
titioning problem. The graph has a node for each
sentence; edges are weighted using lexical similar-
ity. Long-distance textual relationships are mod-
eled by connecting all sentences. Affinity Prop-
agation Segmentation (Kazantseva and Szpakow-
icz, 2011) also models such relationships but uses
affinity propagation clustering (Frey and Dueck,
2007). The algorithm creates a factor graph and
maximizes the segment similarity sum function.
Alemi and Ginsparg (2015) proposed the Content
Vector Segmentation (CVS) sentence vector rep-
resentation based on segment word embeddings.
Using this representation in C99 improves bag-of-
words results.

In another line of research, Wang et al. (2017)
combined learning to rank and a convolutional
neural network to learn a coherence function be-
tween text pairs; higher-ranked pairs are likely to
be segments. Despite a promising approach, state-
of-the-art results were not achieved. Also fol-
lowing an approach using neural networks, is the
SECTOR algorithm (Arnold et al., 2019), which
uses a topic embedding trained based on utterance
topic classification. Following the network archi-
tecture from (Koshorek et al., 2018), two stacked
LSTM layers are used to decode word embedding
representation of utterances. To recover segmenta-
tion, a TextTiling approach is applied to the topic
embedding layer. The evaluation results show that
SECTOR is able to improve a C99 baseline.

github.com/pjdrm/BeamSeg
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Just as we introduced average
velocity we will now describe
average acceleration. Notice
when velocity changes ... over
time. And ... introduce an
average acceleration ... The
average acceleration between
time t2 ... And the dimension
... secs per time squared.

Acceleration We say ...
changing velocity are
“accelerating” Acceleration is
the “Rate of change of velocity”
You hit the accelerator to speed
up ... it’s true you also hit ...
friction is slowing ... Average
acceleration Unit of
acceleration: (m/s)/s=m/s2

The acceleration of a particle ...
rate of change of velocity ...
time. Average acceleration ... is
v2 - v1 t2 - t1 ... Acceleration
may be positive, negative or
zero. Zero acceleration means
we have constant velocity. Note
that the direction and
acceleration need not coincide.

Figure 1: Examples of segment excerpts from video, slide presentation, and PDF documents describing the acce-
laration topic. Words in bold depict shared vocabulary across segments.

Probabilistic approaches to segmentation fol-
low a setup similar to the LDA model: words
are assigned to topics such that probability mass
is distributed on a small set of topically rele-
vant words. In order to adapt this idea to seg-
mentation, the model needs to be able to deter-
mine if sentences belong to the same topic (or
mixture of topics). An example of such adapta-
tion is the single-document segmentation model
PLDA (Purver et al., 2006), where topic propor-
tions are shared by sentences within the same seg-
ment. Segmentation is then determined through
a binary topic shift sentence variable. Models
such as TopicTiling (Riedl and Biemann, 2012),
Structured Topic Model (STM) (Du et al., 2013),
and NTSeg (Jameel and Lam, 2013) extend this
LDA-based approach to segmentation. In all these
approaches, topic identification is not possible
since all segments are a mixture of topics.

In this paper, we adopt a probabilistic multi-
document view on segmentation. Only two other
models follow this approach: MultiSeg (Jeong
and Titov, 2010) and Bayesseg-MD (Mota et al.,
2016). MultiSeg uses a two-level LDA model
where documents are generated using local and
global topics. Local topics are specific to a doc-
ument; global topics are shared between docu-
ments. Documents are mixtures of topics, but each
segment is generated by a single topic, lending it-
self to a joint model of segmentation and topic
identification. The multi-document aspect of the
model stems from topic proportions being inferred
from the whole dataset. In the experiments, this
joint modeling outperforms a pipeline strategy that
performs these tasks sequentially.

The other multi-document model, Bayesseg-
MD, is an extension of Bayesseg (Eisenstein
and Barzilay, 2008). In Bayesseg, sentences

from the same segment are assigned the same
topic. The inference procedure affords an ex-
act maximum-likelihood estimation by exploring
the segmentation space with a dynamic program-
ming algorithm. This approach cannot be ap-
plied to multi-document segmentation since the
hidden topic variables are integrated out; other
single-document models following this approach
also have this problem (Eisenstein, 2009; Malmasi
et al., 2017). Bayesseg-MD sidesteps this problem
by using lexically similar sentences from other
documents. The word counts of such sentences are
added to the segment likelihood estimation to re-
duce data sparseness. Despite using all documents
for segment likelihood estimations, topic identifi-
cation is not available. In this paper, we address
these issues by designing an inference algorithm
that explicitly tracks segment topic assignments.

3 BeamSeg Model

We implement lexical cohesion in a Bayesian set-
ting in a generative process where segments with
the same topic are drawn from the same multino-
mial language model. Thus, all u utterances with
a topic k have their bag-of-words representation
xu drawn from language model φzu ; zu is the hid-
den topic variable of u. We constrain the model
to yield linear segmentations by having topics oc-
curring at most once per document. This induces
higher likelihood segmentations to have language
models concentrating probability mass on a small
subset of the vocabulary. Conversely, low likeli-
hood segmentations spread the probability mass
on a broad set of words. This modeling behavior
is attuned to the lexical cohesion theory. Multi-
document segmentation emerges by assuming that
topics are shared across documents.

During inference, we want to find the hidden
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set of language models Φ and the topic vector as-
signment z that maximize the likelihood of the
joint distribution of the model. Since we only
care about segmentation, this process can be sim-
plified by analytically marginalizing out the hid-
den language models Φ. This enables search to
be carried out only in the segmentation space.
Therefore, inference amounts to finding the seg-
mentation ẑ = argmaxz p(X|z)p(z). Using the
marginalized joint likelihood, an approximation of
ẑ is obtained using a beam search algorithm.

3.1 Language Models

Using the previous setup, we define the joint like-
lihood as follows:

p(X|z,Φ) =

K∏
k

p(φk|β)

U∏
u

p(xu|φzu), (1)

where X is the set of all U utterances in the
dataset; K is the number language models; and
β are the Dirichlet prior parameters from which Φ
is drawn.

The marginalization process is performed by
appealing to the conjugacy between multinomial
language models and the Dirichlet prior. This al-
lows the conjugate Dirichlet distribution to inte-
grate to one, leaving the marginalized joint likeli-
hood expression with the normalizing constants:

p(X|z) =

∫
p(X|z,Φ)p(Φ|β)dΦ (2)

=
(Γ(Wβ)

Γ(β)W

)K K∏
k=1

∏W
w=1 Γ(nkU,w + β)

Γ(nkU + β)
,

where W is the vocabulary set; nkU,w is number of
times word w is assigned topic k in all U utter-
ances of the document collection; nkU is number
of times topic k appears in U ; and the symbol Γ
refers to the Gamma function. The resulting ex-
pression in Equation 2 corresponds to the product
of the individual topic likelihoods, comprised of
segments from different documents.

3.2 Segment Length Prior

The ẑ = argmaxz p(X|z)p(z) expression we
want to maximize to obtain the most likely seg-
mentation puts a prior, p(z), on the segment length
of documents. Given the approach of searching
the segmentation space only during inference, we
do not require the mathematical conveniences of

conjugacy for the segment length prior. In this per-
spective, we can plug in different distributions to
see how they behave during the segmentation task.
One of such distribution is the Beta-Bernoulli,
which has been used before in a probabilistic ap-
proach to segmentation (Purver et al., 2006):

p(z) =

(
Γ(2γ)

Γ(γ)2

)D D∏
d=1

Γ(nd1 + γ)Γ(nd0 + γ)

Γ(Ud + 2γ)
,

(3)

whereD is the number of document in the dataset,
Ud is the total number of utterances in document d,
nd1 is the number of segments in d, nd0 the number
of non-segment boundary utterances in d, and γ
the hyperparameter of the Beta distribution.

We also propose a Gamma-Poisson distributed
segment length prior. In this setup, we assume that
the document topic shift probabilities are drawn
from a Gamma prior parameterized by α and β:

p(z) =

(
βα

Γ(α)

)D D∏
d=1

Γ(nd1 + α)

(Ud + β)n
d
1+α

(4)

Applying priors based on document modality
can be done by assuming they are known a priori,
which is the approach we take. It is only neces-
sary to have dedicated hyperparameters for each
modality and apply them accordingly when com-
puting segmentation likelihood. This means we
are encoding in the model our prior beliefs about
the segment length of each modality. Nonetheless,
if the lexical cohesion in a hypothesized segment
is strong enough, the model will identify it even if
the length is not inline with the prior.

3.3 Dynamic Language Model Prior
The previous priors assume that language model’s
draws are independent of each other, and, thus
cannot encode relationships between them. This
is not a reasonable assumption in datasets with
documents following an overarching subject. We
hypothesize that in these cases, language mod-
els change smoothly across topics by establishing
a dynamic between the previous and the current
prior parameters. This time series modeling of
topics can be found in other works (Blei and Laf-
ferty, 2006b,a; Du et al., 2013; Jahnichen et al.,
2018). In BeamSeg, we adopt a similar perspec-
tive to topic tracking (Watanabe et al., 2011) for
modeling such interactions. We factor the β in
αkφ̂k′ , a precision and mean language model word
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probabilities parameters. Assuming some order-
ing between the topics, k indexes the topic pa-
rameters, and k′ the parameters of the previous
topic. The αk precision represents the persistence
of word usage throughout topics; φ̂k models the
language model dynamics by assuming that the
mean word probabilities at k are the same as those
at k′. This entails that there is a single chain of
language models, which contrasts with the multi-
ple chains in the original topic tracking model.

To compute the likelihood of the joint under this
prior, it is necessary to determine the parameters
for all k ∈ K. This is a two-fold process, where
we first update the αk precision parameter using
the expression derived from Minka (2000):

αk = αk

W∑
w

φ̂k′w(Ψ(nkw + αkφ̂k′w) − Ψ(αkφ̂k′w))

Ψ(nk + αk) − Ψ(αk)
,

(5)

where nkw is the number of times word w appear
in k; nk is the total number of words in k; and Ψ is
the digamma function. Then, we update the mean
word probability parameters:

φ̂kw =
nkw + αkφ̂k′w
nk + αk

(6)

The update equations are sequentially applied
according to a fixed topic order. By following
this process, we model long-range dependencies
by taking into account the data contribution at each
k. Finally, we plug-in the obtained prior parame-
ters in the join likelihood formula in Equation 2.

3.4 Beam Search for Inference

Following Bayesseg (Eisenstein and Barzilay,
2008), inference is viewed as an optimization
problem, where the target segmentation maxi-
mizes the objective function defined by the joint
likelihood. Contrary to Bayesseg, we assume that
language models aggregate segments from dif-
ferent documents, making an exhaustive explo-
ration of the segmentation space intractable. To
address this problem we combine beam search
and a greedy segmentation procedure. Other
considered inference alternatives include Gibbs
sampling (Bishop, 2006) and Variational Infer-
ence (Ghahramani et al., 2008). The difficulty in
applying Gibbs sampling is its slow convergence

to the stationary distribution, due to the tight cou-
pling of the variables induced by the linear seg-
mentation constraint. A similar problem occurs
in the variational inference procedure from Eisen-
stein (2009), where variational parameters and
segmentation are iteratively estimated.

We define z∗j as the segmentation that maxi-
mizes the objective function up to utterance j.
Considering the topic assignment zj = k and the
previous segmentation zj−1, the value for the ob-
jective function is written,

s(k, j, zj−1) = p({x0...xj}|zj−1, zj = k) (7)

Using a recursive definition, we obtain the opti-
mal segmentation using:

z∗j = argmax
k∈K

s(k, j, z∗j−1) (8)

This is a greedy approach since it makes in-
cremental decisions to find the highest likelihood
segmentation. This is an error-prone procedure
since we should take into account subsequent ut-
terances to discover higher likelihood segmenta-
tions. Moreover, once a mistake is made, we can-
not recover from it. To address this problem, we
add a beam search feature to the algorithm. This
is achieved by keeping track of all topic assign-
ments, instead of just the highest likelihood one.
At the end of each recursive step, we prune the
top-n segmentations.

4 Experiments

We now describe the experimental setup and re-
port the results for the target tasks.

4.1 Datasets

Currently, there are two multi-document segmen-
tation datasets with different document modalities.
One of the datasets is comprised of learning ma-
terials describing the subject of Adelson-Velsky
and Landis’ (AVL) trees (Mota et al., 2016). The
available modalities are video transcripts, PPT,
and HTML. In total, the dataset contains 10 doc-
uments, 85 segments, and 17 topics. The other
dataset also contains learning materials but from
the Physics domain (Mota et al., 2018). In ad-
dition, this dataset also has PDF modality. The
dataset has 141 documents, 739 segments, and
135 topics from 7 different Physics subjects. This
dataset does not provide topic identification labels
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for the segments. Therefore, we manually anno-
tated it with this information. In this context, we
made an inter-annotator agreement study for the
‘Introduction to Kinematics’ subject with two an-
notators. A 0.69 Fleiss-kappa (Shrout and Fleiss,
1979) agreement value was obtained, showing that
annotators had a similar perception of whether
segments share the same topic. Most of the dis-
agreement cases are due to considering textual and
plot-based explanations as different topics.

In addition to the previous datasets, we also
used Biography documents from Jeong and Titov
(2010). The dataset contains 116 documents re-
garding 29 personalities; 4 documents per per-
sonality with a total of 240 segments; the num-
ber of topics is 405; all documents have the same
HTML modality. The Biography domain has dif-
ferent topic development characteristics from the
previous domains. The documents have fewer and
shorter segments when compared with the AVL
and Physics domains, leaving less room for topics
to be described. All datasets were preprocessed by
stemming and stop words were removed.

4.2 Segmentation Experiments

In the experiments, we benchmark syntax simi-
larity and probabilistic approaches: C99, CVS,
Bayesseg, PLDA, Bayesseg-MD, and MultiSeg.
The hyperparameter tuning of the models is done
on a development set. In the Biography dataset,
we use documents from one of the personalities.
For MultiSeg we use the configurations provided
by the authors. In the Physics domain, we use ten
documents from one of the subjects. The obtained
tuning is also used for the AVL trees domain since
both datasets have pedagogical content. The Gibbs
sampling for PLDA run for 20000 iterations with
a burn-in period of 1000 and a lag value of 200. In
BeamSeg, we investigate the role of two factors in
segmentation: using the dynamic vs. an indepen-
dent language model prior, and using a modality-
based segment duration prior vs. using a single
prior variable. The beam size was set to 200.

To measure performance, we use the standard
Window Difference (WD) metric (Pevzner and
Hearst, 2002). WD slides a window through a
document and penalizes segmentations according
to the difference between the number of expected
segment boundaries and the predicted ones. This
gives partial credit to near-miss situations. The

metric is calculated as follows:

WD =
1

N − k

N−k∑
i=1

|ref − hyp| 6= 0, (9)

where N is the length of the document and k the
window size. WD is a penalty score between 0
(the best value) and 1. For consistency, we take the
output segmentations from all systems and evalu-
ate it using the same software (the python module
segeval (Fournier, 2013)).

The WD average results for the baseline are in
Table 1. In the Biography dataset, MultiSeg is
the best performing model, improving the WD of
Bayesseg-MD by 0.05. In the AVL dataset, the
best results are obtained by Bayesseg-MD. The
difference to the second best result, Bayesseg, is
0.02. For the Physics dataset, the single-document
model Bayesseg achieves the best results with a
WD difference of 0.01. These results show that
the performance of the algorithms varies across
the different datasets. This suggests that the dif-
ferent modeling approaches do not generalize well
to the different characteristics of the datasets. The
Biography dataset is characterized by short seg-
ments, which does not leave much room for lex-
ical cohesion to be observed. This contrasts with
the AVL and Physics datasets where the segments
are longer and describe an overarching topic.

Table 1: Segmentation baseline average WD results.

Bio AVL Physics

C99 0.61 0.59 0.54
PLDA 0.58 0.55 0.49

CVS 0.54 0.45 0.43
Bayesseg 0.53 0.39 0.42

Bayesseg-MD 0.42 0.37 0.43
MultiSeg 0.37 0.41 0.44

The results using different prior configurations
are in Table 2. In the table, the LMP and SLP
columns correspond to the language model and
segment length priors. In the Biography dataset,
we can see that using the dynamic LMP instead of
the independent improves the the Beta-Bernoulli
and Gamma-Poisson results by 0.01 and 0.09,
respectively. In the AVL dataset, the dynamic
LMP improves the best WD results of the in-
dependent LMP by 0.02. When comparing the
scope results of the dynamic LMP in the AVL
dataset, we observe further improvements when



588

Table 2: BeamSeg average WD results. The SLP
column depicts the Beta-Bernoulli (BB), and Gamma-
Poisson (GP) distributions. The scope indicates if the
SLP is modality-based (M) or if there is one variable
for the whole dataset (D). The Biography dataset has
one modality, and, thus, only the D scope exists.

LMP SLP Scope Bio AVL Physics

Ind
BB

D 0.54 0.39 0.45
M – 0.40 0.42

GP
D 0.58 0.40 0.40
M – 0.43 0.42

Dyn
BB

D 0.53 0.44 0.54
M – 0.38 0.42

GP
D 0.49 0.38 0.47
M – 0.37 0.40

using the modality-based SLP; the results differ-
ences are 0.06 and 0.01, respectively. In the
Physics dataset, a dynamic LMP combined with
the modality-based Gamma-Poisson SLP obtains
the best results tied with the independent LMP and
dataset-based Gamma-Poisson SLP. It should be
noted that the former configuration better gener-
alizes across the different datasets since it obtains
better results in the Biography and AVL datasets;
the WD differences are 0.09 and 0.03, respec-
tively. Looking at the scope results of the dynamic
LMP, we observe that the Beta-Bernoulli and the
Gamma-Poisson perform better when using the
modality prior (0.12 and 0.07 improvements).

WD is a metric that assesses the overall quality
of a segmentation, accounting for different types
of errors. This can make the WD scores of two
very different segmentations to be close, which
is the case of the previous results. For example,
a segmentation that has no segments and another
that only has misplaced segments will have sim-
ilar WD scores despite being different. To show
that the different prior configurations output sig-
nificantly different segmentations, we provide the
counts of the exact segment boundary matches in
Table 3. From these results, we can observe that
using a dynamic LMP can increase the number of
boundary up to 229. A similar observation can be
made when comparing the dataset and modality
scopes, where the increases are up 27 segments.
These increases in exact boundary matches show
that despite the small differences in WD the im-
pact on how the segmentation looks like is signifi-

Table 3: Number of exact segment boundary matches
between hypothesis and reference segmentations.

LMP SLP Scope Bio AVL Physics

Ind
BB

D 88 1 16
M – 1 8

GP
D 15 1 5
M – 1 20

Dyn
BB

D 147 3 34
M – 4 39

GP
D 244 2 19
M – 5 46

cant. Therefore, we conclude that using a dynamic
LMP with a modality Gamma-Poisson SLP is nec-
essary to achieve the best results.

Comparing BeamSeg’s results to the baseline,
we see that in the Biography dataset MultiSeg per-
forms better by a 0.12 margin. The main dif-
ference between the segmentation of the two ap-
proaches is that BeamSeg outputs fewer segments,
which is a disadvantage since this dataset has
a high number of short segments. In the AVL
dataset, the performance is similar to Bayesseg-
MD. Looking at the individual documents shows
that BeamSeg has better results in five out of ten
documents, one tie, and two documents where the
WD difference is 0.01. This leaves Bayesseg-MD
to perform significantly better only in two docu-
ments. Therefore, BeamSeg is more consistent
in this dataset. In the Physics dataset, BeamSeg
improves the Bayesseg baseline by 4.8%. Taking
into account the result analysis, we conclude that
BeamSeg’s performance depends on the character-
istics of the datasets. In datasets where topic de-
velopment is prominent across the segments (AVL
and Physics), BeamSeg is the model with the most
consistent results. This is only possible when
using a dynamic LMP and a modality Gamma-
Poisson SLP, showing that both modeling aspects
are relevant to obtain the best segmentation.

To understand the behavior of the priors we pro-
vide a segmentation example in Figure 2. From
the example, we see that the main difference be-
tween the independent and dynamic LMPs is the
number of segments. In the independent LMP, the
number of segments is low, especially when using
the dataset SLP. For the modality SLP, the num-
ber of segments is higher but they tend to be mis-
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placed. When using dynamic LMP, the behavior
changes at the SLP level. The dataset SLP outputs
more segments than the modality version. How-
ever, most segments do not match the reference.
The modality SLP finds fewer segments, but they
tend to be more accurate. This makes sense since
the over-segmentation of the dataset SLP might be
related to the bias towards documents with short
segments, and the modality prior is able to adjust
to a wider variety of documents.

Sentences

Dyn-GP-D
Dyn-GP-M

Ind-GP-D
Ind-GP-M

Reference

Figure 2: Physics document segmentation using dif-
ferent prior configurations in BeamSeg. Bars with the
same color represent segments of the same prior con-
figuration. The names of the configurations start with
the LMP type, followed by the SLP, and its scope.

4.3 Topic Identification Experiments

We use the previous datasets to evaluate topic
identification and compare multi-document joint
models to a pipeline approach. In the pipeline
approach, we evaluate clustering and graph-
community detection algorithms. The clustering
algorithms take the golden standard segments and
identify segments sharing the same topic if they
are assigned the same cluster. Several clustering
algorithms are surveyed (Aggarwal and Reddy,
2014): DBSCAN, Mean Shift, and NMF. For
the graph-community detection approach, word
communities are obtained from the segments.
Then, based on lexical similarity, segments are
assigned to one of the communities (Mota et al.,
2018). If two segments are assigned to the same
community, they share the same topic. Several
graph-community detection algorithms are sur-
veyed (Fortunato, 2010): Bigclam, Label Propa-
gation, CNM, Walktraps, and Leading Eigenvec-
tor. For conciseness, we only report the results of
the best algorithms.

To measure the performance, we use the stan-
dard B3 clustering metric (Amigó et al., 2009).
B3 decomposes uses item-wise precision and re-
call. Precision represents how many items in the
same cluster belong to its class. Recall represents

how many items from a class appear in the cluster.
The final B3 value combines precision and recall:

B3 =
1

0.5( 1
Pre) + 0.5( 1

Rec)
(10)

The baseline results are depicted in Table 4. In
this benchmark, the pipeline approach performs
better than the joint model in all datasets. The
differences range between 0.04 and 0.14 in B3

score. The DBSCAN clustering approach obtains
the best performance in the Biography dataset by
a 0.09 margin.The Louvain graph-community de-
tection approach obtains the best results in the
AVL and Physics datasets with result differences
to DBSCAN of 0.04 in both cases.

Table 4: Topic identification baseline results.

Bio AVL Physics

DBSCAN 0.66 0.33 0.34
Louvain 0.57 0.37 0.38

MultiSeg 0.52 0.29 0.30

Table 5 shows the results for different prior con-
figurations. In the Biography domain, we observe
that the dynamic LMP improves the results of
both SLPs; 0.03 and 0.16, for the Beta-Bernoulli
and Gamma-Poisson, respectively. In the AVL
datasets, three different configurations obtain the
best performance. In the Physics dataset, the dy-
namic LMP modality Gamma-Poisson SLP per-
forms better. In this case, using a modality SLP
instead of the dataset affords a 0.11 improvement.
Comparing the independent and dynamic LMPs,
we see that the former improves the results by
0.05. This shows that both modeling aspects are
contributing for the best results.

Table 5: BeamSeg topic identification results.

LMP SLP Scope Bio AVL Physics

Ind
BB

D 0.51 0.35 0.36
M – 0.39 0.38

GP
D 0.37 0.38 0.35
M – 0.36 0.37

Dyn
BB

D 0.54 0.39 0.30
M – 0.32 0.34

GP
D 0.53 0.38 0.31
M – 0.39 0.41
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Comparing BeamSeg’s best results to the base-
line, we observe that it is only outperformed
by DBSCAN in the Biography dataset (a 19.7%
difference). DBSCAN obtains better results by
putting segments it cannot group in individual
clusters, which keep the larger clusters clean. In
BeamSeg, the number of identified topics (clus-
ters) is lower, a 385 difference to DBSCAN, which
ends up forcing wrong topic segment assignments.
In the AVL dataset, BeamSeg improves the Lou-
vain baseline by 5.1%. The topic identification
behavior of both approaches is different from the
Biography dataset. Louvain only outputs 7 clus-
ters whereas the reference has 17 topics. This
is related to the topic development aspect across
segments, which makes them hard to distinguish.
BeamSeg obtains a higher B3 score because it is
able to identify 15 topics, a number closer to the
reference, and, consequently, assign topics more
appropriately. In the Physics dataset, BeamSeg
improves the baseline by 7.3%. The topic iden-
tification patterns are similar to the ones observed
in the AVL dataset with BeamSeg outputting more
topics than Louvain, 70 and 48 topics, respec-
tively. Another observation is that the perfor-
mance differences between the Biography and the
other datasets are related to the topic structure
complexity. In the Biography dataset, there is a
tendency for the topic order to persist across docu-
ments, whereas in the other datasets the interweav-
ing of the topics is not as regular. This is depicted
in Figure 3, where color changes represent a topic
changes and similar topics have the same color. In
Figure 3a (Biography domain) we can see that the
colors sequences in different documents are sim-
ilar whereas in Figure 3 (Physics domain) the se-
quence is not constant. Connecting the topic struc-
ture differences with the topic order assumptions
in BeamSeg explains the performance differences.

5 Conclusions and Future Work

In this work, we propose BeamSeg, an unsuper-
vised Bayesian algorithm that jointly segments
documents and identifies topical relationships us-
ing a beam search procedure to find high likeli-
hood segmentations during inference. Relation-
ships between topics are modeled using a dynamic
prior encoding that word distributions change
smoothly in documents with an overarching sub-
ject. BeamSeg also models segment length proper-

(a) Documents from the Biography domain.

(b) Documents from the Physics domain.

Figure 3: Topic identification examples.

ties based on document modality. To evaluate seg-
mentation, single and multi-document algorithms
were used as a baseline. For topic identification,
we compared BeamSeg to MultiSeg, another joint
model, as well as a pipeline approach. In both
tasks, BeamSeg obtains the best results in two
of the datasets used for evaluation. The conclu-
sion from the evaluation is that BeamSeg is effec-
tive in datasets with prevalent topic development
throughout document segments. To achieve the
best performance, it is necessary to use a combina-
tion of a dynamic LMP with a modality Gamma-
Poisson SLP. Therefore, the proposed modeling
assumptions fit the data well. This supports the hy-
pothesis that lexical cohesion is a cross-document
phenomenon and can be used to leverage multi-
document segmentation and topic identification.

Regarding future work, one of the concerns is
that the proposed inference procedure is a maxi-
mum likelihood estimation approach. Ideally, we
want to access the full posterior distribution since
it finds more accurate parameters. Another con-
cern is the raw assumption that there is a shared
topic ordering among all documents. We believe
that addressing these issues will allow BeamSeg to
improve its results and to consistently perform in
datasets with different characteristics.
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