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Abstract

Political text scaling aims to linearly or-
der parties and politicians across politi-
cal dimensions (e.g., left-to-right ideology)
based on textual content (e.g., politician
speeches or party manifestos). Existing
models scale texts based on relative word
usage and cannot be used for cross-lingual
analyses. Additionally, there is little quanti-
tative evidence that the output of these mod-
els correlates with common political dimen-
sions like left-to-right orientation. We pro-
pose a text scaling approach that leverages
semantic representations of text and is suit-
able for cross-lingual political text scaling.
We also propose a simple and straightfor-
ward setting for quantitative evaluation of
political text scaling. Experimental results
show that the semantically-informed scal-
ing models better predict the party posi-
tions than the existing word-based models
in two different political dimensions. Fur-
thermore, the proposed models exhibit no
drop in performance in the cross-lingual
compared to monolingual setting.

1 Introduction

The goal of political scaling is to order political
entities, i.e., political parties and politicians accord-
ing to their positions in some political dimension
(e.g., left vs. right ideological orientation). Textual
content produced by political entities, such as par-
ties’ election manifestos or transcripts of speeches,
is commonly used as the data underpinning the
analyses (Grimmer and Stewart, 2013).

Advances in text mining have enabled various
topical and ideological analyses of political texts.
Computational methods for political text analysis
cover dictionary-based models (Kellstedt, 2000;

Young and Soroka, 2012), supervised classification
models (Purpura and Hillard, 2006; Stewart and
Zhukov, 2009; Verberne et al., 2014; Karan et al.,
2016), and unsupervised scaling models (Slapin
and Proksch, 2008; Proksch and Slapin, 2010). All
of these models use the discrete, word-based rep-
resentations of text. Recently, however, continu-
ous semantic text representations (Mikolov et al.,
2013b; Le and Mikolov, 2014; Kiros et al., 2015;
Mrkšić et al., 2016) outperformed word-based text
representations on a battery of mainstream natural
language processing tasks (Kim, 2014; Bordes et
al., 2014; Tang et al., 2016).

Although the idea of automated estimation of
ideological beliefs is old (Abelson and Carroll,
1965), models estimating these beliefs from texts
have only appeared in the last fifteen years (Laver
and Garry, 2000; Laver et al., 2003; Slapin and
Proksch, 2008; Proksch and Slapin, 2010). In the
pioneering work on political text scaling, Laver and
Garry (2000) used predefined dictionaries of words
labeled with position scores. They then scored doc-
uments by aggregating the scores of dictionary
words they contain. Extending this work, they pro-
posed the model (Laver et al., 2003) that relies on
manually labeled reference texts instead of dictio-
naries of position words. They then computed the
lexical overlap between the unlabeled texts and the
reference position texts.

Seeking to avoid the manual annotation effort,
Slapin and Proksch (2008) proposed Wordfish, an
unsupervised scaling model which has become the
de facto standard method for political text scaling.
Wordfish models document positions and contri-
butions of individual words to those positions as
latent variables of the Poisson naı̈ve Bayes gen-
erative model, i.e., they assume that words are
drawn independently from a Poisson distribution.
They estimate the positions by maximizing the log-
likelihood objective in which word variables inter-
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act with document variables.
In this work we aim to remedy for two major

shortcomings pertaining to existing research on
political text scaling:
(1) Existing methods rely on bag-of-words repre-
sentations of text and are based on relative fre-
quencies of words in documents being scaled. As
such, they fail to exploit semantic similarities be-
tween words (e.g., “bad hombre” and “terrible
dude” might indicate the same ideological posi-
tion) and, more importantly, cannot be applied to
cross-lingual scaling (i.e., scaling of texts written
in different languages);

(2) Most existing studies provide only qualitative
evaluation of the scaling quality and the extent
to which automatically produced position scores
correspond to actual positions of political actors.1

Lack of transparent quantitative evaluation blurs
insights into models’ abilities to predict actual po-
sitions for a political dimension of interest.

The contributions of this paper are twofold.
First, we propose an unsupervised scaling model
which is, by exploiting semantic representations of
text, equally suitable for monolingual and cross-
lingual analyses of political texts. We exploit the
recently ubiquitous word embeddings (Mikolov et
al., 2013b; Pennington et al., 2014) to derive se-
mantic representations of texts and the translation
matrix model (Mikolov et al., 2013a) to construct a
joint multilingual semantic vector space. We then
build a fully-connected similarity graph by measur-
ing semantic similarities between all pairs of texts.
Finally we run a graph-based label propagation al-
gorithm (Zhu and Goldberg, 2009) to derive final
positions of political texts. Secondly, we propose a
simple and straightforward quantitative evaluation
that directly compares automatically produced posi-
tions with the ground truth positions (i.e., positions
labeled by experts) for political dimensions of inter-
est. Furthermore, we construct a dataset (with both
monolingual and cross-lingual version), which we
offer as a benchmark for quantitative evaluation of
models for political text scaling.

2 Cross-Lingual Text Scaling

Our scaling approach consists of three components:
(1) construction of a joint multilingual embedding

1Proksch and Slapin (2010) perform a convolutedly indi-
rect quantitative evaluation of Wordfish, which we do not find
to be significantly more informative than qualitative evalua-
tions.

space, (2) unsupervised measures of semantic simi-
larity, and (3) a graph-based label propagation algo-
rithm, which we use to derives final position scores
from pairwise text similarities.

2.1 Multilingual Embedding Space

We start from monolingual word embeddings of all
involved languages, obtained by running embed-
ding models (Mikolov et al., 2013b; Pennington et
al., 2014) on large corpora. Independently trained
monolingual embedding spaces are in no way mu-
tually associated, i.e., same concepts (e.g., English
word “bad” and German “schlecht”) might have
very different vectors.

In order to allow for semantic comparison of
texts in different languages, we must construct a
joint multilingual semantic vector space. To this
end, we select the embedding space of one lan-
guage and map embedding spaces of all other lan-
guages to the selected space using the linear transla-
tion matrix model of Mikolov et al. (2013a). Given
a set of word translations pairs P , we learn a trans-
lation matrix M that projects embedding vectors
from one embedding space to another. Let S and
T be the matrices with monolingual embeddings
of source and target words from P , respectively.
Unlike the original work (Mikolov et al., 2013a),
in which the matrix M is learned by numerically
minimizing the differences between projections of
source embeddings and target embeddings, we opt
for a analytical solution for the matrix M. Given
that we want to find the matrix that translates S
to T, i.e., S ·M = T and that the source matrix
S is not a square matrix (i.e., it does not have an
inverse), we compute the translation matrix M by
multiplying the pseudoinverse (inverse approxima-
tion for non-square matrices) of the source matrix
S with the target matrix T:

M = S+·T

where S+ is the Moore-Penrose pseudoinverse of
the source matrix S, i.e., S+ = (STS)−1ST . The
translation matrices we obtained this way in our
experiments turned to be of the same quality as
those obtained via numeric optimization. However,
the direct analytical computation using the pseu-
doinverse of the source matrix has the benefit of
being significantly computationally faster than the
numeric optimization.
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2.2 Measures of Semantic Similarity
We propose two rather simple unsupervised mea-
sures of semantic similarity between texts that
leverage the embeddings from the shared multi-
lingual embedding space. Both similarity measures
are fully language-agnostic, i.e., they simply use
the joint embedding space to look up semantic vec-
tors of words found in input texts.

Alignment similarity. The computation of the
alignment score is based on the bijective alignment
of words between two input texts. We greedily pair
words between the two documents that have the
most similar embedding vectors (according to the
cosine distance) – once each word (more precisely,
each token) has been aligned, it is not considered
for further alignments. A similar alignment method
has been proposed for evaluating machine transla-
tion systems (Lavie and Denkowski, 2009). Let t1
and t2 be the input texts and let A = {(wi

1, w
i
2)}Ni=1

be the obtained word alignment between them. The
alignment similarity is then computed as follows:

s(t1, t2) =
1
N

∑
(wi

1,wi
2)∈A

cos(e(wi
1), e(w

i
2))

where N = |A| is the number of aligned pairs,
equal to the number of tokens in the shorter of the
texts, and e(w) is the embedding of the word w in
the shared multilingual embedding space.

Aggregation similarity. Instead of aligning
words of input texts according to their semantic
similarity, aggregation score compares the aggre-
gate semantic vectors of entire input texts. Let T
be the bag of words of an input text t. We compute
the aggregate embedding of the input text t as the
sum of L2-normalized embeddings of words in T :

e(t) =
1
|T |

∑
w∈T

e(w)
‖e(w)‖

The aggregation similarity is then computed as the
cosine of the angle between aggregate vectors of
the two input texts:

s(t1, t2) = cos(e(t1), e(t2))

2.3 Graph-Based Scaling Algorithm
With the shared embedding space and similarity
metrics in place, we can compute semantic sim-
ilarity scores for every pair of political texts we
want to scale. The conversion of such pairwise text

similarities into an one-dimensional scale of posi-
tion scores is the final step of our scaling approach.
Assuming that the two semantically most dissimi-
lar texts, which we name pivot texts, represent the
opposite position extremes for the political dimen-
sion of interest, we initially assign them extreme
position scores of −1 and 1. Pairwise similarities
between texts induce an undirected similarity graph
and allow us to use graph-based score propagation
to compute the positions for the remaining, non-
pivot texts. Finally, after obtaining the positions of
the non-pivot texts, we recompute the positions for
the two pivot texts.

Position propagation. We use the harmonic
function label propagation (HFLP)2 (Zhu and Gold-
berg, 2009) – a commonly used graph-based algo-
rithm for semi-supervised learning – to propagate
position scores from the two pivot texts to other,
non-pivot texts.3 Before running the HFLP algo-
rithm, we rescale all pairwise text similarities (i.e.,
all graph weights) to the [0, 1] interval (i.e., 0 is
the similarity between two least similar texts and
1 is the similarity between two most similar texts).
Let G = (V,E) be the similarity graph and W its
weighted adjacency matrix. Let D be the diagonal
matrix with weighted degrees of graph’s vertices as
diagonal elements, i.e., Dii =

∑
j∈|V |wij , where

wij is the weight of the edge between vertices i
and j. The unnormalized Laplacian of the graph
G is then given as L = D −W. Assuming that
the labeled vertices (in our case, the two vertices
representing pivot texts) are ordered before the un-
labeled ones, the Laplacian L can be partitioned as
follows:

L =
(

Lll Llu

Lul Luu

)
The harmonic function values of the unlabeled ver-
tices, denoting the position scores of the non-pivot
texts, are then given by:

fu = −L−1
uuLulyl

where yl is the vector of scores of labeled vertices,
in our case, yl = [−1, 1]T .

Rescaling pivot texts. We acknowledge that our
two pivot texts (i.e., the pair of mutually least simi-
lar texts according to our semantic similarity mea-
sure) might not be the two texts expressing truly

2Also known as the absorbing random walk.
3Preliminarily, we also experimented with the PageRank

algorithm (Page et al., 1999), but HFLP performed better.
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the most dissimilar political positions because: (1)
our metrics of semantic similarity are imperfect,
i.e., the scores they produce are not the gold stan-
dard semantic similarities, but even if they were
(2) we do not know to what extent the semantic
similarity we measure correlates with the particular
political dimension being analyzed (e.g., with the
ideological left-to-right agreement). This is why, as
the final step, we rescale the positions of the two
pivot texts which we kept fixed for HFLP.

Let t be a pivot text and NP be the set of non-
pivot texts for which we obtained the positions with
HFLP. The final pivot text position is computed as
the weighted sum of non-pivot positions:

p(t) =
∑

ti∈NP

p(ti) · s(t, ti)

where s(t, ti) is the semantic similarity between
texts t and ti and p(ti) is the position of a non-pivot
text ti, obtained with HFLP. We finally rescale all
position scores to range [−1, 1], keeping the same
proportions between pairs of party positions.

3 Evaluation

We first describe the dataset used for evaluation
and then describe in detail the straightforward set-
ting for quantitative evaluation of scaling methods.
Finally, we interpret the obtained results.

3.1 Dataset
We collected a corpus of speeches from the fifth
mandate of the European Parliament (EP) from
the Parliament’s official website. The choice of
EP speeches for evaluation was a pragmatic one –
each speech is available in all official EU languages,
which allowed for a parallel monolingual and cross-
lingual evaluation on the same set of speeches. We
selected all speeches given by representatives from
five largest European countries: Germany, France,
United Kingdom, Italy, and Spain. We created ag-
gregated texts for political parties by concatenating
speeches of all party members. Finally, we kept the
only the parties with aggregate texts longer than
15.000 tokens, which left us with a set of 25 polit-
ical parties. We compiled the final dataset in the
monolingual (English) and multilingual (speeches
in speakers’ respective native languages) versions.4

As in the previous work (Proksch and Slapin,
2010), we are considering party positions in two

4We make the dataset and the scaling code available at
https://bitbucket.org/gg42554/cl-scaling

Source Target P@1 (%) P@5 (%)

German English 32.7 48.7
Spanish English 46.6 58.3
Italian English 34.4 52.5
French English 36.4 56.2

Table 1: Evaluation of translation matrices.

dimensions: (1) left-to-right ideology and (2) Euro-
pean integration. We obtained the gold party posi-
tions for both of these dimensions from the 2002
Chapel Hill expert survey.5

3.2 Experimental Setting
Joint embedding space. We first obtain the
monolingual word embeddings for all five lan-
guages in evaluation. We used the pretrained 200-
dimensional GloVe word embeddings (Penning-
ton et al., 2014) for English6 and trained the
300-dimensional Word2Vec CBOW embeddings
(Mikolov et al., 2013b) for the other four languages
on respective Wikipedia instances. We induced the
multilingual embedding space by translating em-
beddings of other four languages to the English
embedding space. We obtained word translation
pairs by translating 4200 most frequent English
words to all other languages with Google translate.
We used 4000 of the translation pairs to learn the
translation matrices and remaining 200 for evalua-
tion of translation quality. Translation quality we
obtain, shown in Table 1 in terms of precisions at
ranks one and five (P@1 and P@5), is comparable
to that reported in (Mikolov et al., 2013a).

Models and evaluation metrics. We evaluate
two different variants of our method, one em-
ploying the alignment similarity (ALIGN-HFLP)
and the other computing the aggregation similar-
ity (AGG-HFLP) for pairs of texts. We evaluate
both models in both monolingual and cross-lingual
scaling setting. For comparison, in the monolin-
gual setting we also evaluate Wordfish (Slapin and
Proksch, 2008). As a sanity check, we also evaluate
a baseline that randomly assigns positions to texts.

Evaluation metrics. We use intuitive evaluation
metrics for comparing model-produced positions
with the gold positions: the pairwise accuracy (PA),
i.e., the percentage of pairs with parties in the same

5http://chesdata.eu/
6http://nlp.stanford.edu/data/glove.6B.

zip
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Monolingual Cross-lingual

PA rP rS PA rP rS

Random 49.7 -.03 .00 49.7 -.03 .00
Wordfish 55.0 .21 .20 – – –

AL-HFLP 61.3 .35 .31 57.3 .20 .25
AGG-HFLP 67.0 .53 .46 63.3 .34 .39

Table 2: Scaling performance for the left-to-right
ideological positioning.

Monolingual Cross-lingual

PA rP rS PA rP rS

Random 49.1 .00 .00 49.1 .00 .00
Wordfish 59.7 .18 .33 – – –

AL-HFLP 62.3 .25 .39 64.3 .54 .40
AGG-HFLP 60.3 .24 .30 59.3 .48 .31

Table 3: Scaling performance for the positioning
regarding European integration.

order as in the gold standard; and Spearman (rS)
and Pearson correlation (rP ) between the two sets
of positions. While PA and Spearman correlation
estimate the correctness of the ranking, Pearson
correlation also captures the extent to which auto-
mated scaling reflects the gold distances between
party positions.

3.3 Results and Discussion

In Tables 2 and 3 we show the models’ scaling
performance for two political dimensions – left-to-
right ideology and European integration, respec-
tively. Our semantically-aware models outperform
the commonly used Wordfish model. For both di-
mensions, our best performing model significantly
outperforms Wordfish (p < 0.05).7 Positions pro-
duced by Wordfish seem to be better aligned with
positions on European integration than with ide-
ological left-to-right positions, which is in line
with observations from (Proksch and Slapin, 2010).
The same holds for our alignment model (ALIGN-
HFLP). In contrast, the scaling based on the ag-
gregation similarity measure (AGG-HFLP) seems
to better correspond to the left-to-right ideological
positioning. We hypothesize that this is because the
comparison between semantically more imprecise
aggregated text embeddings assigns more weight
to the most salient dimension of speeches, which
we speculate is the ideological position. In contrast,
by comparing semantically more precise word em-

7According to the non-parametric stratified shuffling test
(Yeh, 2000)

beddings, the alignment model treats all political
dimensions of speeches more uniformly.

In the cross-lingual setting (i.e., when estimat-
ing positions from texts in different languages) we
observe no (significant) drop in performance of
our best performing model for either of the polit-
ical dimensions with respect to the monolingual
(English) setting. This crucial finding implies that
our semantically-motivated approach for political
text scaling is indeed as applicable to multilingual
political corpora as it is to monolingual.

The performance levels that our models reach
indicate that the semantic similarity scores we com-
pute capture also similarities originating from di-
mensions other than the political dimension of
analysis. For example, part of the similarity be-
tween parties from the same country comes from
the mentions of the same country-specific issues
(not mentioned by the parties from other countries),
regardless of the ideological dis(agreement) be-
tween these parties. Because of these effects, we
believe that text scaling models must be coupled
with models that would previously extract only the
portions of texts relevant for the dimension of anal-
ysis (e.g., a model for discerning ideological from
non-ideological portions of text).

4 Conclusion

In this work, we presented what is, to the best of
our knowledge, the first approach for cross-lingual
scaling of political texts. We induce a multilingual
embedding space and compute semantic similari-
ties for all pairs of texts using unsupervised mea-
sures for semantic textual similarity. We then use a
graph-based score propagation algorithm to trans-
form pairwise similarities into position scores.

Experimental results from the straightforward
quantitative evaluation we propose show that our
semantically-informed scaling predicts party posi-
tions for two relevant political dimensions better
than the commonly used Wordfish model. More-
over, the cross-lingual scaling performance of our
models matches their monolingual performance,
proving them to be suitable to scale political texts
from multilingual collections.

We will next focus on cross-lingual classification
models to pre-filter only relevant portions of text.
Coupling such models with the presented scaling
method will allow for measuring similarities only
along the relevant political dimension (e.g., ideol-
ogy) and lead to more accurate position estimates.
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