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Abstract

This paper discusses two problems that arise

in the Generation of Referring Expressions:

(a) numeric-valued attributes, such as size or

location; (b) perspective-taking in reference.

Both problems, it is argued, can be resolved

if some structure is imposed on the available

knowledge prior to content determination. We

describe a clustering algorithm which is suffi-

ciently general to be applied to these diverse

problems, discuss its application, and evaluate

its performance.

1 Introduction

The problem of Generating Referring Expressions

(GRE) can be summed up as a search for the prop-

erties in a knowledge base (KB) whose combination

uniquely distinguishes a set of referents from their dis-

tractors. The content determination strategy adopted

in such algorithms is usually based on the assump-

tion (made explicit in Reiter (1990)) that the space of

possible descriptions is partially ordered with respect

to some principle(s) which determine their adequacy.

Traditionally, these principles have been defined via

an interpretation of the Gricean maxims (Dale, 1989;

Reiter, 1990; Dale and Reiter, 1995; van Deemter,

2002)1. However, little attention has been paid to con-

textual or intentional influences on attribute selection

(but cf. Jordan and Walker (2000); Krahmer and The-

une (2002)). Furthermore, it is often assumed that

all relevant knowledge about domain objects is repre-

sented in the database in a format (e.g. attribute-value

pairs) that requires no further processing.

This paper is concerned with two scenarios which

raise problems for such an approach to GRE:

1. Real-valued attributes, e.g. size or spatial coor-

dinates, which represent continuous dimensions.

The utility of such attributes depends on whether

a set of referents have values that are ‘sufficiently

1For example, the Gricean Brevity maxim (Grice, 1975)
has been interpreted as a directive to find the shortest possible
description for a given referent

close’ on the given dimension, and ‘sufficiently

distant’ from those of their distractors. We dis-

cuss this problem in §2.

2. Perspective-taking The contextual appropriate-

ness of a description depends on the perspective

being taken in context. For instance, if it is known

of a referent that it is a teacher, and a sportsman, it

is better to talk of the teacher in a context where

another referent has been introduced as the stu-

dent. This is discussed further in §3.

Our aim is to motivate an approach to GRE where

these problems are solved by pre-processing the infor-

mation in the knowledge base, prior to content deter-

mination. To this end, §4 describes a clustering algo-

rithm and shows how it can be applied to these different

problems to structure the KB prior to GRE.

2 Numeric values: The case of location

Several types of information about domain entities,

such as gradable properties (van Deemter, 2000) and

physical location, are best captured by real-valued at-

tributes. Here, we focus on the example of location as

an attribute taking a tuple of values which jointly de-

termine the position of an entity.

The ability to distinguish groups is a well-

established feature of the human perceptual appara-

tus (Wertheimer, 1938; Treisman, 1982). Representing

salient groups can facilitate the task of excluding dis-

tractors in the search for a referent. For instance, the

set of referents marked as the intended referential tar-

get in Figure 1 is easily distinguishable as a group and

warrants the use of a spatial description such as the ob-

jects in the top left corner, possibly with a collective

predicate, such as clustered or gathered. In case of

reference to a subset of the marked set, although loca-

tion would be insufficient to distinguish the targets, it

would reduce the distractor set and facilitate reference

resolution2.

In GRE, an approach to spatial reference based

on grouping has been proposed by Funakoshi et al.

2Location has been found to significantly facilitate reso-
lution, even when it is logically redundant (Arts, 2004)
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Figure 1: Spatial Example

(2004). Given a domain and a target referent, a se-

quence of groups is constructed, starting from the

largest group containing the referent, and recursively

narrowing down the group until only the referent is

identified. The entire sequence is then rendered lin-

guistically. The algorithm used for identifying percep-

tual groups is the one proposed by Thorisson (1994),

the core of which is a procedure which takes as input

a list of pairs of objects, ordered by the distance be-

tween the entities in the pairs. The procedure loops

through the list, finding the greatest difference in dis-

tance between two adjacent pairs. This is determined

as a cutoff point for group formation. Two problems

are raised by this approach:

P1 Ambiguous clusters A domain entity can be

placed in more than one group. If, say, the in-

put list is
〈

{a, b}, {c, e}, {a, f}
〉

and the great-

est difference after the first iteration is between

{c, e} and {a, f}, then the first group to be formed

will be {a, b, c, e} with {a, f} likely to be placed

in a different group after further iterations. This

may be confusing from a referential point of view.

The problem arises because grouping or cluster-

ing takes place on the basis of pairwise proxim-

ity or distance. This problem can be partially cir-

cumvented by identifying groups on several per-

ceptual dimensions (e.g. spatial distance, colour,

and shape) and then seeking to merge identical

groups determined on the basis of these differ-

ent qualities (see Thorisson (1994)). However, the

grouping strategy can still return groups which do

not conform to human perceptual principles. A

better strategy is to base clustering on the Near-

est Neighbour Principle, familiar from computa-

tional geometry (Prepaarata and Shamos, 1985),

whereby elements are clustered with their nearest

neighbours, given a distance function. The solu-

tion offered below is based on this principle.

P2 Perceptual proximity Absolute distance is not

sufficient for cluster identification. In Figure 1,

for example, the pairs {e1, e2} and {e5, e6} could

easily be consecutively ranked, since the distance

between e1 and e2 is roughly equal to that be-

tween e5 and e6. However, they would not natu-

rally be clustered together by a human observer,

because grouping of objects also needs to take

into account the position of the surrounding ele-

ments. Thus, while e1 is as far away from e2 as

e5 is from e6, there are elements which are closer

to {e1, e2} than to {e5, e6}.

The proposal in §4 represents a way of getting

around these problems, which are expected to arise in

any kind of domain where the information given is the

pairwise distance between elements. Before turning to

the framework, we consider another situation in GRE

where the need for clustering could arise.

3 Perspectives and semantic similarity

In real-world discourse, entities can often be talked

about from different points of view, with speakers

bringing to bear world and domain-specific knowledge

to select information that is relevant to the current

topic. In order to generate coherent discourse, a gener-

ator should ideally keep track of how entities have been

referred to, and maintain consistency as far as possible.

type profession nationality

e1 man student englishman

e2 woman teacher italian

e3 man chef greek

Table 1: Semantic Example

Suppose e1 in Table 1 has been introduced into the

discourse via the description the student and the next

utterance requires a reference to e2. Any one of the

three available attributes would suffice to distinguish

the latter. However, a description such as the woman

or the italian would describe this entity from a different

point of view relative to e1. By hypothesis, the teacher

is more appropriate, because the property ascribed to

e2 is more similar to that ascribed to e1.

A similar case arises with plural disjunctive descrip-

tions of the form λx[p(x)∨q(x)], which are usually re-

alised as coordinate constructions of the form the N’1
and the N’2. For instance a reference to {e1, e2} such

as the woman and the student, or the englishman and

the teacher, would be odd, compared to the alterna-

tive the student and the teacher. The latter describes

these entities under the same perspective. Note that

‘consistency’ or ‘similarity’ is not guaranteed simply

by attempting to use values of the same attribute(s) for

a given set of referents. The description the student
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and the chef for {e1, e3} is relatively odd compared to

the alternative the englishman and the greek. In both

kinds of scenarios, a GRE algorithm that relied on a

rigid preference order could not guarantee that a coher-

ent description would be generated every time it was

available.

The issues raised here have never been systemati-

cally addressed in the GRE literature, although support

for the underlying intuitions can be found in various

quarters. Kronfeld (1989) distinguishes between func-

tionally and conversationally relevant descriptions. A

description is functionally relevant if it succeeds in dis-

tinguishing the intended referent(s), but conversational

relevance arises in part from implicatures carried by

the use of attributes in context. For example, describ-

ing e1 as the student carries the (Gricean) implicature

that the entity’s academic role or profession is some-

how relevant to the current discourse. When two enti-

ties are described using contrasting properties, say the

student and the italian, the listener may find it harder

to work out the relevance of the contrast. In a related

vein, Aloni (2002) formalises the appropriateness of an

answer to a question of the form Wh x? with reference

to the ‘conceptual covers’ or perspectives under which

x can be conceptualised, not all of which are equally

relevant given the hearer’s information state and the

discourse context.

With respect to plurals, Eschenbach et al. (1989) ar-

gue that the generation of a plural anaphor with a split

antecedent is more felicitous when the antecedents

have something in common, such as their ontological

category. This constraint has been shown to hold psy-

cholinguistically (Kaup et al., 2002; Koh and Clifton,

2002; Moxey et al., 2004). Gatt and van Deemter

(2005a) have shown that people’s perception of the ad-

equacy of plural descriptions of the form, the N1 and

(the) N2 is significantly correlated with the seman-

tic similarity of N1 and N2, while singular descrip-

tions are more likely to be aggregated into a plural if

semantically similar attributes are available (Gatt and

Van Deemter, 2005b).

The two kinds of problems discussed here could be

resolved by pre-processing the KB in order to iden-

tify available perspectives. One way of doing this is

to group available properties into clusters of seman-

tically similar ones. This requires a well-defined no-

tion of ‘similarity’ which determines the ‘distance’ be-

tween properties in semantic space. As with spatial

clustering, the problem is then of how to get from

pairwise distance to well-formed clusters or groups,

while respecting the principles underlying human per-

ceptual/conceptual organisation. The next section de-

scribes an algorithm that aims to achieve this.

4 A framework for clustering

In what follows, we assume the existence of a set of

clusters C in a domain S of objects (entities or proper-

ties), to be ‘discovered’ by the algorithm. We further

assume the existence of a dimension, which is char-

acterised by a function δ that returns the pairwise dis-

tance δ(a, b), where 〈a, b〉 ∈ S×S. In case an attribute

is characterised by more than one dimension, say 〈x, y〉
coordinates in a 2D plane, as in Figure 1, then δ is de-

fined as the Euclidean distance between pairs:

δ =

√

∑

〈x,y〉∈D

|xab − yab|2 (1)

where D is a tuple of dimensions, xab = δ(a, b) on di-

mension x. δ satisfies the axioms of minimality (2a),

symmetry (2b), and the triangle inequality (2c), by

which it determines a metric space on S:

δ(a, b) ≥ 0 ∧
(

δ(a, b) = 0↔ a = b
)

(2a)

δ(a, b) = δ(b, a) (2b)

δ(a, b) + δ(b, c) ≥ δ(a, c) (2c)

We now turn to the problems raised in §2. P1 would

be avoided by a clustering algorithm that satisfies (3).

⋂

Ci∈C

= ∅ (3)

It was also suggested above that a potential solution

to P1 is to cluster using the Nearest Neighbour Princi-

ple. Before considering a solution to P2, i.e. the prob-

lem of discovering clusters that approximate human

intuitions, it is useful to recapitulate the classic prin-

ciples of perceptual grouping proposed by Wertheimer

(1938), of which the following two are the most rele-

vant:

1. Proximity The smaller the distance between ob-

jects in the cluster, the more easily perceived it is.

2. Similarity Similar entities will tend to be more

easily perceived as a coherent group.

Arguably, once a numeric definition of (semantic)

similarity is available, the Similarity Principle boils

down to the Proximity principle, where proximity is

defined via a semantic distance function. This view

is adopted here. How well our interpretation of these

principles can be ported to the semantic clustering

problem of §3 will be seen in the following subsec-

tions.

To resolve P2, we will propose an algorithm that

uses a context-sensitive definition of ‘nearest neigh-

bour’. Recall that P2 arises because, while δ is a mea-

sure of ‘objective’ distance on some scale, perceived
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proximity (resp. distance) of a pair 〈a, b〉 is contingent

not only on δ(a, b), but also on the distance of a and

b from all other elements in S. A first step towards

meeting this requirement is to consider, for a given

pair of objects, not only the absolute distance (prox-

imity) between them, but also the extent to which they

are equidistant from other objects in S. Formally, a

measure of perceived proximity prox(a, b) can be ap-

proximated by the following function. Let the two sets

Pab, Dab be defined as follows:

Pab =
{

x|x ∈ S ∧ δ(x, a) ∼ δ(x, b)
}

Dab =
{

y|y ∈ S ∧ δ(y, a) 6∼ δ(y, b)
}

Then:

prox(a, b) = F (δ(a, b), |Pab|, |Dab|) (4)

that is, prox(a, b) is a function of the absolute dis-

tance δ(a, b), the number of elements in S − {a, b}
which are roughly equidistant from a and b, and the

number of elements which are not equidistant. One

way of conceptualising this is to consider, for a given

object a, the list of all other elements of S, ranked by

their distance (proximity) to a. Suppose there exists an

object b whose ranked list is similar to that of a, while

another object c’s list is very different. Then, all other

things being equal (in particular, the pairwise absolute

distance), a clusters closer to b than does c.

This takes us from a metric, distance-based concep-

tion, to a broader notion of the ‘similarity’ between two

objects in a metric space. Our definition is inspired

by Tversky’s feature-based Contrast Model (1977), in

which the similarity of a, b with feature sets A, B is

a linear function of the features they have in com-

mon and the features that pertain only to A or B, i.e.:

sim(a, b) = f(A ∩ B) − f(A ∩B). In (4), the dis-

tance of a and b from every other object is the relevant

feature.

4.1 Computing perceived proximity

The computation of pairwise perceived proximity

prox(a, b), shown in Algorithm 1, is the first step to-

wards finding clusters in the domain.

Following Thorisson (1994), the procedure uses

the absolute distance δ to calculate ‘absolute proxim-

ity’ (1.7), a value in (0, 1), with 1 corresponding to

δ(a, b) = 0, i.e. identity (cf. axiom (2a) ). The proce-

dure then visits each element of the domain, and com-

pares its rank with respect to a and b (1.9–1.13)3, in-

crementing a proximity score s (1.10) if the ranks are

3We simplify the presentation by assuming the function
rank(x, a) that returns the rank of x with respect to a. In
practice, this is achieved by creating, for each element of the
input pair, a totally ordered list La such that La[r] holds the
set of elements ranked at r with respect to δ(x, a)

Algorithm 1 prox(a,b)

Require: δ(a, b)
Require: k (a constant)

1: maxD ← max〈x,y〉∈S×S δ(x, y)
2: if a = b then

3: return 1

4: end if

5: s← 0
6: d← 0
7: p(a, b)← 1− δ(a,b)

maxD

8: for all x ∈ S − {a, b} do

9: if |rank(x, a)− rank(x, b)| ≤ k then

10: s← s + 1
11: else

12: d← d + 1
13: end if

14: end for

15: return p(a, b)× s
d

approximately equal, or a distance score d otherwise

(1.12). Approximate equality is determined via a con-

stant k (1.1), which, based on our experiments is set to

a tenth the size of S. The procedure returns the ratio of

proximity and distance scores, weighted by the abso-

lute proximity p(a, b) (1.15). Algorithm 1 is called for

all pairs in S × S yielding, for each element a ∈ S, a

list of elements ordered by their perceived proximity to

a. The entity with the highest proximity to a is called

its anchor. Note that any domain object has one, and

only one anchor.

4.2 Creating clusters

The procedure makeClusters(S, Anchors),
shown in its basic form in Algorithm 2, uses the

notion of an anchor introduced above. The rationale

behind the algorithm is captured by the following

declarative principle, where C ∈ C is any cluster, and

anchor(a, b) means ‘b is the anchor of a’:

a ∈ C ∧ anchor(a, b)→ b ∈ C (5)

A cluster is defined as the transitive closure of the

anchor relation, that is, if it holds that anchor(a, b)
and anchor(b, c), then {a, b, c} will be clustered to-

gether. Apart from satisfying (5), the procedure also in-

duces a partition on S, satisfying (3). Given these pri-

mary aims, no attempt is made, once clusters are gen-

erated, to further sub-divide them, although we briefly

return to this issue in §5. The algorithm initialises a

set Clusters to empty (2.1), and iterates through the

list of objects S (2.5). For each object a and its anchor

b (2.6), it first checks whether they have already been

clustered (e.g. if either of them was the anchor of an

object visited earlier) (2.7, 2.12). If this is not the case,

then a provisional cluster is initialised for each element
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Algorithm 2 makeClusters(S, Anchors)

Ensure: S 6= ∅
1: Clusters← ∅
2: if |S| = 1 then

3: return S

4: end if

5: for all a ∈ S do

6: b← Anchors[a]

7: if ∃C ∈ Clusters : a ∈ C then

8: Ca ← C

9: else

10: Ca ← {a}
11: end if

12: if ∃C ∈ Clusters : b ∈ C then

13: Cb ← C

14: Clusters← Clusters− {Cb}
15: else

16: Cb ← {b}
17: end if

18: Ca ← Ca ∪ Cb

19: Clusters← Clusters ∪ {Ca}
20: end for

21: return Clusters

(2.10, 2.16). The procedure simply merges the cluster

containing a with that of its b (2.18), having removed

the latter from the cluster set (2.14).

This algorithm is guaranteed to induce a partition,

since no element will end up in more than one group.

It does not depend on an ordering of pairs à la Tho-

risson. However, problems arise when elements and

anchors are clustered näively. For instance, if an el-

ement is very distant from every other element in the

domain, prox(a, b) will still find an anchor for it, and

makeClusters(S, Anchors) will place it in the same

cluster as its anchor, although it is an outlier. Before

describing how this problem is rectified, we introduce

the notion of a family (F ) of elements. Informally, this

is a set of elements of S that have the same anchor, that

is:

∀a, b ∈ F : anchor(a, x) ∧ anchor(b, y)↔ x = y

(6)

The solution to the outlier problem is to calculate a

centroid value for each family found after prox(a, b).
This is the average proximity between the common an-

chor and all members of its family, minus one stan-

dard deviation. Prior to merging, at line (2.18), the

algorithm now checks whether the proximity value be-

tween an element and its anchor falls below the cen-

troid value. If it does, the the cluster containing an

object and that containing its anchor are not merged.

4.3 Two applications

The algorithm was applied to the two scenarios de-

scribed in §2 and §3. In the spatial domain, the al-

gorithm returns groups or clusters of entities, based on

their spatial proximity. This was tested on domains like

Figure 1 in which the input is a set of entities whose

position is defined as a pair of x/y coordinates. Fig-

ure 1 illustrates a potential problem with the proce-

dure. In that figure, it holds that anchor(e8, e9) and

anchor(e9, e8), making e8 and e9 a reciprocal pair.

In such cases, the algorithm inevitably groups the two

elements, whatever their proximity/distance. This may

be problematic when elements of a reciprocal pair are

very distant from eachother, in which case they are un-

likely to be perceived as a group. We return to this

problem briefly in §5.

The second domain of application is the cluster-

ing of properties into ‘perspectives’. Here, we use

the information-theoretic definition of similarity de-

veloped by Lin (1998) and applied to corpus data by

Kilgarriff and Tugwell (Kilgarriff and Tugwell, 2001).

This measure defines the similarity of two words as a

function of the likelihood of their occurring in the same

grammatical environments in a corpus. This measure

was shown experimentally to correlate highly with hu-

man acceptability judgments of disjunctive plural de-

scriptions (Gatt and van Deemter, 2005a), when com-

pared with a number of measures that calculate the

similarity of word senses in WordNet. Using this as

the measure of semantic distance between words, the

algorithm returns clusters such as those in Figure 2.

input: { waiter, essay, footballer, article, servant,

cricketer, novel, cook, book, maid,

player, striker, goalkeeper }
output:

1 { essay, article, novel, book }
2 { footballer, cricketer }
3 { waiter, cook, servant, maid }
4 { player, goalkeeper, striker }

Figure 2: Output on a Semantic Domain

If the words in Figure 2 represented properties of

different entities in the domain of discourse, then

the clusters would represent perspectives or ‘covers’,

whose extension is a set of entities that can be talked

about from the same point of view. For example, if

some entity were specified as having the property foot-

baller, and the property striker, while another entity

had the property cricketer, then according to the output

of the algorithm, the description the footballer and the

cricketer is the most conceptually coherent one avail-

able. It could be argued that the units of representation
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spatial semantic

1 0.94 0.58

2 0.86 0.36

3 0.62 0.76

4 0.93 0.52

mean 0.84 0.64

Table 2: Proportion of agreement among participants

in GRE are not words but ‘properties’ (e.g. values of

attributes) which can be realised in a number of differ-

ent ways (if, for instance, there are a number of syn-

onyms corresponding roughly to the same intension).

This could be remedied by defining similarity as ‘dis-

tance in an ontology’; conversely, properties could be

viewed as a set of potential (word) realisations.

5 Evaluation

The evaluation of the algorithm was based on a com-

parison of its output against the output of human beings

in a similar task.

Thirteen native or fluent speakers of English volun-

teered to participate in the study. The materials con-

sisted of 8 domains, 4 of which were graphical repre-

sentations of a 2D spatial layout containing 13 points.

The pictures were generated by plotting numerical x/y

coordinates (the same values are used as input to the

algorithm). The other four domains consisted of a

set of 13 arbitrarily chosen nouns. Participants were

presented with an eight-page booklet with spatial and

semantic domains on alternate pages. They were in-

structed to draw circles around the best clusters in the

pictures, or write down the words in groups that were

related according to their intuitions. Clusters could be

of arbitrary size, but each element had to be placed in

exactly one cluster.

5.1 Participant agreement

Participant agreement on each domain was measured

using kappa. Since the task did not involve predefined

clusters, the set of unique groups (denoted G) gener-

ated by participants in every domain was identified,

representing the set of ‘categories’ available post hoc.

For each domain element, the number of times it oc-

curred in each group served as the basis to calculate

the proportion of agreement among participants for the

element. The total agreement P (A) and the agreement

expected by chance, P (E) were then used in the stan-

dard formula

k =
P (A)− P (E)

1− P (E)

Table 2 shows a remarkable difference between the

two domain types, with very high agreement on spa-

tial domains and lower values on the semantic task.

The difference was significant (t = 2.54, p < 0.05).

Disagreement on spatial domains was mostly due to

the problem of reciprocal pairs, where participants dis-

agreed on whether entities such as e8 and e9 in Figure 1

gave rise to a well-formed cluster or not. However, all

the participants were consistent with the version of the

Nearest Neighbour Principle given in (5). If an element

was grouped, it was always grouped with its anchor.

The disagreement in the semantic domains seemed

to turn on two cases4:

1. Sub-clusters Whereas some proposals included

clusters such as { man, woman, boy, girl, infant,

toddler, baby, child } , others chose to group {
infant, toddler, baby,child } separately.

2. Polysemy For example, liver was in some cases

clustered with { steak, pizza } , while others

grouped it with items like { heart, lung } .

Insofar as an algorithm should capture the whole range

of phenomena observed, (1) above could be accounted

for by making repeated calls to the Algorithm to sub-

divide clusters. One problem is that, in case only one

cluster is found in the original domain, the same cluster

will be returned after further attempts at sub-clustering.

A possible solution to this is to redefine the parameter

k in Algorithm (1), making the condition for proximity

more strict. As for the second observation, the desider-

atum expressed in (3) may be too strong in the semantic

domain, since words can be polysemous. As suggested

above, one way to resolve this would be to measure

distance between word senses, as opposed to words.

5.2 Algorithm performance

The performance of the algorithm (hereafter the target)

against the human output was compared to two base-

line algorithms. In the spatial domains, we used an

implementation of the Thorisson algorithm (Thorisson,

1994) described in §2. In our implementation, the pro-

cedure was called iteratively until all domain objects

had been clustered in at least one group.

For the semantic domains, the baseline was a simple

procedure which calculated the powerset of each do-

main S. For each subset in pow(S) − {∅, S}, the pro-

cedure calculates the mean pairwise similarity between

words, returning an ordered list of subsets. This partial

order is then traversed, choosing subsets until all ele-

ments had been grouped. This seemed to be a reason-

able baseline, because it corresponds to the intuition

that the ‘best cluster’ from a semantic point of view is

the one with the highest pairwise similarity among its

elements.

4The conservative strategy used here probably amplifies
disagreements; disregarding clusters which are subsumed by
other clusters would control at least for case (1)
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The output of the target and baseline algorithms was

compared to human output in the following ways:

1. By item In each of the eight test domains, an

agreement score was calculated for each domain

element e (i.e. 13 scores in each domain). Let

Us be the set of distinct groups containing e pro-

posed by the experimental participants, and let Ua

be the set of unique groups containing e proposed

by the algorithm (|Ua| = 1 in case of the target

algorithm, but not necessarily for the baselines,

since they do not impose a partition). For each

pair 〈Uai
, Usj
〉 of algorithm-human clusters, the

agreement score was defined as

|Uai
∩ Usj

|

|Uai
∩ Usj

|+ |Uai
∩ Usi

|
,

i.e. the ratio of the number of elements on which

the human/algorithm agree, and the number of el-

ements on which they do not agree. This returns a

number in (0, 1) with 1 indicating perfect agree-

ment. The maximal such score for each entity was

selected. This controlled for the possible advan-

tage that the target algorithm might have, given

that it, like the human participants, partitions the

domain.

2. By participant An overall mean agreement score

was computed for each participant using the

above formula for the target and baseline algo-

rithms in each domain.

Results by item Table 3 shows the mean and modal

agreement scores obtained for both target and base-

line in each domain type. At a glance, the target algo-

rithm performed better than the baseline on the spatial

domains, with a modal score of 1, indicating perfect

agreement on 60% of the objects. The situation is dif-

ferent in the semantic domains, where target and base-

line performed roughly equally well; in fact, the modal

score of 1 accounts for 75% baseline scores.

target baseline

spatial mean 0.84 0.72

mode 1 (60%) 0.67 (40%)

semantic mean 0.86 0.86

mode 1 (65%) 1 (75%)

Table 3: Mean and modal agreement scores

Unsurprisingly, the difference between target and

baseline algorithms was reliable on the spatial domains

(t = 2.865, p < .01), but not on the semantic domains

(t < 1, ns). This was confirmed by a one-way Analysis

of Variance (ANOVA), testing the effect of algorithm

(target/baseline) and domain type (spatial/semantic) on

agreement results. There was a significant main ef-

fect of domain type (F = 6.399, p = .01), while

the main effect of algorithm was marginally significant

(F = 3.542, p = .06). However, there was a reliable

type × algorithm interaction (F = 3.624, p = .05),

confirming the finding that the agreement between tar-

get and human output differed between domain types.

Given the relative lack of agreement between partic-

ipants in the semantic clustering task, this is unsur-

prising. Although the analysis focused on maximal

scores obtained per entity, if participants do not agree

on groupings, then the means which are statistically

compared are likely to mask a significant amount of

variance. We now turn to the analysis by participants.

Results by participant The difference between tar-

get and baselines in agreement across participants was

significant both for spatial (t = 16.6, p < .01)

and semantic (t = 5.759, t < .01) domain types.

This corroborates the earlier conclusion: once par-

ticipant variation is controlled for by including it in

the statistical model, the differences between target

and baseline show up as reliable across the board. A

univariate ANOVA corroborates the results, showing

no significant main effect of domain type (F < 1,

ns), but a highly significant main effect of algorithm

(F = 233.5, p < .01) and a significant interaction

(F = 44.3, p < .01).

Summary The results of the evaluation are encour-

aging, showing high agreement between the output of

the algorithm and the output that was judged by hu-

mans as most appropriate. They also suggest frame-

work of §4 corresponds to human intuitions better than

the baselines tested here. However, these results should

be interpreted with caution in the case of semantic clus-

tering, where there was significant variability in human

agreement. With respect to spatial clustering, one out-

standing problem is that of reciprocal pairs which are

too distant from eachother to form a perceptually well-

formed cluster. We are extending the empirical study

to new domains involving such cases, in order to infer

from the human data a threshold on pairwise distance

between entities, beyond which they are not clustered.

6 Conclusions and future work

This paper attempted to achieve a dual goal. First, we

highlighted a number of scenarios in which the perfor-

mance of a GRE algorithm can be enhanced by an ini-

tial step which identifies clusters of entities or proper-

ties. Second, we described an algorithm which takes as

input a set of objects and returns a set of clusters based

on a calculation of their perceived proximity. The def-

inition of perceived proximity seeks to take into ac-

count some of the principles of human perceptual and

conceptual organisation.

In current work, the algorithm is being applied to
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two problems in GRE, namely, the generation of spatial

references involving collective predicates (e.g. gath-

ered), and the identification of the available perspec-

tives or conceptual covers, under which referents may

be described.
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