Abstract
Answer selection is an important research problem, with applications in many areas. Previous deep learning based approaches for the task mainly adopt the Compare-Aggregate architecture that performs word-level comparison followed by aggregation. In this work, we take a departure from the popular Compare-Aggregate architecture, and instead, propose a new gated self-attention memory network for the task. Combined with a simple transfer learning technique from a large-scale online corpus, our model outperforms previous methods by a large margin, achieving new state-of-the-art results on two standard answer selection datasets: TrecQA and WikiQA.- Anthology ID:
- D19-1610
- Volume:
- Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
- Month:
- November
- Year:
- 2019
- Address:
- Hong Kong, China
- Editors:
- Kentaro Inui, Jing Jiang, Vincent Ng, Xiaojun Wan
- Venues:
- EMNLP | IJCNLP
- SIG:
- SIGDAT
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 5953–5959
- Language:
- URL:
- https://aclanthology.org/D19-1610
- DOI:
- 10.18653/v1/D19-1610
- Cite (ACL):
- Tuan Lai, Quan Hung Tran, Trung Bui, and Daisuke Kihara. 2019. A Gated Self-attention Memory Network for Answer Selection. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 5953–5959, Hong Kong, China. Association for Computational Linguistics.
- Cite (Informal):
- A Gated Self-attention Memory Network for Answer Selection (Lai et al., EMNLP-IJCNLP 2019)
- PDF:
- https://preview.aclanthology.org/add_acl24_videos/D19-1610.pdf
- Code
- laituan245/StackExchangeQA
- Data
- WikiQA