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Abstract

In this paper, we investigate case restoration
for text without case information. Previous
such work operates at the word level. We pro-
pose an approach using character-level recur-
rent neural networks (RNN), which performs
competitively compared to language model-
ing and conditional random fields (CRF) ap-
proaches. We further provide quantitative and
qualitative analysis on how RNN helps im-
prove truecasing.

1 Introduction

Natural language texts (e.g., automatic speech tran-
scripts or social media data) often come in non-
standard forms, and normalization would typically
improve the performance of downstream natural lan-
guage processing (NLP) applications. This paper in-
vestigates a particular sub-task in text normalization:
case restoration or truecasing. Truecasing refers to
the task of restoring case information (uppercase or
lowercase) of characters in a text corpus. Case infor-
mation is important for certain NLP tasks. For ex-
ample, Chieu and Ng (2002) used unlabeled mixed
case text to improve named entity recognition (NER)
on uppercase text.

The task often presents ambiguity: consider the
word “apple” in the sentences “he bought an apple”
and “he works at apple”. While the former refers to
a fruit (hence, it should be in lowercase), the latter
refers to a company name (hence, it should be cap-
italized). Moreover, we often need to recover the
case information for words that are previously un-
seen by the system.

In this paper, we propose the use of character-
level recurrent neural networks for truecasing. Pre-
vious approaches for truecasing are based on word
level approaches which assign to each word one
of the following labels: all lowercase, all upper-
case, initial capital, and mixed case. For mixed
case words, an additional effort has to be made
to decipher exactly how the case is mixed (e.g.,
MacKenzie). In our approach, we propose a gen-
erative, character-based recurrent neural network
(RNN) model, allowing us to predict exactly how
cases are mixed in such words.

Our main contributions are: (i) we show that
character-level approaches are viable compared to
word-level approaches, (ii) we show that character-
level RNN has a competitive performance compared
to character-level CRF, and (iii) we provide our
quantitative and qualitative analysis on how RNN
helps improve truecasing.

2 Related Work

Word-based truecasing The most widely used
approach works at the word level. The simplest ap-
proach converts each word to its most frequently
seen form in the training data. One popular ap-
proach uses HMM-based tagging with an N-gram
language model, such as in (Lita et al., 2003; Nebhi
et al., 2015). Others used a discriminative tagger,
such as MEMM (Chelba and Acero, 2006) or CRF
(Wang et al., 2006). Another approach uses statisti-
cal machine translation to translate uncased text into
a cased one. Interestingly, no previous work oper-
ated at the character level. Nebhi et al. (2015) in-
vestigated truecasing in tweets, where truecased cor-
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pora are less available.

Recurrent neural networks Recent years have
shown a resurgence of interest in RNN, particularly
variants with long short-term memory (Hochreiter
and Schmidhuber, 1997) or gated recurrent units
(Cho et al., 2014). RNN has shown an impressive
performance in various NLP tasks, such as machine
translation (Cho et al., 2014; Luong et al., 2015),
language modeling (Mikolov et al., 2010; Kim et
al., 2016), and constituency parsing (Vinyals et al.,
2015). Nonetheless, understanding the mechanism
behind the successful applications of RNN is rarely
studied. In this work, we take a closer look at our
trained model to interpret its internal mechanism.

3 The Truecasing Systems

In this section, we describe the truecasing systems
that we develop for our empirical study.

3.1 Word-Level Approach

A word-level approach truecases one word at a time.
The first system is a tagger based on HMM (Stol-
cke, 2002) that translates an uncased sequence of
words to a corresponding cased sequence. An N-
gram language model trained on a cased corpus is
used for scoring candidate sequences. For decoding,
the Viterbi algorithm (Rabiner, 1989) computes the
highest scoring sequence.

The second approach is a discriminative classifier
based on linear chain CRF (Lafferty et al., 2001).
In this approach, truecasing is treated as a sequence
labeling task, labelling each word with one of the
following labels: all lowercase, all uppercase, initial
capital, and mixed case. For our experiments, we
used the truecaser in Stanford’s NLP pipeline (Man-
ning et al., 2014). Their model includes a rich set
of features (Finkel et al., 2005), such as surrounding
words, character N-grams, word shape, etc.

Dealing with mixed case Both approaches re-
quire a separate treatment for mixed case words.
In particular, we need a gazetteer that maps each
word to its mixed case form – either manually cre-
ated or statistically collected from training data. The
character-level approach is motivated by this: In-
stead of treating them as a special case, we train our
model to capitalize a word character by character.

3.2 Character-Level Approach

A character-level approach converts each character
to either uppercase or lowercase. In this approach,
mixed case forms are naturally taken care of, and
moreover, such models would generalize better to
unseen words. Our third system is a linear chain
CRF that makes character-level predictions. Simi-
lar to the word-based CRF, it includes surrounding
words and character N-grams as features.

Finally, we propose a character-level approach us-
ing an RNN language model. RNN is particularly
useful for modeling sequential data. At each time
step t, it takes an input vector xt and previous hid-
den state ht−1, and produces the next hidden state
ht. Different recurrence formulations lead to differ-
ent RNN models, which we will describe below.

Long short-term memory (LSTM) is an archi-
tecture proposed by Hochreiter and Schmidhuber
(1997). It augments an RNN with a memory cell
vector ct in order to address learning long range
dependencies. The content of the memory cell is
updated additively, mitigating the vanishing gradi-
ent problem in vanilla RNNs (Bengio et al., 1994).
Read, write, and reset operations to the memory cell
are controlled by input gate i, output gate o, and for-
get gate f . The hidden state is computed as:

it = σ(Wiht−1 + Uixt) (1)
ot = σ(Woht−1 + Uoxt) (2)
ft = σ(Wfht−1 + Ufxt) (3)
gt = tanh(Wght−1 + Ugxt) (4)
ct = ft � ct−1 + it � gt (5)
ht = ot � tanh(ct) (6)

where σ and tanh are element-wise sigmoid and hy-
perbolic tangent functions, and Wj and Uj are pa-
rameters of the LSTM for j ∈ {i, o, f, g}.

Gated recurrent unit (GRU) is a gating mech-
anism in RNN that was introduced by Cho et al.
(2014). They proposed a hidden state computation
with reset and update gates, resulting in a simpler
LSTM variant:

rt = σ(Wrht−1 + Urxt) (7)
zt = σ(Wzht−1 + Uzxt) (8)

h̃t = tanh(Wh(rt � ht−1) + Uhxt) (9)

ht = (1− zt)� ht−1 + zt � h̃t (10)
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EN-Wikipedia EN-WSJ EN-Reuters DE-ECI
Acc. P R F1 Acc. P R F1 Acc. P R F1 Acc. P R F1

Word-based Approach
LM (N = 3) 94.94 89.34 84.61 86.91 95.59 91.56 78.79 84.70 94.57 93.49 79.43 85.89 95.67 97.84 87.74 92.51
LM (N = 5) 94.93 89.42 84.41 86.84 95.62 91.72 78.79 84.77 94.66 93.92 79.47 86.09 95.68 97.91 87.70 92.53
CRF-WORD 96.60 94.96 87.16 90.89 97.64 93.12 90.41 91.75 96.58 93.91 87.19 90.42 96.09 98.41 88.73 93.32
Chelba and Acero (2006) n/a 97.10 - - - n/a n/a

Character-based Approach
CRF-CHAR 96.99 94.60 89.27 91.86 97.00 94.17 84.46 89.05 97.06 94.63 89.12 91.80 98.26 96.95 96.59 96.77
LSTM-SMALL 96.95 93.05 90.59 91.80 97.83 93.99 90.92 92.43 97.37 93.08 92.63 92.86 98.70 97.52 97.39 97.46
LSTM-LARGE 97.41 93.72 92.67 93.19 97.72 93.41 90.56 91.96 97.76 94.08 93.50 93.79 99.00 98.04 97.98 98.01
GRU-SMALL 96.46 92.10 89.10 90.58 97.36 92.28 88.60 90.40 97.01 92.85 90.84 91.83 98.51 97.15 96.96 97.06
GRU-LARGE 96.95 92.75 90.93 91.83 97.27 90.86 90.20 90.52 97.12 92.02 92.07 92.05 98.35 96.86 96.79 96.82

Table 2: Truecasing performance in terms of precision (P), recall (R), and F1. All improvements of the best performing character-based systems
(bold) over the best performing word-based systems (underlined) are statistically significant using sign test (p < 0.01). All improvements of the
best performing RNN systems (italicized) over CRF-CHAR are statistically significant using sign test (p < 0.01).

At each time step, the conditional probability dis-
tribution over next characters is computed by linear
projection of ht followed by a softmax:

P (xt = k|x1:t−1) =
exp(wkht)∑|V |
j=1 exp(wjht)

(11)

where wk is the k-th row vector of a weight matrix
W . The probability of a sequence of characters x1:T
is defined as:

P (x1:T ) =

T∏

t=1

P (xt|x1:t−1) (12)

Similar to the N-gram language modeling approach
we described previously, we need to maximize
Equation 12 in order to decode the most probable
cased sequence. Instead of Viterbi decoding, we ap-
proximate this using a beam search.

4 Experiments and Results

4.1 Datasets and Tools
Our approach is evaluated on English and German
datasets. For English, we use a Wikipedia corpus
from (Coster and Kauchak, 2011), WSJ corpus (Paul
and Baker, 1992), and the Reuters corpus from the
CoNLL-2003 shared task on named entity recogni-
tion (Tjong Kim Sang and De Meulder, 2003). For
German, we use the ECI Multilingual Text Corpus
from the same shared task. Each corpus is tok-
enized.1 The input test data is lowercased. Table 1
shows the statistics of each corpus split into training,
development, and test sets.

We use SRILM (Stolcke, 2002) for N-gram lan-
guage model training (N ∈ {3, 5}) and HMM de-
coding. The word-based CRF models are trained us-
ing the CRF implementation in Stanford’s CoreNLP

1News headlines, which are all in uppercase, are discarded.

Corpus Split #words #chars

EN-Wiki
train 2.9M 16.1M
dev 294K 1.6M
test 32K 176K

EN-WSJ
train 1.9M 10.5M
dev 101K 555K
test 9K 48K

EN-Reuters
train 3.1M 16.8M
dev 49K 264K
test 44K 231K

DE-ECI
train 2.8M 18M
dev 51K 329K
test 52K 327K

Table 1: Statistics of the data.

3.6.0 (Finkel et al., 2005). We use a recommended
configuration for training the truecaser.We use CRF-
Suite version 0.12 (Okazaki, 2007) to train the
character-based CRF model. Our feature set in-
cludes character N-grams (N ∈ {1, 2, 3}) and word
N-grams (N ∈ {1, 2}) surrounding the current char-
acter. We tune the `2 regularization parameter λ us-
ing a grid search where λ ∈ {0.01, 0.1, 1, 10}.

We use an open-source character RNN imple-
mentation.2 We train a SMALL model with 2 lay-
ers and 300 hidden nodes, and a LARGE model
with 3 layers and 700 hidden nodes. We also vary
the hidden unit type (LSTM/GRU). The network
is trained using truncated backpropagation for 50
time steps. We use a mini-batch stochastic gradient
descent with batch size 100 and RMSprop update
(Tieleman and Hinton, 2012). We use dropout reg-
ularization (Srivastava et al., 2014) with 0.25 prob-
ability. We choose the model with the smallest val-
idation loss after 30 epochs. For decoding, we set
beam size to 10. The experimental settings are re-
ported in more depth in the supplementary materi-
als. Our system and code are publicly available at
http://statnlp.org/research/ta/.

2https://github.com/karpathy/char-rnn
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(a) Samples from EN-Wiki

(b) Samples from DE-ECI

Figure 1: Cells that are sensitive to lowercased and capitalized words. Text color represents activations (−1 ≤ tanh(ct) ≤ 1): positive is blue,
negative is red. Darker color corresponds to greater magnitude.

4.2 Results

Table 2 shows the experiment results in terms of pre-
cision, recall, and F1. Most previous work did not
evaluate their approaches on the same dataset. We
compare our work to (Chelba and Acero, 2006) us-
ing the same WSJ sections for training and evalua-
tion on 2M word training data. Chelba and Acero
only reported error rate, and all our RNN and CRF
approaches outperform their results in terms of error
rate.

First, the word-based CRF approach gives up
to 8% relative F1 increase over the LM approach.
Other than WSJ, moving to character level further
improves CRF by 1.1-3.7%, most notably on the
German dataset. Long compound nouns are com-
mon in the German language, which generates many
out-of-vocabulary words. Thus, we hypothesize that
character-based approach improves generalization.
Finally, the best F1 score for each dataset is achieved
by the RNN variants: 93.19% on EN-Wiki, 92.43%
on EN-WSJ, 93.79% on EN-Reuters, and 98.01% on
DE-ECI.

We highlight that different features are used in
CRF-WORD and CRF-CHAR. CRF-CHAR only
includes simple features, namely character and word
N-grams and sentence boundary indicators. In con-
trast, CRF-WORD contains a richer feature set that
is predefined in Stanford’s truecaser. For instance,
it includes word shape, in addition to neighboring
words and character N-grams. It also includes more
feature combinations, such as the concatenation of
the word shape, current label, and previous label.
Nonetheless, CRF-CHAR generally performs better
than CRF-WORD. Potentially, CRF-CHAR can be
improved further by using larger N-grams. The de-
cision to use simple features is for optimizing the
training speed. Consequently, we are able to dedi-
cate more time for tuning the regularization weight.

Training a larger RNN model generally improves
performance, but it is not always the case due to
possible overfitting. LSTM seems to work better
than GRU in this task. The GRU models have 25%
less parameters. In terms of training time, it took
12 hours to train the largest RNN model on a sin-
gle Titan X GPU. For comparison, the longest train-
ing time for a single CRF-CHAR model is 16 hours.
Training LM and CRF-WORD is much faster: 30
seconds and 5.5 hours, respectively, so there is a
speed-accuracy trade-off.

5 Analysis

5.1 Visualizing LSTM Cells
An interesting component of LSTM is its memory
cells, which is supposed to store long range depen-
dency information. Many of these memory cells are
not human-interpretable, but after introspecting our
trained model, we find a few memory cells that are
sensitive to case information. In Figure 1, we plot
the memory cell activations at each time step (i.e.,
tanh(ct)). We can see that these cells activate differ-
ently depending on the case information of a word
(towards -1 for uppercase and +1 for lowercase).

5.2 Case Category and OOV Performance

Corpus Lower Cap. Upper Mixed OOV
EN-Wiki 79.91 18.67 0.91 0.51 2.40
EN-WSJ 84.28 13.06 2.63 0.03 3.11
EN-Reuters 78.36 19.80 1.53 0.31 5.37
DE-ECI 68.62 29.15 1.02 1.21 4.01

Table 3: Percentage distribution of the case categories and OOV words

In this section, we analyze the system perfor-
mance on each case category. First, we report the
percentage distribution of the case categories in each
test set in Table 3. For both languages, the most fre-
quent case category is lowercase, followed by capi-
talization, which generally applies to the first word
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LM CRF-Word CRF-Char RNN

EN-Wiki EN-WSJ EN-Reuters DE-ECI

0.2

0.4

0.6

0.8

.33 .32

.39

.21

.55

.76

.68

.37

.71 .73

.81 .82.82 .84
.9 .91

ac
cu

ra
cy

(d) OOV

Figure 2: Accuracy on mixed case (a), capitalized (b), uppercase (c), and OOV words (d).

in the sentence and proper nouns. The uppercase
form, which is often found in abbreviations, occurs
more frequently than mixed case for English, but the
other way around for German.

Figure 2 (a) shows system accuracy on mixed
case words. We choose the best performing LM
and RNN for each dataset. Character-based ap-
proaches have a better performance on mixed case
words than word-based approaches, and RNN gen-
erally performs better than CRF. In CRF-WORD,
surface forms are generated after label prediction.
This is more rigid compared to LM, where the sur-
face forms are considered during decoding.

In addition, we report system accuracy on capi-
talized words (first letter uppercase) and uppercase
words in Figure 2 (b) and (c), respectively. RNN
performs the best on capitalized words. On the other
hand, CRF-WORD performs the best on uppercase.
We believe this is related to the rare occurrences of
uppercase words during training, as shown in Ta-
ble 3. Although mixed case occurs more rarely in
general, there are important clues, such as charac-
ter prefix. CRF-CHAR and RNN have comparable
performance on uppercase. For instance, there are
only 2 uppercase words in WSJ that were predicted

differently between CRF-CHAR and RNN. All sys-
tems perform equally well (∼99% accuracy) on low-
ercase. Overall, RNN has the best performance.

Last, we present results on out-of-vocabulary
(OOV) words with respect to the training set. The
statistics of OOV words is given in Table 3. The sys-
tem performance across datasets is reported in Fig-
ure 2 (d). We observe that RNN consistently per-
forms better than the other systems, which shows
that it generalizes better to unseen words.

6 Conclusion

In this work, we conduct an empirical investiga-
tion of truecasing approaches. We have shown that
character-level approaches work well for truecasing,
and that RNN performs competitively compared to
language modeling and CRF. Future work includes
applications in informal texts, such as tweets and
short messages (Muis and Lu, 2016).
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