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Abstract

Machine reading calls for programs that
read and understand text, but most current
work only attempts to extract facts from
redundant web-scale corpora. In this pa-
per, we focus on a new reading compre-
hension task that requires complex reason-
ing over a single document. The input is
a paragraph describing a biological pro-
cess, and the goal is to answer questions
that require an understanding of the re-
lations between entities and events in the
process. To answer the questions, we first
predict a rich structure representing the
process in the paragraph. Then, we map
the question to a formal query, which is
executed against the predicted structure.
We demonstrate that answering questions
via predicted structures substantially im-
proves accuracy over baselines that use
shallower representations.

1 Introduction

The goal of machine reading is to develop pro-
grams that read text to learn about the world
and make decisions based on accumulated knowl-
edge. Work in this field has focused mostly on
macro-reading, i.e., processing large text collec-
tions and extracting knowledge bases of facts (Et-
zioni et al., 2006; Carlson et al., 2010; Fader et al.,
2011). Such methods rely on redundancy, and are
thus suitable for answering common factoid ques-
tions which have ample evidence in text (Fader et
al., 2013). However, reading a single document
(micro-reading) to answer comprehension ques-
tions that require deep reasoning is currently be-
yond the scope of state-of-the-art systems.

In this paper, we introduce a task where given
a paragraph describing a process, the goal is to

∗Both authors equally contributed to the paper.

answer reading comprehension questions that test
understanding of the underlying structure. In par-
ticular, we consider processes in biology text-
books such as this excerpt and the question that
follows:

“. . . Water is split, providing a source of elec-

trons and protons (hydrogen ions, H+) and giv-

ing off O2 as a by-product. Light absorbed by

chlorophyll drives a transfer of the electrons
and hydrogen ions from water to an acceptor

called NADP+ . . . ”

Q What can the splitting of water lead to?

a Light absorption

b Transfer of ions

This excerpt describes a process in which a com-
plex set of events and entities are related to one
another. A system trying to answer this ques-
tion must extract a rich structure spanning multi-
ple sentences and reason that water splitting com-
bined with light absorption leads to transfer of
ions. Note that shallow methods, which rely on
lexical overlap or text proximity, will fail. Indeed,
both answers are covered by the paragraph and the
wrong answer is closer in the text to the question.

We propose a novel method that tackles this
challenging problem (see Figure 1). First, we train
a supervised structure predictor that learns to ex-
tract entities, events and their relations describing
the biological process. This is a difficult prob-
lem because events have complex interactions that
span multiple sentences. Then, treating this struc-
ture as a small knowledge-base, we map ques-
tions to formal queries that are executed against
the structure to provide the answer.

Micro-reading is an important aspect of natural
language understanding (Richardson et al., 2013;
Kushman et al., 2014). In this work, we focus
specifically on modeling processes, where events
and entities relate to one another through com-
plex interactions. While we work in the biology
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“. . . Water is split, providing a source of elec-

trons and protons (hydrogen ions, H+) and

giving off O2 as a by-product. Light ab-
sorbed by chlorophyll drives a transfer of
the electrons and hydrogen ions from water

to an acceptor called NADP+ . . . ”

Q What can the splitting of water lead to?
a Light absorption

b Transfer of ions

water split
THEME

absorb light
THEME

transfer ions
THEME

ENABLE CAUSE

water split absorb light
THEME (CAUSE|ENABLE)+ THEME

water split transfer ions
THEME (CAUSE|ENABLE)+ THEME

Step 1

Step 2

Step 3: Answer = b

Figure 1: An overview of our reading comprehension system. First, we predict a structure from the input paragraph (the
top right portion shows a partial structure skipping some arguments for brevity). Circles denote events, squares denote argu-
ments, solid arrows represent event-event relations, and dashed arrows represent event-argument relations. Second, we map
the question paired with each answer into a query that will be answered using the structure. The bottom right shows the query
representation. Last, the two queries are executed against the structure, and a final answer is returned.

domain, processes are abundant in domains such
as chemistry, economics, manufacturing, and even
everyday events like shopping or cooking, and our
model can be applied to these domains as well.

The contributions of this paper are:
1. We propose a reading comprehension task

which requires deep reasoning over struc-
tures that represent complex relations be-
tween multiple events and entities.

2. We present PROCESSBANK, a new dataset
consisting of descriptions of biological pro-
cesses, fully-annotated with rich process
structures, and accompanied by multiple-
choice questions.

3. We present a novel method for answer-
ing questions, by predicting process struc-
tures and mapping questions to queries. We
demonstrate that by predicting structures we
can improve reading comprehension accu-
racy over baselines that do not exploit the un-
derlying structure.

The data and code for this paper are avail-
able at http://www-nlp.stanford.edu/
software/bioprocess.

2 Task Definition and Setup

This section describes the reading comprehension
task we address and the accompanying dataset.
We will use the example in Figure 1 as our run-
ning example throughout the paper.

Our goal is to tackle a complex reading com-
prehension setting that centers on understanding

the underlying meaning of a process description.
We target a multiple-choice setting in which each
input consists of a paragraph of text describing a
biological process, a question, and two possible
answers. The goal is to identify the correct answer
using the text (Figure 1, left). We used the 148
paragraphs from the textbook Biology (Campbell
and Reece, 2005) that were manually identified by
Scaria et al. (2013). We extended this set to 200
paragraphs by including additional paragraphs that
describe biological processes. Each paragraph in
the collection represents a single biological pro-
cess and describes a set of events, their partici-
pants and their interactions.

Because we target understanding of paragraph
meaning, we use the following desiderata for
building the corpus of questions and answers:

1. The questions should focus on the events and
entities participating in the process described
in the paragraph, and answering the questions
should require reasoning about the relations
between those events and entities.

2. Both answers should have similar lexical
overlap with the paragraph. Moreover, names
of entities and events in the question and an-
swers should appear as in the paragraph and
not using synonyms. This is to ensure that the
task revolves around reading comprehension
rather than lexical variability.1

A biologist created the question-answer part of

1Lexical variability is an important problem in NLP, but
is not the focus of this task.
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the corpus comprising of 585 questions spread
over the 200 paragraphs. A second annotator val-
idated 326 randomly chosen questions and agreed
on the correct answer with the first annotator in
98.1% of cases. We provide the annotation guide-
lines in the supplementary material.

Figure 1 (left) shows an excerpt of a paragraph
describing a process and an example of a ques-
tion based on it. In general, questions test an un-
derstanding of the interactions between multiple
events (such as causality, inhibition, temporal or-
dering), or between events and entities (i.e., roles
of entities in events), and require complex reason-
ing about chains of event-event and event-entity
relations.

3 The Structure of Processes

A natural first step for answering reading compre-
hension questions is to identify a structured rep-
resentation of the text. In this section, we define
this structure. We broadly follow the definition of
Scaria et al. (2013), but modify important aspects,
highlighted at the end of this section.

A paragraph describing a process is a sequence
of tokens that describes events, entities and their
relations (see Figure 1, top right). A process is
a directed graph (T ,A, Ett, Eta), where the nodes
T are labeled event triggers, the nodes A are ar-
guments, Ett are labeled edges describing event-
event relations, and Eta are labeled edges from
triggers to arguments denoting semantic roles (see
Figure 1 top right for a partial structure of the run-
ning example). The goal of process extraction is
to generate the process graph given the input para-
graph.

Triggers and arguments A trigger is a token
span denoting the occurrence of an event. In Fig-
ure 1, split, absorbed and transfer are event trig-
gers. In rare cases, a trigger denotes the non-
occurrence of an event. For example, in “sym-
patric speciation can occur when gene flow is
blocked”, sympatric speciation occurs if gene flow
does not happen. Thus, nodes in T are labeled as
either a T-YES or T-NO to distinguish triggers of
events that occur from triggers of events that do
not occur. Arguments are token spans denoting
entities that participate in the process (such as wa-
ter, light and ions in Figure 1).

Semantic roles The edges Eta from triggers
to arguments are labeled by the semantic roles

AGENT, THEME, SOURCE, DESTINATION, LO-
CATION, RESULT, and OTHER for all other roles.
Our running example shows three THEME seman-
tic roles for the three triggers. For brevity, the fig-
ure does not show the RESULT of the event split,
namely, both source of electrons and protons (hy-
drogen ions, H+) and O2.

Event-event relations The directed edges Ett
between triggers are labeled by one of eight pos-
sible event-event relations. These relations are
central to answering reading comprehension ques-
tions, which test understanding of the depen-
dencies and causal relations between the process
events. We first define three relations that express
a dependency between two event triggers u and v.

1. CAUSE denotes that u starts before v, and if
u happens then v happens (Figure 1).

2. ENABLE denotes that u creates conditions
necessary for the occurrence of v. This
means that u starts before v and v can only
happen if u happens (Figure 1).2

3. PREVENT denotes that u starts before v and
if u happens, then v does not happen.

In processes, events sometimes depend on more
than one other event. For example, in Figure 1
(right top) transfer of ions depends on both water
splitting as well as light absorption. Conversely,
in Figure 2, the shifting event results in either one
of two events but not both. To express both con-
junctions and disjunctions of related events we
add the relations CAUSE-OR, ENABLE-OR and
PREVENT-OR, which express disjunctions, while
the default CAUSE, ENABLE, and PREVENT ex-
press conjunction (Compare the CAUSE-OR rela-
tions in Figure 2 with the relations in Figure 1).

We define the SUPER relation to denote that
event u is part of event v. (In Figure 2, slip-
page is a sub-event of replication.) Last, we use
the event coreference relation SAME to denote two
event mentions referring to the same event.

Notice that the assignments of relation labels in-
teract across different pairs of events. As an ex-
ample, if event u causes event v, then v can not
cause u. Our inference algorithm uses such struc-
tural constraints when predicting process structure
(Section 4).

2In this work, we do not distinguish causation from facil-
itation, where u can help v but is not absolutely required. We
instructed the annotators to ignore the inherent uncertainty in
these cases and use CAUSE.
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Figure 2: Partial example of a process, as annotated in our dataset.

Avg Min Max
# of triggers 7.0 2 18

# of arguments 11.3 1 36
# of relation 7.9 1 37

Table 1: Statistics of triggers, arguments and rela-
tions over the 200 annotated paragraphs.

Three biologists annotated the same 200 para-
graphs described in Section 2 using the brat anno-
tation tool (Stenetorp et al., 2012). For each para-
graph, one annotator annotated the process, and
a second validated its correctness. Importantly,
the questions and answers were authored sepa-
rately by a different annotator, thus ensuring that
the questions and answers are independent from
the annotated structures. Table 1 gives statistics
over the dataset. The annotation guidelines are in-
cluded in the supplementary material.

Relation to Scaria et al. (2013) Scaria et al.
(2013) also defined processes as graphs where
nodes are events and edges describe event-event
relations. Our definition differs in a few important
aspects.

First, the set of event-event relations in that
work included temporal relations in addition to
causal ones. In this work, we posit that because
events in a process are inter-related, causal depen-
dencies are sufficient to capture the relevant tem-
poral ordering between them. Figure 1 illustrates
this phenomenon, where the temporal ordering be-
tween the events of water splitting and light ab-
sorption is unspecified. It does not matter whether
one happens before, during, or after the other. Fur-
thermore, the incoming causal links to transfer im-
ply that the event should happen after splitting and
absorption.

A second difference is that Scaria et al. (2013)
do not include disjunctions and conjunctions of
events in their formulation. Last, Scaria et al.

(2013) predict only relations given input triggers,
while we predict a full process structure.

4 Predicting Process Structures

We now describe the first step of our algorithm.
Given an input paragraph we predict events, their
arguments and event-event relations (Figure 1,
top). We decompose this into three sub-problems:

1. Labeling trigger candidates using a multi-
class classifier (Section 4.1).

2. For each trigger, identifying an over-
complete set of possible arguments, using a
classifier tuned for high recall (Section 4.2).

3. Jointly assigning argument labels and rela-
tion labels for all trigger pairs (Section 4.3).

The event-event relations CAUSE, ENABLE,
CAUSE-OR and ENABLE-OR, form a semantic
cluster: If (u, v) is labeled by one of these, then
the occurrence of v depends on the occurrence of
u. Since our dataset is small, we share statistics by
collapsing all four labels to a single ENABLE la-
bel. Similarly, we collapse the PREVENT and
PREVENT-OR labels, overall reducing the number
of relations to four.

For brevity, in what follows we only provide
a flavor of the features we extract, and refer the
reader to the supplementary material for details.

4.1 Predicting Event Triggers

The first step is to identify the events in the pro-
cess. We model the trigger detector as a multi-
class classifier that labels all content words in
the paragraph as one of T-YES, T-NO or NOT-
TRIGGER (Recall that a word can trigger an event
that occurred, an event that did not occur, or not
be a trigger at all). For simplicity, we model trig-
gers as single words, but in the gold annotation
about 14% are phrases (such as gene flow). Thus,
we evaluate trigger prediction by taking heads of
gold phrases. To train the classifier, we extract
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the lemma and POS tag of the word and adja-
cent words, dependency path to the root, POS
tag of children and parent in the dependency tree,
and clustering features from WordNet (Fellbaum,
1998), Nomlex (Macleod et al., 1998), Levin verb
classes (Levin, 1993), and a list of biological pro-
cesses compiled from Wikipedia.

4.2 Filtering Argument Candidates

Labeling trigger-argument edges is similar to se-
mantic role labeling. Following the standard ap-
proach (Punyakanok et al., 2008), for each trigger
we collect all constituents in the same sentence to
build an over-complete set of plausible candidate
arguments. This set is pruned with a binary classi-
fier that is tuned for high recall (akin to the argu-
ment identifier in SRL systems). On the develop-
ment set we filter more than half of the argument
candidates, while achieving more than 99% recall.
This classifier is trained using argument identifica-
tion features from Punyakanok et al. (2008).

At the end of this step, each trigger has a set of
candidate arguments which will be labeled during
joint inference. In further discussion, the argument
candidates for trigger t are denoted by At.

4.3 Predicting Arguments and Relations

Given the output of the trigger classifier, our goal
is to jointly predict event-argument and event-
event relations. We model this as an integer linear
program (ILP) instance described below. We first
describe the inference setup assuming a model that
scores inference decisions and defer description of
learning to Section 4.4. The ILP has two types of
decision variables: arguments and relations.

Argument variables These variables capture
the decision that a candidate argument a, belong-
ing to the set At of argument candidates, takes a
label A (from Section 3). We denote the Boolean
variables by yt,a,A, which are assigned a score
bt,a,A by the model. We include an additional label
NULL-ARG, indicating that the candidate is not an
argument for the trigger.

Event-event relation variables These variables
capture the decision that a pair of triggers t1 and
t2 are connected by a directed edge (t1, t2) labeled
by the relation R. We denote these variables by
zt1,t2,R, which are associated with a score ct1,t2,R.
Again, we introduce a label NULL-REL to indicate
triggers that are not connected by an edge.

Name Description
Unique labels Every argument candidate and trigger pair has ex-

actly one label.
Argument overlap Two arguments of the same trigger cannot overlap.
Relation symmetry The SAME relation is symmetric. All other rela-

tions are anti-symmetric, i.e., for any relation la-
bel other than SAME, at most one of (ti, tj) or
(tj , ti) can take that label and the other is assigned
the label NULL-REL.

Max arguments per
trigger

Every trigger can have no more than two arguments
with the same label.

Max triggers per ar-
gument

The same span of text can not be an argument for
more than two triggers.

Connectivity The triggers must form a connected graph, framed
as flow constraints as in Magnanti and Wolsey
(1995) and Martins et al. (2009).

Shared arguments If the same span of text is an argument of two trig-
gers, then the triggers must be connected by a rela-
tion that is not NULL-REL. This ensures that trig-
gers that share arguments are related.

Unique parent For any trigger, at most one outgoing edge can be
labeled SUPER.

Table 2: Constraints for joint inference.

Formulation Given the two sets of variables,
the objective of inference is to find a global as-
signment that maximizes the score. That is, the
objective can be stated as follows:

max
y,z

∑
t,a∈At,A

bt,a,A · yt,a,A +
∑

t1,t2,R

ct1,t2,R · zt1,t2,R

Here, y and z refer to all the argument and rela-
tion variables respectively.

Clearly, all possible assignments to the infer-
ence variables are not feasible and there are both
structural as well as prior knowledge constraints
over the output space. Table 2 states the con-
straints we include, which are expressed as linear
inequalities over output variables using standard
techniques (e.g., (Roth and Yih, 2004)).

4.4 Learning in the Joint Model

We train both the trigger classifier and the argu-
ment identifier using L2-regularized logistic re-
gression. For the joint model, we use a linear
model for the scoring functions, and train jointly
using the structured averaged perceptron algo-
rithm (Collins, 2002).

Since argument labeling is similar to semantic
role labeling (SRL), we extract standard SRL fea-
tures given the trigger and argument from the syn-
tactic tree for the corresponding sentence. In ad-
dition, we add features extracted from an off-the-
shelf SRL system. We also include all feature con-
junctions. For event relations, we include the fea-
tures described in Scaria et al. (2013), as well as
context features for both triggers, and the depen-
dency path between them, if one exists.
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5 Question Answering via Structures

This section describes our question answering sys-
tem that, given a process structure, a question and
two answers, chooses the correct answer (steps 2
and 3 in Figure 1).

Our strategy is to treat the process structure as
a small knowledge-base. We map each answer
along with the question into a structured query that
we compare against the structure. The query can
prove either the correctness or incorrectness of the
answer being considered. That is, either we get a
valid match for an answer (proving that the cor-
responding answer is correct), or we get a refu-
tation in the form of a contradicted causal chain
(thus proving that the other answer is correct).
This is similar to theorem proving approaches sug-
gested in the past for factoid question answering
(Moldovan et al., 2003).

The rest of this section is divided into three
parts: Section 5.1 defines the queries we use, Sec-
tion 5.2 describes a rule-based algorithm for con-
verting a question and an answer into a query and
finally, 5.3 describes the overall algorithm.

5.1 Queries over Processes

We model a query as a directed graph path with
regular expressions over edge labels. The bot-
tom right portion of Figure 1 shows examples of
queries for our running example. In general, given
a question and one of the answer candidates, one
end of the path is populated by a trigger/argument
found in the question and the other is populated
with a trigger/ argument from the answer.

We define a query to consist of three parts:
1. A regular expression over relation labels, de-

scribing permissible paths,
2. A source trigger/argument node, and
3. A target trigger/argument node.

For example, the bottom query in Figure 1 looks
for paths labeled with CAUSE or ENABLE edges
from the event split to the event transfer.

Note that the representation of questions as di-
rected paths is a modeling choice and did not influ-
ence the authoring of the questions. Indeed, while
most questions do fit this model, there are rare
cases that require a more complex query structure.

5.2 Query Generation

Mapping a question and an answer into a query
involves identifying the components of the query
listed above. We do this in two phases: (1) In the

alignment phase, we align triggers and arguments
in the question and answer to the process structure
to give us candidate source and target nodes. (2)
In the query construction phase, we identify the
regular expression and the direction of the query
using the question, the answer and the alignment.

We identify three broad categories of QA pairs
(see Table 3) that can be identified using simple
lexical rules: (a) Dependency questions ask which
event or argument depends on another event or ar-
gument, (b) Temporal questions ask about tempo-
ral ordering of events, and (c) True-false questions
ask whether some fact is true. Below, we describe
the two phases of query generation primarily in the
context of dependency questions with a brief dis-
cussion about temporal and true-false questions at
the end of the section.

Alignment Phase We align triggers in the struc-
ture to the question and the answer by matching
lemmas or nominalizations. In case of multiple
matches, we use the context to disambiguate and
resolve ties using the highest matching candidate
in the syntactic dependency tree.

We align arguments in the question and the an-
swer in a similar manner. Since arguments are
typically several words long, we prefer maximal
spans. Additionally, if a question (or an answer)
contains an aligned trigger, we prefer to align
words to its arguments.

Query Construction Phase We construct a
query using the aligned question and answer trig-
gers/arguments. We will explain query construc-
tion using our running example (reproduced as the
dependency question in Table 3).

First, we identify the source and the target of
the query. We select either the source or the tar-
get to be a question node and populate the other
end of the query path with an answer node. To
make the choice between source or target for the
question node, we use the main verb in the ques-
tion, its voice and relative position of the question
word with respect to the main verb. In our exam-
ple, the main verb lead to is in active voice and the
question word what is not in subject position. This
places the trigger from the question as the source
of the query path (see both queries in the bottom
right portion of the running example). In contrast,
had the verb been require, the trigger would be the
target of the query. We construct two verb clusters
that indicate query direction using a small seed set
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Type Example # (%)
Dependency Q: What can the splitting of water lead to? 407 (69.57%)

a: Light absorption
b: Transfer of ions

Temporal Q: What is the correct order of events? 57 (9.74%)
a: PDGF binds to tyrosine kinases, then cells divide, then wound healing
b: Cells divide, then PDGF binds to tyrosine kinases, then wound healing

True-False Q: Cdk associates with MPF to become cyclin 121 (20.68%)
a: True
b: False

Table 3: Examples and statistics for each of the three coarse types of questions.

Is main verb trigger?

Condition Regular Exp.
Wh- word subjective? AGENT
Wh- word object? THEME

Condition Regular Exp.
default (ENABLE|SUPER)+

DIRECT (ENABLE|SUPER)
PREVENT (ENABLE|SUPER)∗PREVENT(ENABLE|SUPER)∗

Yes No

Figure 3: Rules for determining the regular expressions for queries concerning two triggers. In each table, the condition
column decides the regular expression to be chosen. In the left table, we make the choice based on the path from the root to
the Wh- word in the question. In the right table, if the word directly modifies the main trigger, the DIRECT regular expression
is chosen. If the main verb in the question is in the synset of prevent, inhibit, stop or prohibit, we select the PREVENT regular
expression. Otherwise, the default one is chosen. We omit the relation label SAME from the expressions, but allow going
through any number of edges labeled by SAME when matching expressions to the structure.

that we expand using WordNet.

The final step in constructing the query is to
identify the regular expression for the path con-
necting the source and the target. Due to paucity
of data, we do not map a question and an answer
to arbitrary regular expressions. Instead, we con-
struct a small set of regular expressions, and build
a rule-based system that selects one. We used the
training set to construct the regular expressions
and we found that they answer most questions (see
Section 6.4). We determine the regular expression
based on whether the main verb in the sentence is
a trigger and whether the source and target of the
path are triggers or arguments. Figure 3 shows the
possible regular expressions and the procedure for
choosing one when both the source and target are
triggers. If either of them are argument nodes, we
append the appropriate semantic role to the regu-
lar expression, based on whether the argument is
the source or the target of the path (or both).

True-false questions are treated similarly, ex-
cept that both source and target are chosen from
the question. For temporal questions, we seek to
identify the ordering of events in the answers. We
use the keywords first, then, or simultaneously to
identify the implied order in the answer. We use
the regular expression SUPER+ for questions ask-
ing about simultaneous events and ENABLE+ for
those asking about sequential events.

5.3 Answering Questions

We match the query of an answer to the process
structure to identify the answer. In case of a match,
the corresponding answer is chosen. The matching
path can be thought of as a proof for the answer.

If neither query matches the graph (or both do),
we check if either answer contradicts the struc-
ture. To do so, we find an undirected path from
the source to the target. In the event of a match, if
the matching path traverses any ENABLE edge in
the incorrect direction, we treat this as a refutation
for the corresponding answer and select the other
one. In our running example, in addition to the
valid path for the second query, for the first query
we see that there is an undirected path from split
to absorb through transfer that matches the first
query. This tells us that light absorption cannot
be the answer because it is not along a causal path
from split.

Finally, if none of the queries results in a match,
we look for any unlabeled path between the source
and the target, before backing off to a dependency-
based proximity baseline described in Section 6.
When there are multiple aligning nodes in the
question and answer, we look for any proof or
refutation before backing off to the baselines.
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6 Empirical Evaluation

In this section we aim to empirically evaluate
whether we can improve reading comprehension
accuracy by predicting process structures. We first
provide details of the experimental setup.

6.1 Experimental setup
We used 150 processes (435 questions) for train-
ing and 50 processes (150 questions) as the test
set. For development, we randomly split the train-
ing set 10 times (80%/20%), and tuned hyper-
parameters by maximizing average accuracy on
question answering. We preprocessed the para-
graphs with the Stanford CoreNLP pipeline ver-
sion 3.4 (Manning et al., 2014) and Illinois SRL
(Punyakanok et al., 2008; Clarke et al., 2012). We
used the Gurobi optimization package3 for infer-
ence.

We compare our system PROREAD to baselines
that do not have access to the process structure:

1. BOW: For each answer, we compute the
proportion of content word lemmas covered
by the paragraph and choose the one with
higher coverage. For true-false questions, we
compute the coverage of the question state-
ment, and answer “True” if it is higher than a
threshold tuned on the development set.

2. TEXTPROX: For dependency questions, we
align content word lemmas in both the ques-
tion and answer against the text and select the
answer whose aligned tokens are closer to the
aligned tokens of the question. For tempo-
ral questions, we return the answer for which
the order of events is identical to their order
in the paragraph. For true-false questions, we
return “True” if the number of bigrams from
the question covered in the text is higher than
a threshold tuned on the development set.

3. SYNTPROX: For dependency questions, we
use proximity as in TEXTPROX, except that
distance is measured using dependency tree
edges. To support multiple sentences we con-
nect roots of adjacent sentences with bidi-
rectional edges. For temporal questions this
baseline is identical to TEXTPROX. For true-
false questions, we compute the number of
dependency tree edges in the question state-
ment covered by edges in the paragraph (an
edge has a source lemma, relation, and target
lemma), and answer “True” if the coverage is

3http://www.gurobi.com/

Method Depen. Temp. True-
false

All

PROREAD 68.1 80.0 55.6 66.7
SYNTPROX 61.9 70.0 48.1 60.0
TEXTPROX 58.4 70.0 33.3 54.7
BOW 47.8 40.0 44.4 46.7
GOLD 77.9 80.0 70.4 76.7

Table 4: Reading comprehension test set accuracy. The All
column shows overall accuracy across all questions. The first
three columns show accuracy for each coarse type.

higher than a threshold tuned on the training
set.

To separate the contribution of process struc-
tures from the performance of our structure pre-
dictor, we also run our QA system given manually
annotated gold standard structures (GOLD).4

6.2 Reading Comprehension Task

We evaluate our system using accuracy, i.e., the
proportion of questions answered correctly. Ta-
ble 4 presents test set results, where we break
down questions by their coarse-type.

PROREAD improves accuracy compared to the
best baseline by 6.7 absolute points (last column).
Most of the gain is due to improvement on de-
pendency questions, which are the most common
question type. The performance of BOW indicates
that lexical coverage alone does not distinguish the
correct answer from the wrong answer. In fact,
guessing the answer with higher lexical overlap
results in performance that is slightly lower than
random. Text proximity and syntactic proximity
provide a stronger cue, but exploiting predicted
process structures substantially outperforms these
baselines.

Examining results using gold information high-
lights the importance of process structures inde-
pendently of the structure predictor. Results of
GOLD demonstrate that given gold structures we
can obtain a dramatic improvement of almost 17
points compared to the baselines, using our sim-
ple deterministic QA system.

Results on true-false questions are low for
PROREAD and all the baselines. True-false ques-
tions are harder for two main reasons. First, in
dependency and temporal questions, we create a
query for both answers, and can find a proof or
a refutation for either one of them. In true-false

4We also ran an experiment where gold triggers are
given and arguments and relations are predicted. We found
that this results in slightly higher performance compared to
PROREAD.
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Precision Recall F1

Triggers 75.4 73.9 74.6
Arguments 43.4 34.4 38.3
Relations 27.0 22.5 24.6

Table 5: Structured prediction test set results.

questions we must determine given a single state-
ment whether it holds. Second, an analysis of true-
false questions reveals that they focus less on re-
lations between events and entities in the process,
and require modeling lexical variability.5

6.3 Structure Prediction Task

Our evaluation demonstrates that gold structures
improve accuracy substantially more than pre-
dicted structures. To examine this, we now di-
rectly evaluate the structure predictor by com-
paring micro-average precision, recall and F1 be-
tween predicted and gold structures (Table 5).

While performance for trigger identification is
reasonable, performance on argument and relation
prediction is low. This explains the higher perfor-
mance obtained in reading comprehension given
gold structures. Note that errors in trigger predic-
tion propagate to argument and relation prediction
– a relation cannot be predicted correctly if either
one of the related triggers is not previously identi-
fied. One reason for low performance is the small
size of the dataset. Thus, training process predic-
tors with less supervision is an important direction
for future work. Furthermore, the task of process
prediction is inherently difficult, because often re-
lations are expressed only indirectly in text. For
example, in Figure 1 the relation between water
splitting and transfer of ions is only recoverable
by understanding that water provides the ions that
need to be transferred.

Nevertheless, we find that questions can often
be answered correctly even if the structure con-
tains some errors. For example, the gold structure
for the sentence “Some . . . radioisotopes have
long half-lives, allowing . . . ”, contains the trigger
long half-lives, while we predict have as a trigger
and long half-lives as an argument. This is good
enough to answer questions related to this part of
the structure correctly, and overall, to improve per-
formance using predicted structures.

5The low performance of TEXTPROX and SYNTPROX on
true-false questions can also be attributed to the fact that we
tuned a threshold parameter on the training set, and this did
not generalize well to the test set.

Reason GOLD PROREAD
Alignment 35% 15%
Missing from annotation 25% 10%
Entity coreference 20% 10%
Missing regular expression 10%
Lexical variability 5% 10%
Error in predicted structure 55%
Other 5%

Table 6: Error analysis results. An explanation of the vari-
ous categories are in the body of the paper.

6.4 Error Analysis

This section presents the results of an analysis of
20 sampled errors of GOLD (gold structures), and
20 errors of PROREAD (predicted structures). We
have categorized the primary reason for error in
Table 6.

As expected, the main problem when using pre-
dicted structures, is structure errors which account
for more than half of the errors.

Errors in GOLD are distributed across various
categories, which we briefly describe. Alignment
errors occur due to multiple words aligning to mul-
tiple triggers and arguments. For example, in the
question “What is the result of gases being pro-
duced in the lysosome?”, the answer “engulfed
pathogens are poisoned” is incorrectly aligned to
the trigger engulfed rather than to poisoned.

Another reason for errors are cases where ques-
tions are asked about parts of the paragraph that
are missing from annotation. This is possible since
questions were authored independently of struc-
ture annotation. Two other causes for errors are
entity coreference errors, where a referent for an
entity is missing from the structure, and lexical
variability, where the author of questions uses
names for triggers or arguments that are missing
from the paragraph, and so alignment fails.

Last, in 10% of the cases in GOLD we found
that the answer could not be retrieved using the set
of regular expressions that are currently used by
our QA system.

7 Discussion

This work touches on several strands of work in
NLP including information extraction, semantic
role labeling, semantic parsing and reading com-
prehension.

Event and relation extraction have been studied
via the ACE data (Doddington et al., 2004) and
related work. The BioNLP shared tasks (Kim et
al., 2009; Kim et al., 2011; Riedel and McCal-
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lum, 2011) focused on biomedical data to extract
events and their arguments. Event-event relations
have been mostly studied from the perspective of
temporal ordering; e.g., (Chambers and Jurafsky,
2008; Yoshikawa et al., 2009; Do et al., 2012; Mc-
Closky and Manning, 2012). The process struc-
ture predicted in this work differs from these lines
of work in two important ways: First, we predict
events, arguments and their interactions from mul-
tiple sentences, while most earlier work focused
on one or two of these components. Second, we
model processes, and thus target causal relations
between events, rather than temporal order only.

Our semantic role annotation is similar to ex-
isting SRL schemes such as PropBank (Palmer et
al., 2005), FrameNet (Ruppenhofer et al., 2006)
and BioProp (Chou et al., 2006). However, in con-
trast to PropBank and FrameNet, we do not allow
all verbs to trigger events and instead let the an-
notators decide on biologically important triggers,
which are not restricted to verbs (unlike BioProp,
where 30 pre-specified verbs were selected for an-
notation). Like PropBank and BioProp, the argu-
ment labels are not trigger specific.

Mapping questions to queries is effectively a se-
mantic parsing task. In recent years, several lines
of work addressed semantic parsing using vari-
ous formalisms and levels of supervision (Zettle-
moyer and Collins, 2005; Wong and Mooney,
2006; Clarke et al., 2010; Berant et al., 2013).
In particular, Krishnamurthy and Kollar (2013)
learned to map natural language utterances to ref-
erents in an image by constructing a KB from the
image and then mapping the utterance to a query
over the KB. This is analogous to our process of
constructing a process structure and performing
QA by querying that structure. In our work, we
parse questions into graph-based queries, suitable
for modeling processes, using a rule-based heuris-
tic. Training a statistical semantic parser that will
replace the QA system is an interesting direction
for future research.

Multiple choice reading comprehension tests
are a natural choice for evaluating machine read-
ing. Hirschman et al. (1999) presented a bag-of-
words approach to retrieving sentences for read-
ing comprehension. Richardson et al. (2013) re-
cently released the MCTest reading comprehen-
sion dataset that examines understanding of fic-
tional stories. Their work shares our goal of ad-
vancing micro-reading, but they do not focus on

process understanding.
Developing programs that perform deep reason-

ing over complex descriptions of processes is an
important step on the road to fulfilling the higher
goals of machine reading. In this paper, we present
an end-to-end system for reading comprehen-
sion of paragraphs which describe biological pro-
cesses. This is, to the best of our knowledge, the
first system to both predict a rich structured rep-
resentation that includes entities, events and their
relations, and utilize this structure for answering
reading comprehension questions. We also created
a new dataset, PROCESSBANK, which contains
200 paragraphs that are both fully-annotated with
process structure, as well as accompanied by ques-
tions. We empirically demonstrated that model-
ing biological processes can substantially improve
reading comprehension accuracy in this domain.
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Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. Brat: a web-based tool for NLP-assisted
text annotation. In Proceedings of the demonstra-
tions at EACL.

Yuk Wah Wong and Raymond J. Mooney. 2006.
Learning for semantic parsing with statistical ma-
chine translation. In Proceedings of HLT-NAACL.

1509



Katsumasa Yoshikawa, Sebastian Riedel, Masayuki
Asahara, and Yuji Matsumoto. 2009. Jointly identi-
fying temporal relations with Markov logic. In Pro-
ceedings of ACL/IJCNLP.

Luke S. Zettlemoyer and Michael Collins. 2005.
Learning to map sentences to logical form: Struc-
tured classification with probabilistic categorial
grammars. In Proceedings of UAI.

1510


