
Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning, pp. 315–324, Prague, June 2007. c©2007 Association for Computational Linguistics

A New Perceptron Algorithm for
Sequence Labeling with Non-local Features

Jun’ichi Kazama and Kentaro Torisawa
Japan Advanced Institute of Science and Technology (JAIST)

Asahidai 1-1, Nomi, Ishikawa, 923-1292 Japan
{kazama, torisawa}@jaist.ac.jp

Abstract

We cannot use non-local features with cur-
rent major methods of sequence labeling
such as CRFs due to concerns about com-
plexity. We propose a new perceptron algo-
rithm that can use non-local features. Our
algorithm allows the use of all types of
non-local features whose values are deter-
mined from the sequence and the labels. The
weights of local and non-local features are
learned together in the training process with
guaranteed convergence. We present experi-
mental results from the CoNLL 2003 named
entity recognition (NER) task to demon-
strate the performance of the proposed algo-
rithm.

1 Introduction

Many NLP tasks such as POS tagging and named
entity recognition have recently been solved as se-
quence labeling. Discriminative methods such as
Conditional Random Fields (CRFs) (Lafferty et al.,
2001), Semi-Markov Random Fields (Sarawagi and
Cohen, 2004), and perceptrons (Collins, 2002a)
have been popular approaches for sequence label-
ing because of their excellent performance, which is
mainly due to their ability to incorporate many kinds
of overlapping and non-independent features.

However, the common limitation of these meth-
ods is that the features are limited to “local” fea-
tures, which only depend on a very small number
of labels (usually two: the previous and the current).
Although this limitation makes training and infer-
ence tractable, it also excludes the use of possibly
useful “non-local” features that are accessible after
all labels are determined. For example, non-local
features such as “same phrases in a document do not

have different entity classes” were shown to be use-
ful in named entity recognition (Sutton and McCal-
lum, 2004; Bunescu and Mooney, 2004; Finkel et
al., 2005; Krishnan and Manning, 2006).

We propose a new perceptron algorithm in this pa-
per that can use non-local features along with lo-
cal features. Although several methods have al-
ready been proposed to incorporate non-local fea-
tures (Sutton and McCallum, 2004; Bunescu and
Mooney, 2004; Finkel et al., 2005; Roth and Yih,
2005; Krishnan and Manning, 2006; Nakagawa and
Matsumoto, 2006), these present a problem that
the types of non-local features are somewhat con-
strained. For example, Finkel et al. (2005) enabled
the use of non-local features by using Gibbs sam-
pling. However, it is unclear how to apply their
method of determining the parameters of a non-local
model to other types of non-local features, which
they did not used. Roth and Yih (2005) enabled
the use of hard constraints on labels by using inte-
ger linear programming. However, this is equivalent
to only allowing non-local features whose weights
are fixed to negative infinity. Krishnan and Manning
(2006) divided the model into two CRFs, where the
second model uses the output of the first as a kind of
non-local information. However, it is not possible
to use non-local features that depend on the labels
of the very candidate to be scored. Nakagawa and
Matsumoto (2006) used a Bolzmann distribution to
model the correlation of the POS of words having
the same lexical form in a document. However, their
method can only be applied when there are conve-
nient links such as the same lexical form.

Since non-local features have not yet been exten-
sively investigated, it is possible for us to find new
useful non-local features. Therefore, our objective
in this study was to establish a framework, where all

315

types of non-local features are allowed.
With non-local features, we cannot use efficient

procedures such as forward-backward procedures
and the Viterbi algorithm that are required in train-
ing CRFs (Lafferty et al., 2001) and perceptrons
(Collins, 2002a). Recently, several methods (Collins
and Roark, 2004; Daumé III and Marcu, 2005; Mc-
Donald and Pereira, 2006) have been proposed with
similar motivation to ours. These methods allevi-
ate this problem by using some approximation in
perceptron-type learning.

In this paper, we follow this line of research and
try to solve the problem by extending Collins’ per-
ceptron algorithm (Collins, 2002a). We exploited
the not-so-familiar fact that we can design a per-
ceptron algorithm with guaranteed convergence if
we can find at least one wrong labeling candidate
even if we cannot perform exact inference. We first
ran the A* search only using local features to gen-
erate n-best candidates (this can be efficiently per-
formed), and then we only calculated the true score
with non-local features for these candidates to find
a wrong labeling candidate. The second key idea
was to update the weights of local features during
training if this was necessary to generate sufficiently
good candidates. The proposed algorithm combined
these ideas to achieve guaranteed convergence and
effective learning with non-local features.

The remainder of the paper is organized as fol-
lows. Section 2 introduces the Collins’ perceptron
algorithm. Although this algorithm is the starting
point for our algorithm, its baseline performance is
not outstanding. Therefore, we present a margin ex-
tension to the Collins’ perceptron in Section 3. This
margin perceptron became the direct basis of our al-
gorithm. We then explain our algorithm for non-
local features in Section 4. We report the experi-
mental results using the CoNLL 2003 shared task
dataset in Section 6.

2 Perceptron Algorithm for Sequence
Labeling

Collins (2002a) proposed an extension of the per-
ceptron algorithm (Rosenblatt, 1958) to sequence
labeling. Our aim in sequence labeling is to as-
sign label yi ∈ Y to each word xi ∈ X in a
sequence. We denote sequence x1, . . . , xT as x

and the corresponding labels as y. We assume
weight vector α ∈ Rd and feature mapping Φ
that maps each (x, y) to feature vector Φ(x, y) =
(Φ1(x,y), · · · , Φd(x,y)) ∈ Rd. The model deter-
mines the labels by:

y′ = argmaxy∈Y|x|Φ(x, y) ·α,

where · denotes the inner product. The aim
of the learning algorithm is to obtain an ap-
propriate weight vector, α, given training set
{(x1, y

∗
1), · · · , (xL, y∗

L)}.
The learning algorithm, which is illustrated in

Collins (2002a), proceeds as follows. The weight
vector is initialized to zero. The algorithm passes
over the training examples, and each sequence is de-
coded using the current weights. If y′ is not the cor-
rect answer y∗, the weights are updated according to
the following rule.

αnew = α + Φ(x,y∗)− Φ(x,y′).

This algorithm is proved to converge (i.e., there are
no more updates) in the separable case (Collins,
2002a).1 That is, if there exist weight vector U (with
||U || = 1), δ (> 0), and R (> 0) that satisfy:

∀i,∀y ∈ Y |xi| Φ(xi, yi
∗) ·U − Φ(xi, y) ·U ≥ δ,

∀i,∀y ∈ Y |xi| ||Φ(xi, yi
∗)− Φ(xi, y)|| ≤ R,

the number of updates is at most R2/δ2.
The perceptron algorithm only requires one can-

didate y′ for each sequence xi, unlike the training of
CRFs where all possible candidates need to be con-
sidered. This inherent property is the key to train-
ing with non-local features. However, note that the
tractability of learning and inference relies on how
efficiently y′ can be found. In practice, we can find
y′ efficiently using a Viterbi-type algorithm only
when the features are all local, i.e., Φs(x, y) can be
written as the sum of (two label) local features φs as
Φs(x, y) =

∑T
i φs(x, yi−1, yi). This locality con-

straint is also required to make the training of CRFs
tractable (Lafferty et al., 2001).

One problem with the perceptron algorithm de-
scribed so far is that it offers no treatment for over-
fitting. Thus, Collins (2002a) also proposed an av-
eraged perceptron, where the final weight vector is

1Collins (2002a) also provided proof that guaranteed “good”
learning for the non-separable case. However, we have only
considered the separable case throughout the paper.

316

Algorithm 3.1: Perceptron with margin for
sequence labeling (parameters: C)

α ← 0
until no more updates do

for i ← 1 to L do
8

>

>

>

>

>

<

>

>

>

>

>

:

y′ = argmaxyΦ(xi, y) · α
y′′ = 2nd-bestyΦ(xi, y) · α
if y′ ̸= y∗

i then
α = α + Φ(xi, y

∗
i)− Φ(xi, y

′)
else if Φ(xi, y

∗
i) · α − Φ(xi, y

′′) · α ≤ C then
α = α + Φ(xi, y

∗
i)− Φ(xi, y

′′)

the average of all weight vectors during training.
Howerver, we found in our experiments that the av-
eraged perceptron performed poorly in our setting.
We therefore tried to make the perceptron algorithm
more robust to overfitting. We will describe our ex-
tension to the perceptron algorithm in the next sec-
tion.

3 Margin Perceptron Algorithm for
Sequence Labeling

We extended a perceptron with a margin (Krauth and
Mézard, 1987) to sequence labeling in this study, as
Collins (2002a) extended the perceptron algorithm
to sequence labeling.

In the case of sequence labeling, the margin is de-
fined as:

γ(α) = min
xi

min
y ̸=y∗

i

Φ(xi, yi
∗) ·α− Φ(xi,y) ·α

||α||

Assuming that the best candidate, y′, equals the cor-
rect answer, y∗, the margin can be re-written as:

= min
xi

Φ(xi, yi
∗) ·α− Φ(xi, y

′′) ·α
||α||

,

where y′′ = 2nd-bestyΦ(xi, y) ·α. Using this rela-
tion, the resulting algorithm becomes Algorithm 3.1.
The algorithm tries to enlarge the margin as much as
possible, as well as make the best scoring candidate
equal the correct answer.

Constant C in Algorithm 3.1 is a tunable param-
eter, which controls the trade-off between the mar-
gin and convergence time. Based on the proofs
in Collins (2002a) and Li et al. (2002), we can
prove that the algorithm converges within (2C +
R2)/δ2 updates and that γ(α) ≥ δC/(2C + R2) =
(δ/2)(1 − (R2/(2C + R2))) after training. As can
be seen, the margin approaches at least half of true

margin δ (at the cost of infinite training time), as
C →∞.

Note that if the features are all local, the second-
best candidate (generally n-best candidates) can also
be found efficiently by using an A* search that uses
the best scores calculated during a Viterbi search as
the heuristic estimation (Soong and Huang, 1991).

There are other methods for improving robustness
by making margin larger for the structural output
problem. Such methods include ALMA (Gentile,
2001) used in (Daumé III and Marcu, 2005)2, MIRA
(Crammer et al., 2006) used in (McDonald et al.,
2005), and Max-Margin Markov Networks (Taskar
et al., 2003). However, to the best of our knowledge,
there has been no prior work that has applied a per-
ceptron with a margin (Krauth and Mézard, 1987)
to structured output.3 Our method described in this
section is one of the easiest to implement, while
guaranteeing a large margin. We found in the experi-
ments that our method outperformed the Collins’ av-
eraged perceptron by a large margin.

4 Algorithm

4.1 Definition and Basic Idea
Having described the basic perceptron algorithms,
we will know explain our algorithm that learns the
weights of local and non-local features in a unified
way.

Assume that we have local features and non-
local features. We use the superscript, l, for
local features as Φl

i(x, y) and g for non-local
features as Φg

i (x,y). Then, feature mapping is
written as Φa(x, y) = Φl(x,y) + Φg(x, y) =
(Φl

1(x,y), · · · , Φl
n(x, y), Φg

n+1(x, y), · · · , Φg
d(x, y)).

Here, we define:

Φl(x, y) = (Φl
1(x, y), · · · , Φl

n(x,y), 0, · · · , 0)
Φg(x, y) = (0, · · · , 0, Φg

n+1(x, y), · · · , Φg
d(x, y))

Ideally, we want to determine the labels using the
whole feature set as:

y′ = argmaxy∈Y|x|Φa(x, y) ·α.
2(Daumé III and Marcu, 2005) also presents the method us-

ing the averaged perceptron (Collins, 2002a)
3For re-ranking problems, Shen and Joshi (2004) proposed

a perceptron algorithm that also uses margins. The difference is
that our algorithm trains the sequence labeler itself and is much
simpler because it only aims at labeling.

317

Algorithm 4.1: Candidate algorithm (parameters:
n, C)

α ← 0
until no more updates do

for i ← 1 to L do
8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

{yn} = n-bestyΦl(xi, y) · α
y′ = argmaxy∈{yn}Φ

a(xi, y) · α
y′′ = 2nd-besty∈{yn}Φ

a(xi, y) · α
if y′ ̸= yi

∗

& Φa(xi, y
∗
i) · α − Φa(xi, y

′) · α ≤ C then
α = α + Φa(xi, y

∗
i)− Φa(xi, y

′)
else if Φa(xi, y

∗
i) ·α − Φa(xi, y

′′) · α ≤ C then
α = α + Φa(xi, y

∗
i)− Φa(xi, y

′′)

However, if there are non-local features, it is impos-
sible to find the highest scoring candidate efficiently,
since we cannot use the Viterbi algorithm. Thus,
we cannot use the perceptron algorithms described
in the previous sections. The training of CRFs is
also intractable for the same reason.

To deal with this problem, we first relaxed our ob-
jective. The modified objective was to find a good
model from those with the form:

{yn} = n-bestyΦl(x, y) ·α
y′ = argmaxy∈{yn}Φ

a(x, y) ·α, (1)

That is, we first generate n-best candidates {yn}
under the local model, Φl(x, y) · α. This can be
done efficiently using the A* algorithm. We then
find the best scoring candidate under the total model,
Φa(x, y) ·α, only from these n-best candidates. If n
is moderately small, this can also be done in a prac-
tical amount of time.

This resembles the re-ranking approach (Collins
and Duffy, 2002; Collins, 2002b). However, unlike
the re-ranking approach, the local model, Φl(x, y) ·
α, and the total model, Φa(x, y) ·α, correlate since
they share a part of the vector and are trained at
the same time in our algorithm. The re-ranking ap-
proach has the disadvantage that it is necessary to
use different training corpora for the first model and
for the second, or to use cross validation type train-
ing, to make the training for the second meaning-
ful. This reduces the effective size of training data
or increases training time substantially. On the other
hand, our algorithm has no such disadvantage.

However, we are no longer able to find the high-
est scoring candidate under Φa(x, y) · α exactly
with this approach. We cannot thus use the percep-
tron algorithms directly. However, by examining the

Algorithm 4.2: Perceptron with local and
non-local features (parameters: n, Ca, Cl)

α ← 0
until no more updates do

for i ← 1 to L do
8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

{yn} = n-bestyΦl(xi, y) · α
y′ = argmaxy∈{yn}Φ

a(xi, y) · α
y′′ = 2nd-besty∈{yn}Φ

a(xi, y) · α
if y′ ̸= y∗

i

& Φa(xi, y
∗
i) · α − Φa(xi, y

′) · α ≤ Ca then
α = α + Φa(xi, y

∗
i)− Φa(xi, y

′) (A)
else if Φa(xi, y

∗
i) ·α − Φa(xi, y

′′) · α ≤ Ca then
α = α + Φa(xi, y

∗
i)− Φa(xi, y

′′) (A)
else

(B)

8

>

>

<

>

>

:

if y1 ̸= yi
∗ then (y1 represents the best in {yn})

α = α + Φl(xi, y
∗
i)− Φl(xi, y

1)
else if Φl(xi, y

∗
i) · α − Φl(xi, y

2) · α ≤ Cl then
α = α + Φl(xi, y

∗
i)− Φl(xi, y

2)

proofs in Collins (2002a), we can see that the essen-
tial condition for convergence is that the weights are
always updated using some y (̸= y∗) that satisfies:

Φ(xi, y
∗
i) ·α− Φ(xi, y) ·α ≤ 0

(≤ C in the case of a perceptron with a margin). (2)

That is, y does not necessarily need to be the exact
best candidate or the exact second-best candidate.
The algorithm also converges in a finite number of
iterations even with Eq. (1) as long as Eq. (2) is
satisfied.

4.2 Candidate Algorithm

The algorithm we came up with first based on the
above idea, is Algorithm 4.1. We first find the n-
best candidates using the local model, Φl(x, y) · α.
At this point, we can determine the value of the non-
local features, Φg(x, y), to form the whole feature
vector, Φa(x, y), for the n-best candidates. Next,
we re-score and sort them using the total model,
Φa(x, y) · α, to find a candidate that violates the
margin condition. We call this algorithm the “can-
didate algorithm”. After the training has finished,
Φa(xi, y

∗
i) · α − Φa(xi, y) · α > C is guaran-

teed for all (xi, y) where y ∈ {yn}, y ̸= y∗.
At first glance, this seems sufficient condition for
good models. However, this is not true because if
y∗ ̸∈ {yn}, the inference defined by Eq. (1) is not
guaranteed to find the correct answer, y∗. In fact,
this algorithm does not work well with non-local
features as we found in the experiments.

318

4.3 Final Algorithm

Our idea for improving the above algorithm is that
the local model, Φl(x, y)·α, must at least be so good
that y∗ ∈ {yn}. To achieve this, we added a modi-
fication term that was intended to improve the local
model when the local model was not good enough
even when the total model was good enough.

The final algorithm resulted in Algorithm 4.2. As
can be seen, the part marked (B) has been added. We
call this algorithm the “proposed algorithm”. Note
that the algorithm prioritizes the update of the to-
tal model, (A), over that of the local model, (B), al-
though the opposite is also possible. Also note that
the update of the local model in (B) is “aggressive”
since it updates the weights until the best candidate
output by the local model becomes the correct an-
swer and satisfies the margin condition. A “conser-
vative” updating, where we cease the update when
the n-best candidates contain the correct answer, is
also possible from our idea above. We made these
choices since they worked better than the other al-
ternatives.

The tunable parameters are the local margin pa-
rameter, C l, the total margin parameter, Ca, and n
for the n-best search. We used C = C l = Ca in this
study to reduce the search space.

We can prove that the algorithm in Algorithm 4.2
also converges in a finite number of iterations. It
converges within (2C + R2)/δ2 updates, assuming
that there exist weight vector U l (with ||U l|| = 1
and U l

i = 0 (n+1 ≤ i ≤ d)), δ (> 0), and R (> 0)
that satisfy:

∀i,∀y ∈ Y |xi| Φl(xi, yi
∗)·U l−Φl(xi, y)·U l ≥ δ,

∀i,∀y ∈ Y |xi| ||Φa(xi, yi
∗)− Φa(xi, y)|| ≤ R.

In addition, we can prove that γ′(α) ≥ δC/(2C +
R2) for the margin after convergence, where γ′(α)
is defined as:

min
xi

min
y∈{yn},̸=y∗

i

Φa(xi, yi
∗) ·α− Φa(xi,y) ·α

||α||

See Appendix A for the proofs.
We also incorporated the idea behind Bayes point

machines (BPMs) (Herbrich and Graepel, 2000) to
improve the robustness of our method further. BPMs
try to cancel out overfitting caused by the order of

examples, by training several models by shuffling
the training examples.4 However, it is very time
consuming to run the complete training process sev-
eral times. We thus ran the training in only one pass
over the shuffled examples several times, and used
the averaged output weight vectors as a new initial
weight vector, because we thought that the early part
of training would be more seriously affected by the
order of examples. We call this “BPM initializa-
tion”. 5

5 Named Entity Recognition and
Non-Local Features

We evaluated the performance of the proposed algo-
rithm using the named entity recognition task. We
adopted IOB (IOB2) labeling (Ramshaw and Mar-
cus, 1995), where the first word of an entity of class
“C” is labeled “B-C”, the words in the entity are la-
beled “I-C”, and other words are labeled “O”.

We used non-local features based on Finkel et al.
(2005). These features are based on observations
such as “same phrases in a document tend to have
the same entity class” (phrase consistency) and “a
sub-phrase of a phrase tends to have the same entity
class as the phrase” (sub-phrase consistency). We
also implemented the “majority” version of these
features as used in Krishnan and Manning (2006).
In addition, we used non-local features, which are
based on the observation that “entities tend to have
the same entity class if they are in the same con-
junctive or disjunctive expression” as in “· · · in U.S.,
EU, and Japan” (conjunction consistency). This type
of non-local feature was not used by Finkel et al.
(2005) or Krishnan and Manning (2006).

6 Experiments

6.1 Data and Setting

We used the English dataset of the CoNLL 2003
named entity shared task (Tjong et al., 2003) for
the experiments. It is a corpus of English newspa-
per articles, where four entity classes, PER, LOC,
ORG, and MISC are annotated. It consists of train-
ing, development, and testing sets (14,987, 3,466,

4The results for the perceptron algorithms generally depend
on the order of the training examples.

5Note that we can prove that the perceptron algorithms con-
verge even though the weight vector is not initialized as α = 0.

319

and 3,684 sentences, respectively). Automatically
assigned POS tags and chunk tags are also provided.
The CoNLL 2003 dataset contains document bound-
ary markers. We concatenated the sentences in the
same document according to these markers.6 This
generated 964 documents for the training set, 216
documents for the development set, and 231 docu-
ments for the testing set. The documents generated
as above become the sequence, x, in the learning
algorithms.

We first evaluated the baseline performance of
a CRF model, the Collins’ perceptron, and the
Collins’ averaged perceptron, as well as the margin
perceptron, with only local features. We next eval-
uated the performance of our perceptron algorithm
proposed for non-local features.

We used the local features summarized in Table
1, which are similar to those used in other studies
on named entity recognition. We omitted features
whose surface part listed in Table 1 occurred less
than twice in the training corpus.

We used CRF++ (ver. 0.44)7 as the basis of our
implementation. We implemented scaling, which
is similar to that for HMMs (see such as (Rabiner,
1989)), in the forward-backward phase of CRF train-
ing to deal with very long sequences due to sentence
concatenation.8

We used Gaussian regularization (Chen and
Rosenfeld, 2000) for CRF training to avoid overfit-
ting. The parameter of the Gaussian, σ2, was tuned
using the development set. We also tuned the margin
parameter, C, for the margin perceptron algorithm.9

The convergence of CRF training was determined by
checking the log-likelihood of the model. The con-
vergence of perceptron algorithms was determined
by checking the per-word labeling error, since the

6We used sentence concatenation even when only using lo-
cal features, since we found it does not degrade accuracy (rather
we observed a slight increase).

7http://chasen.org/˜taku/software/CRF++
8We also replaced the optimization module in the original

package with that used in the Amis maximum entropy estima-
tor (http://www-tsujii.is.s.u-tokyo.ac.jp/amis) since we encoun-
tered problems with the provided module in some cases.

9For the Gaussian parameter, we tested {13, 25, 50, 100,
200, 400, 800} (the accuracy did not change drastically among
these values and it seems that there is no accuracy hump even
if we use smaller values). We tested {500, 1000, 1414, 2000,
2828, 4000, 5657, 8000, 11313, 16000, 32000} for the margin
parameters.

Table 1: Local features used. The value of a node
feature is determined from the current label, y0, and
a surface feature determined only from x. The value
of an edge feature is determined by the previous la-
bel, y−1, the current label, y0, and a surface feature.
Used surface features are the word (w), the down-
cased word (wl), the POS tag (pos), the chunk tag
(chk), the prefix of the word of length n (pn), the
suffix (sn), the word form features: 2d - cp (these are
based on (Bikel et al., 1999)), and the gazetteer fea-
tures: go for ORG, gp for PER, and gm for MISC.
These represent the (longest) match with an entry in
the gazetteer by using IOB2 tags.

Node features:
{””, x−2, x−1, x0, x+1, x+2} × y0

x =, w, wl, pos, chk, p1, p2, p3, p4, s1, s2, s3,
s4, 2d, 4d, d&a, d&-, d&/, d&,, d&., n, ic, ac,
l, cp, go, gp, gm
Edge features:
{””, x−2, x−1, x0, x+1, x+2} × y−1 × y0

x =, w, wl, pos, chk, p1, p2, p3, p4, s1, s2, s3,
s4, 2d, 4d, d&a, d&-, d&/, d&,, d&., n, ic, ac,
l, cp, go, gp, gm
Bigram node features:
{x−2x−1, x−1x0, x0x+1} × y0

x = wl, pos, chk, go, gp, gm
Bigram edge features:
{x−2x−1, x−1x0, x0x+1} × y−1 × y0

x = wl, pos, chk, go, gp, gm

number of updates was not zero even after a large
number of iterations in practice. We stopped train-
ing when the relative change in these values became
less than a pre-defined threshold (0.0001) for at least
three iterations.

We used n = 20 (n of the n-best) for training
since we could not use too a large n because it would
have slowed down training. However, we could ex-
amine a larger n during testing, since the testing time
did not dominate the time for the experiment. We
found an interesting property for n in our prelimi-
nary experiment. We found that an even larger n in
testing (written as n′) achieved higher accuracy, al-
though it is natural to assume that the same n that
was used in training would also be appropriate for
testing. We thus used n′ = 100 to evaluate perfor-
mance during parameter tuning. After finding the
best C with n′ = 100, we varied n′ to investigate its

320

Table 2: Summary of performance (F1).

Method dev test C (or σ2)
local features

CRF 91.10 86.26 100
Perceptron 89.01 84.03 -
Averaged perceptron 89.32 84.08 -
Margin perceptron 90.98 85.64 11313

+ non-local features
Candidate (n′ = 100) 90.71 84.90 4000
Proposed (n′ = 100) 91.95 86.30 5657

Table 3: Effect of n′.

Method dev test C
Proposed (n′ = 20) 91.76 86.19 5657
Proposed (n′ = 100) 91.95 86.30 5657
Proposed (n′ = 400) 92.13 86.39 5657
Proposed (n′ = 800) 92.09 86.39 5657
Proposed (n′ = 1600) 92.13 86.46 5657
Proposed (n′ = 6400) 92.19 86.38 5657

effects further.

6.2 Results

Table 2 compares the results. CRF outperformed
the perceptron by a large margin. Although the av-
eraged perceptron outperformed the perceptron, the
improvement was slight. However, the margin per-
ceptron greatly outperformed compared to the aver-
aged perceptron. Yet, CRF still had the best baseline
performance with only local features.

The proposed algorithm with non-local features
improved the performance on the test set by 0.66
points over that of the margin perceptron without
non-local features. The row “Candidate” refers to
the candidate algorithm (Algorithm 4.1). From the
results for the candidate algorithm, we can see that
the modification part, (B), in Algorithm 4.2 was es-
sential to make learning with non-local features ef-
fective.

We next examined the effect of n′. As can be
seen from Table 3, an n′ larger than that for train-
ing yields higher performance. The highest perfor-
mance with the proposed algorithm was achieved
when n′ = 6400, where the improvement due to
non-local features became 0.74 points.

The performance of the related work (Finkel et
al., 2005; Krishnan and Manning, 2006) is listed in
Table 4. We can see that the final performance of our
algorithm was worse than that of the related work.

We changed the experimental setting slightly
to investigate our algorithm further. Instead of

Table 4: The performance of the related work.

Method dev test
Finkel et al., 2005 (Finkel et al., 2005)

baseline CRF - 85.51
+ non-local features - 86.86
Krishnan and Manning, 2006 (Krishnan and Manning, 2006)
baseline CRF - 85.29
+ non-local features - 87.24

Table 5: Summary of performance with POS/chunk
tags by TagChunk.

Method dev test C (or σ2)
local features

CRF 91.39 86.30 200
Perceptron 89.36 84.35 -
Averaged perceptron 89.76 84.50 -
Margin perceptron 91.06 86.24 32000

+ non-local features
Proposed (n′ = 100) 92.23 87.04 5657
Proposed (n′ = 6400) 92.54 87.17 5657

the POS/chunk tags provided in the CoNLL 2003
dataset, we used the tags assigned by TagChunk
(Daumé III and Marcu, 2005)10 with the intention
of using more accurate tags. The results with this
setting are summarized in Table 5. Performance was
better than that in the previous experiment for all al-
gorithms. We think this was due to the quality of
the POS/chunk tags. It is interesting that the ef-
fect of non-local features rose to 0.93 points with
n′ = 6400, even though the baseline performance
was also improved. The resulting performance of
the proposed algorithm with non-local features is
higher than that of Finkel et al. (2005) and compara-
ble with that of Krishnan and Manning (2006). This
comparison, of course, is not fair because the setting
was different. However, we think the results demon-
strate a potential of our new algorithm.

The effect of BPM initialization was also exam-
ined. The number of BPM runs was 10 in this
experiment. The performance of the proposed al-
gorithm dropped from 91.95/86.30 to 91.89/86.03
without BPM initialization as expected in the set-
ting of the experiment of Table 2. The perfor-
mance of the margin perceptron, on the other hand,
changed from 90.98/85.64 to 90.98/85.90 without
BPM initialization. This result was unexpected from
the result of our preliminary experiment. However,
the performance was changed from 91.06/86.24 to

10http://www.cs.utah.edu/˜hal/TagChunk/

321

Table 6: Comparison with re-ranking approach.
Method dev test C

local features
Margin Perceptron 91.06 86.24 32000

+ non-local features
Re-ranking 1 (n′ = 100) 91.62 86.57 4000
Re-ranking 1 (n′ = 80) 91.71 86.58 4000
Re-ranking 2 (n′ = 100) 92.08 86.86 16000
Re-ranking 2 (n′ = 800) 92.26 86.95 16000
Proposed (n′ = 100) 92.23 87.04 5657
Proposed (n′ = 6400) 92.54 87.17 5657

Table 7: Comparison of training time (C = 5657).
Method dev test time (sec.)

local features
Margin Perceptron 91.04 86.28 15,977

+ non-local features
Re-ranking 1 (n′ = 100) 91.48 86.53 86,742
Re-ranking 2 (n′ = 100) 92.02 86.85 112,138
Proposed (n′ = 100) 92.23 87.04 28,880

91.17/86.08 (i.e., dropped for the evaluation set as
expected), in the setting of the experiment of Table
5. Since the effect of BPM initialization is not con-
clusive only from these results, we need more exper-
iments on this.

6.3 Comparison with re-ranking approach
Finally, we compared our algorithm with the re-
ranking approach (Collins and Duffy, 2002; Collins,
2002b), where we first generate the n-best candi-
dates using a model with only local features (the
first model) and then re-rank the candidates using
a model with non-local features (the second model).

We implemented two re-ranking models, “re-
ranking 1” and “re-ranking 2”. These models dif-
fer in how to incorporate the local information in the
second model. “re-ranking 1” uses the score of the
first model as a feature in addition to the non-local
features as in Collins (2002b). “re-ranking 2” uses
the same local features as the first model11 in addi-
tion to the non-local features. The first models were
trained using the margin perceptron algorithm in Al-
gorithm 3.1. The second models were trained using
the algorithm, which is obtained by replacing {yn}
with the n-best candidates by the first model. The
first model used to generate n-best candidates for the
development set and the test set was trained using
the whole training data. However, CRFs or percep-
trons generally have nearly zero error on the train-
ing data, although the first model should mis-label

11The weights were re-trained for the second model.

to some extent to make the training of the second
model meaningful. To avoid this problem, we adopt
cross-validation training as used in Collins (2002b).
We split the training data into 5 sets. We then trained
five first models using 4/5 of the data, each of which
was used to generate n-best candidates for the re-
maining 1/5 of the data.

As in the previous experiments, we tuned C using
the development set with n′ = 100 and then tested
other values for n′. Table 6 shows the results. As can
be seen, re-ranking models were outperformed by
our proposed algorithm, although they also outper-
formed the margin perceptron with only local fea-
tures (“re-ranking 2” seems better than “re-ranking
1”). Table 7 shows the training time of each algo-
rithm.12 Our algorithm is much faster than the re-
ranking approach that uses cross-validation training,
while achieving the same or higher level of perfor-
mance.

7 Discussion

As we mentioned, there are some algorithms simi-
lar to ours (Collins and Roark, 2004; Daumé III and
Marcu, 2005; McDonald and Pereira, 2006; Liang
et al., 2006). The differences of our algorithm from
these algorithms are as follows.

Daumé III and Marcu (2005) presented the
method called LaSO (Learning as Search Optimiza-
tion), in which intractable exact inference is approx-
imated by optimizing the behavior of the search pro-
cess. The method can access non-local features
at each search point, if their values can be deter-
mined from the search decisions already made. They
provided robust training algorithms with guaranteed
convergence for this framework. However, a differ-
ence is that our method can use non-local features
whose value depends on all labels throughout train-
ing, and it is unclear whether the features whose val-
ues can only be determined at the end of the search
(e.g., majority features) can be learned effectively
with such an incremental manner of LaSO.

The algorithm proposed by McDonald and
Pereira (2006) is also similar to ours. Their tar-
get was non-projective dependency parsing, where
exact inference is intractable. Instead of using

12Training time was measured on a machine with 2.33 GHz
QuadCore Intel Xeons and 8 GB of memory. C was fixed to
5657.

322

n-best/re-scoring approach as ours, their method
modifies the single best projective parse, which
can be found efficiently, to find a candidate with
higher score under non-local features. Liang et al.
(2006) used n candidates of a beam search in the
Collins’ perceptron algorithm for machine transla-
tion. Collins and Roark (2004) proposed an approxi-
mate incremental method for parsing. Their method
can be used for sequence labeling as well. These
studies, however, did not explain the validity of their
updating methods in terms of convergence.

To achieve robust training, Daumé III and Marcu
(2005) employed the averaged perceptron (Collins,
2002a) and ALMA (Gentile, 2001). Collins and
Roark (2004) used the averaged perceptron (Collins,
2002a). McDonald and Pereira (2006) used MIRA
(Crammer et al., 2006). On the other hand, we em-
ployed the margin perceptron (Krauth and Mézard,
1987), extending it to sequence labeling. We demon-
strated that this greatly improved robustness.

With regard to the local update, (B), in Algo-
rithm 4.2, “early updates” (Collins and Roark, 2004)
and “y-good” requirement in (Daumé III and Marcu,
2005) resemble our local update in that they tried to
avoid the situation where the correct answer cannot
be output. Considering such commonality, the way
of combining the local update and the non-local up-
date might be one important key for further improve-
ment.

It is still open whether these differences are ad-
vantages or disadvantages. However, we think our
algorithm can be a contribution to the study for in-
corporating non-local features. The convergence
guarantee is important for the confidence in the
training results, although it does not mean high per-
formance directly. Our algorithm could at least im-
prove the accuracy of NER with non-local features
and it was indicated that our algorithm was supe-
rior to the re-ranking approach in terms of accu-
racy and training cost. However, the achieved accu-
racy was not better than that of related work (Finkel
et al., 2005; Krishnan and Manning, 2006) based
on CRFs. Although this might indicate the limita-
tion of perceptron-based methods, it has also been
shown that there is still room for improvement in
perceptron-based algorithms as our margin percep-
tron algorithm demonstrated.

8 Conclusion

In this paper, we presented a new perceptron algo-
rithm for learning with non-local features. We think
the proposed algorithm is an important step towards
achieving our final objective. We would like to in-
vestigate various types of new non-local features us-
ing the proposed algorithm in future work.

Appendix A: Convergence of Algorithm 4.2

Let αk be a weight vector before the kth update and
ϵk be a variable that takes 1 when the kth update is
done in (A) and 0 when done in (B). The update rule
can then be written as αk+1 = αk + ϵk(Φa∗−Φa +
(1− ϵk)(Φl∗ − Φl).13 First, we obtain

αk+1 ·U l = αk ·U l + ϵk(Φa∗ ·U l − Φa ·U l)
+(1− ϵk)(Φl∗ ·U l − Φl ·U l)

≥ αk ·U l + ϵkδ + (1− ϵk)δ
= αk ·U l + δ ≥ α1 ·U l + kδ = kδ

Therefore, (kδ)2 ≤ (αk+1 · U l)2 ≤
(||αk+1||||U l||)2 = ||αk+1||2 — (1). On the
other hand, we also obtain

||αk+1||2 ≤ ||αk||2 + 2ϵkα
k(Φa∗ − Φa)

+2(1− ϵk)αk(Φl∗ − Φl)
+{ϵk(Φa∗ − Φa) + (1− ϵk)(Φl∗ − Φl)}2

≤ ||αk||2 + 2C + R2

≤ ||α1||2 + k(R2 + 2C) = k(R2 + 2C)— (2)

We used αk(Φa∗ − Φa) ≤ Ca, αk(Φl∗ − Φl) ≤
C l and C l = Ca = C to derive 2C in the second
inequality. We used ||Φl∗−Φl|| ≤ ||Φa∗−Φa|| ≤ R
to derive R2.

Combining (1) and (2), we obtain k ≤ (R2 +
2C)/δ2. Substituting this into (2) gives ||αk|| ≤
(R2+2C)/δ. Since y∗ = y′ and Φa∗ ·α−Φa′′ ·α >
C after convergence, we obtain

γ′(α) = min
xi

Φa∗ ·α− Φa′′ ·α
||α||

≥ Cδ/(2C + R2).

13We use the shorthand Φa∗ = Φa(xi, y
∗
i), Φa =

Φa(xi, y), Φl∗ = Φl(xi, y
∗
i), and Φl = Φl(xi, y) where y

represents the candidate used to update (y′ , y′′ , y1, or y2).

323

References
D. M. Bikel, R. L. Schwartz, and R. M. Weischedel.

1999. An algorithm that learns what’s in a name. Ma-
chine Learning, 34(1-3):211–231.

R. Bunescu and R. J. Mooney. 2004. Collective infor-
mation extraction with relational markov networks. In
ACL 2004.

S. F. Chen and R. Rosenfeld. 2000. A survey of smooth-
ing techniques for ME models. IEEE Transactions on
Speech and Audio Processing, 8(1):37–50.

M. Collins and N. Duffy. 2002. New ranking algorithms
for parsing and tagging: Kernels over discrete struc-
tures, and the voted perceptron. In ACL 2002, pages
263–270.

M. Collins and B. Roark. 2004. Incremental parsing with
the perceptron algorithm. In ACL 2004.

M. Collins. 2002a. Discriminative training methods for
hidden Markov models: Theory and experiments with
perceptron algorithms. In EMNLP 2002.

M. Collins. 2002b. Ranking algorithms for named-entity
extraction: Boosting and the voted perceptron. In ACL
2002.

K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz,
and Y. Singer. 2006. Online passive-aggressive al-
gorithms. Journal of Machine Learning Research.

H. Daumé III and D. Marcu. 2005. Learning as search
optimization: Approximate large margin methods for
structured prediction. In ICML 2005.

J. R. Finkel, T. Grenager, and C. Manning. 2005. In-
corporating non-local information into information ex-
traction systems by Gibbs sampling. In ACL 2005.

C. Gentile. 2001. A new approximate maximal margin
classification algorithm. JMLR, 3.

R. Herbrich and T. Graepel. 2000. Large scale Bayes
point machines. In NIPS 2000.

W. Krauth and M. Mézard. 1987. Learning algorithms
with optimal stability in neural networks. Journal of
Physics A 20, pages 745–752.

V. Krishnan and C. D. Manning. 2006. An effective two-
stage model for exploiting non-local dependencies in
named entity recognitioin. In ACL-COLING 2006.

J. Lafferty, A. McCallum, and F. Pereira. 2001. Con-
ditional random fields: Probabilistic models for seg-
menting and labeling sequence data. In ICML 2001,
pages 282–289.

Y. Li, H. Zaragoza, R. Herbrich, J. Shawe-Taylor, and
J. Kandola. 2002. The perceptron algorithm with un-
even margins. In ICML 2002.

P. Liang, A. Bouchard-Côté, D. Klein, and B. Taskar.
2006. An end-to-end discriminative approach to ma-
chine translation. In ACL-COLING 2006.

R. McDonald and F. Pereira. 2006. Online learning of
approximate dependency parsing algorithms. In EACL
2006.

R. McDonald, K. Crammer, and F. Pereira. 2005. Online
large-margin training of dependency parsers. In ACL
2005.

T. Nakagawa and Y. Matsumoto. 2006. Guessing parts-
of-speech of unknown words using global information.
In ACL-COLING 2006.

L. R. Rabiner. 1989. A tutorial on hidden Markov mod-
els and selected applications in speech recognition.
Proceedings of the IEEE, 77(2):257–286.

L. A. Ramshaw and M. P. Marcus. 1995. Text chunk-
ing using transformation-based learning. In third ACL
Workshop on very large corpora.

F. Rosenblatt. 1958. The perceptron: A probabilistic
model for information storage and organization in the
brain. Psycological Review, pages 386–407.

D. Roth and W. Yih. 2005. Integer linear program-
ming inference for conditional random fields. In ICML
2005.

S. Sarawagi and W. W. Cohen. 2004. Semi-Markov ran-
dom fields for information extraction. In NIPS 2004.

L. Shen and A. K. Joshi. 2004. Flexible margin selection
for reranking with full pairwise samples. In IJCNLP
2004.

F. K. Soong and E. Huang. 1991. A tree-trellis based
fast search for finding the n best sentence hypotheses
in continuous speech recognition. In ICASSP-91.

C. Sutton and A. McCallum. 2004. Collective segme-
nation and labeling of distant entitites in information
extraction. University of Massachusetts Rechnical Re-
port TR 04-49.

B. Taskar, C. Guestrin, and D. Koller. 2003. Max-margin
Markov networks. In NIPS 2003.

E. F. Tjong, K. Sang, and F. De Meulder. 2003. Intro-
duction to the CoNLL-2003 shared task: Language-
independent named entity recognition. In CoNLL
2003.

324

