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Abstract

In this paper, we describe a “pattern-based” machine
translation (ML) approach that we followed in designing
a personal tool for users who have access to large volumes
of text in languages other than their own, such as WWW
pages. Some of the critical issues involved in the design
of such a tool include casy customization for diverse do-
mains, the cfficiency of the traunslation algorithm, and
scalability (incremental improvement in translation qual-
ity through user interaction). We also deseribe how our
patterns fit into the context-free parsing and generation
algorithms, and how we implemented a prototype tool.

1 Introduction

It would be difficult for anyone to dispute the idea that
the World-Wide Web (WWW) has been the most phe-
nomenal invention of the last decade in the computing
environment. [t has suddenly opened up a window to
vast amounts of data on the Internet. Unfortunately for
those who are not native Iinglish speakers, textual data
are more often than not written in a forcign language.

A dozen or so machine translasion (MT) tools have
recently been put on the market, to make such textual
data more accessible, but novice ’C users will be simply
amazed at the meagerness of their reward for the effort
of building a so-called “user dictionary.”

The main reasons for this problem are:

1. Most MT systems do not employ a powerful “lexi-
calist” formalism.,

2. Most M'T" systems can be customized only by adding
a user dictionary.

Thercfore, users can neither give preferences on individ-
ual prepositional-phrase attachments (e.g., to obtain in-
formation from a scrver) nor define translations of spe-
cific verb-object pairs (e.g, to take advantage of some-
thing).

Powerful grammar formalisms and lexical-semantics
formalisms have been known for years (sce LFG{Kaplan
and Bresnan, 1982), HPSG(Pollard and Sag, 1987), and
Generative Lexicon(Pustejovsky, 1991), for example),
but practical implementation of an ML’ system has yet
to tackle the computational complexity of parsing algo-
rithms for these formalisms and the workload of building
a large-scale lexicon.

Iexample-based MT(Sato and Nagao, 1990; Sumita
and lida, 1991) and statistical MT(Brown ct al., 1993)
are both promising approaches that generally demon-
strate incremental improvement in translation accuracy
as the quality of examples or training data grows. |t
is, however, an open question whether these approaches
alone can be used to create a full-fledged MT system;
that is, it is wncertain whether such a system can be
nsed for various domains without showing severe degra-
dation in translation accuracy, ov if it has to be fed by
a reasonably large st of examples or training data for
cach new domain.

TAG-based MT(Abeillé et al., 1990)" and pattern-
based translation(Maroyama, 1993) share many impor-
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tant properties for snccessful implementation in practical
MT systems, namely:

¢ The existence of a polynomial-time parsing algo-
rithm

o A capability for describing a larger domain of local-
ity

o Synchronization of the source and target language
structures

In this paper, we show that there exists an attractive
way of crossing these approaches, which we call pattern-
bascd MT.? In the following two scctions, we intro-
duce a class of translation “patterns” based on Context-
Free Grammar (CFG), and a parsing algorithm with
OGPy worst-case time complexity. Furthermore, we
show that owr framework can be extended to incorporate
example-based MT and a powerful learning mechanism.

2  lIranslation Patterns

A translation pattern is defined as a pair of CFG rules,
and zero or more syntactic head and link constraints for
nonterminal symbols. For example, the Tnglish-French
transtation pattern®

NP1 miss:Vi2 NP3 — 8:2 Si2 «— NP3 wanquer:V:2 @ NP:|

essentially describes a synehronized! pair consisting of a
left-hand-side nglish CFG rule (called a source vule)

NP VNP -» S
and a right-hand-side French CFG rule (called a target
rule)

S «- NPV a NP
accompanicd by the following constraints:

1. Head constraints: The nonterminal symbol V in
the source rule must have the verb “miss” as a syn-
tactic head. The symbol V in the target rule must
have the verb “manquer” as a syntactic head. The
head of symbol S in the source (target) rule is iden-
tical to the head of symbol V in the source (target)
rule, as they are co-indexed. Tlead constraints can
be specified in either or both sides of the patterns.

2. Link counstraints: Nonterminal symbols in source
and target CEFG rules are linked if they are given the
same index “87. Thus, the fiest NP (NP 1) in the
sotrae rule corresponds to the seccond NI (N:1) iu
the target rale, the Vs in both rules correspond to
cach other, and the second NP (NP:3) in the source
rtle corresponds to the first NP (N17:3) in the target
rule.

STAG(Shicber and Schabes, 1990)(Synchronized TAG) for cach
member af the TAG (Tree Adjoining Grammar) family.
2Recently, Tree lnsertion Grammar(Schabes and Waters, 1096)
has been mtroduced to show a situilar possibility. Our approach,
however, is mare inclined toward the CEFG formalisin,
3 And its inflectional vartants - we will discuss agreement issues

later, in the “lixtended Tornualism” section.

Y''he meaning ol the word “synchronized” here is exactly the
simue as in STAG(SIneber and Schabes, 1990).



The source and target rules, that is, the CFG rules with
no constraints, are called the CFG skeleton of the pat-
terns. The notion of a syntactic head is similar to that
used in unification grammars, although the heads in our
patterns are simply encided as character strings rather
than as complex feature structures. A head is typically
introduced® in preterminal rules such as

leave — V 'V « partir

where two verbs, “leave” and “partir,” are associated
with the heads of the nonterminal symbol V. This is
equivalently expressed as

leave:1 — V:1 V:1 « partir:1

which is physically implemented as an entry of a lexicon.

A set T of translation patterns is said to accept an
input s iff there is a derivation sequence Q for s using
the source CFG skeletons of T, and every head constraint
associated with the CFG skeletons in Q is satisfied. Sim-
larly, T is said to translate s iff there is a synchronized
derivation sequence () for s such that T accepts ¢, and
every head and link constraint associated with the source
and target CFG skeletons in Q) is satisfied. The deriva-
tion Q then produces a translation ¢t as the resulting se-
quence of terminal symbols included in the target CFG
skeletons in Q. Translation of an input string s essen-
tially consists of the following three steps:

e Parsing $ by using the source CFG skeletons

¢ Propagating link constraints from source to target
CFG skeletons to build a target CFG derivation se-
quence

e Gencrating ¢ from the target CFG derivation se-
quence

The third step is trivial as in the case of STAG transla-
tion.
Some immediate results follow from the above defini-

tions.(Takeda, 1996)

L. Let a CFG grammar G be a sot of source CFG skele-
tons in T. Then, T accepts a context-free language
(CFL), denoted by L(T"), such that L{T) C L(G).

2. Let a CFG grammar H be a subset of source CFG
skeletons in T such that a source CFG skeleton k is
in IT iff £ has no head constraints associated with it.
Then, I accepts a subset L(H) of language L(T).

3. L(1") is a proper subset of L{(G) if, for example,
there exists a pattern p (€ T) with a source CFG
rule X — X, .-+ X}, such that®

(a) p has a head constraint i : X for some nonter-
minal symbol X; (i =1,2,...,k).

(b) T has a derivation sequence X — -+ — w such
that X is associated with a head g (b # g¢),
and T has no sequence of nonterminal symbols
Y7 ... Y, that derives exactly the same set of
strings as X does.

5 A nonterminal symbol X in a source or target CFG rule X —
X1+ X} can only be constrained to have one of the heads in
the RHS Xy -+« X,. Thus, monotonicity of head constraints holds
throughout the parsing process.

87This is not a necessary condition for L(1") C L{G). It is prov-
able that for any set T of patterns, there exists a (weakly) equiva-
lent CFG grammar F, with possibly exponentially more grammar
rules, such that L(T) = L(I"). A decision problem of two CIFLs,
L(T) C L(G), is solvable iff L(¥) = L(G). 'This includes an un-
decidable problem, L(F) = £*. Therefore, we can conclude that
L(T) C L(G) is undecidable. Similar discussions can be found in
the literature on Generalized Phrase Structure Grammar(Gazdar
et al., 1985).
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Although our “patterns” have no more descriptive
power than CFG, they can provide considerably better
descriptions of the domain of locality than ordinary CHG
riles. For example,

be:V:l year:NP:2 old — VP:1 VP:l « avoir:V:1L an:N’:2

can handle such NP pairs as “one year” and “un an,”
and “more than two years” and “plus que deux ans,”
which would have to be covered by a large number of
plain CFG rules. TAGs, on the other hand, are known
to be “mildly context-sensitive” grammars, and they can
capture a wider range of syntactic dependencies, such as
cross-serial dependencies. The computational complex-
ity of parsing for TAGs, however, is O(]G|n®), which is
far greater than that of CFG parsing. Moreover, defin-
ing a new STAG rule is not as casy for the users as just
adding an entry into a dictionary, because each STAG
riule has to be specified as a pair of syntactic tree struc-
tures. Qur patterns, on the other hand, can be specified
as easily as

to leave ¥ = de quitter *
to be year:* old = d’avoir an:*

by the users. llere, the wildcard “*” stands for an NP by
default. The prepositions “to” and “de” are merely used
to specify that these patterns are for VPs, and they are
removed when compiled into internal forms so that these
patterns are applicable to finite as well as infinite forms.
Similarly, “to be” is used to show that the phrase is a
be-verb and its complement. The wildcards can be con-
strained with a head, as in “year:*” and “an:*”. In addi-
tion, they can be associated with an explicit nonterminal
symbol such as “V:*” or “ADIP:* (e.g., “leave:V:*7).
By defining a few such notations, these patterns can be
successfully converted into the formal representations de-
fined above. The notations are so simple that even a
novice PC user should have no trouble in writing our
patterns, as if he or she were making a vocabulary list
for English or French exams. '

3 Pattern-Based Translation Algorithm

A parsing algorithm for translation patterns can be any
of the known CFG parsing algorithms, including CKY
and Farley algorithms. It should be first noted, however,
that CFG could produce exponentially ambignous parses
for some input, in which case we can only apply heuristic
or stochastic measurement to select the most promising
parse.

It is known that an ISarley-based parsing algo-
rithm can be made to run in O(|G|Kn?) rather than
O(|G?n?) (Maruyama, 1993; Graham et al., 1980)
where K 1s the number of distinct nonterminal symbols
in the grammar G. We can expect a very efficient parser
for our patterns.” The input string can also be scanned
to reduce the number of relevant grammar rules before
parsing.® The combined process is also known as offline-
parsing in LTAG.

Handling ambiguous parses is a difficult task. The ba-
sic strategy for choosing a candidate parse during Itarley-
based parsing is as follows:

1. Prefer a pattern p with a source CHG skeleton X -
X1+ Xy over any other pattern ¢ such that the
source CFG skeleton of ¢ is X — X, Xy, and
such that X, in p has a head constraint h if ¢ has
h: X, (i =1,...,k). The pattern p is said to be
more specific than ¢. This relation is similar to a
subsumption relationship(Pollard and Sag, 1987).

"Schabes and Waters(Schabes and Waters, 1995) also discuss

several techniques for optimizing parsing algorithms.
8Such scanning is essential for some languages with no explicit
word boundaries (such as Japanese and Chinese).



2. Prefer a pattern p with a source CFG skeleton over
oue with fewer terminal symbols than p.

3. Prefer a pattern p that does not violate any head
constraint over one that violates a head constraint.

4. Prefer the shortest derivation sequence for cach in-
put substring. A pattern for a targer domain of
locality tends to give a shorter derivation sequence.

Thus, our strategy favors lexicalized (or
constrained) and collocational patterns, which is exactly
what we are going to achicve with pattern-based MT.
Selection of patterns in the derivation sequence accom-
panies the construction of a target derivation sequence.
Link constraints are propagated from source to target
derivation trees. This is basically a bottom-up proce-
dure.

Since the number M of distinct pairs (X, w}, for a non-
terminal symbol (or a chart) X and a subsequence w of

head-

input string s, is bounded by Kn?, there are at most
Wn® possible triples (X,w,h), such that A is a head of X.
T'hus, we can compute the m-best choice of translation
candidates in O(|T|Kn*) time. Here, K is the number
of distinct nonterminal symbols in T, and o is the size
of the input string,.

The reader should note critical differences between lex-
icalized grammar rules (in the sense of LTAG) and trans-
lation patterns when they are used for ML,

Firstly, a pattern is not necessarily lexicalized. An
cconomical way of organizing translation patterns is to
mchude non-lexicalized patterns as “defanlt” translation
rules. Ifor example, the pattern

?

Vil NI*:2 — VI2:1 VPl «- Vil NP2

is used as a default translation of “verb + dircet object”
expresstons, bug

resemble: Vil NIP:2 — VP VP — resembler: Vil @ Ni*:2

is always preferred over the default rule because of our
preference strategy. Similarly, the pattern

please VP — VP11 VI2l - VP, $% vous 1)]:1:|t.
should be preferred over a lexicalized pattern, if any,
ADVE:L xxx:iVIE2 - VP2 V2 «= ADVE:D yyy: VP2

Secondly, lexicalization might considerably increase the
size of STAG grammars (in particular, compositional
grammar rules such as ADJD NP> — NI) when a large
number of lexical items are associated with them. Since
it is not unusual for a noun in a source language to have
several counterparts in a target language, the number of
tree-pairs in STAG would grow much larger than that
of source LTAG trees.  Although in LTAG the gram-
mar rales are differentiated from their physical objects
(“parser rules”), and “structure sharing” {Vijay-Shanker
and Schabes, 1992) is proposed, this ambiguity remains
in the parser rules, too.

Thirdly, a translation pattern can omit the tree struc-
ture of a collocation, leaving it as just a sequence of
terminal symbols. For example,

See you later, N1I':1 -» 8 S «— Au revoir, NI

is perfectly acceptable as a translation pattern.

4 Extended Formalism

Syntactic dependencies in natural language sentences are
so subtle that many powerful grammar formalisms have
heen proposed to account for themn. The adequacy of
CFG for describing natural language syntax has long
been questioned, and unification grammars, among oth-
ars, have been used to build a precise theory of the com-
pitational aspects of syntactic dependencies, which are
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described by the notion of unification and by feature
structures,

Translation patterns can also be extended by means of
unification and feature structures. Such extensions must
be carefully applied so that they do not sacrifice the ef-
ficieney of parsing and generation algorithms. Shicber
and Schabes briefly discuss the issuc(Shicber and Sch-
abes, 1990). We can also extend translation patterns as
follows:

[sach nonterminal node in a pattern can be as-
sociated with a fixed-length wvector of binary
Jeatwres.

This will enable us to specify such syntactic dependencies
as agreement and subcategorization in patterns. Unifi-
cation of binary features, however, is much simpler: uni-
fication of a feature-value paiv succeeds only when the
pair is either (0,0) or (1,1). Since the feature vector has
a fixed length, unification of two feature vectors is per-
formed in a constant time. For example, the patterns

Vil TRANS NP2 - VPl VPl «- Vi TRANS NP2
ViHINTRANS — VL VL — VL INTRANS

are unifiable with transitive and intransitive verbs, re-
spectively. We can also distinguish local and head fea-
tures, as postulated in T1I’SG. Verb subcategorization is
then encoded as

VI LA TRANS-OBIT N2 — VP 14010
VP:ibA4-OBY = VP LHTRANS-OBRJ N1:2

where “-OBJ7 is a local feature for head VI’s in 1LHSs,
while “+OB.J” is a head feature for VI’s in the RESs.
Unification of a head feature with 4+ OB.J sncceeds when
it is not bound.

Another extension is to assoclate weights with pat-
terns. [t is then possible to rank the matching patterns
according to a linear ordering of the weights rather than
the pairwise partial ordering of patterns described in the
previous section. Numeric weights for patterns are ex-
tremely nseful as a means of assigning higher priorities
to user-defined patterns.

The final extension of translation patterns is integra-
tion of examples; or bilingual corpora, into our frame-
work. 1t consists of the following steps. Let T be a set
of translation patterns, B a bilingual corpus, and (s,t) a
pair of source and target sentences.

L. T can translate s into ¢, do nothing.
2. I{ ' can translate s into ¢ (¢ #£ ¢/), do the following:

(a) If there is a paired derivation sequence @ of
(s,t) in T, create a new pattern p' for a pattern
p used in Q) such that every nonterminal symbol
X in p with no head constraint is associated
with h + X in ¢, where the head his instantiated
in X of p. Add p' to I if it 1s not already there.
(b} If there is no such paired derivation sequence,
add the pair to T (s,t) as a translation pattern.

3. If I cannot translate s, add the pair {s,1) to T as a
translation pattern.

The simplest way of integrating the corpus B into T is

just to consider the sentence pair {s,t) as a translation

pattern. Some additional steps are necessary to achieve
higher MT accuracy for a slightly wider range of sen-
tences than those included in B. However, the degree
of improvement in MT accuracy that can be achieved
with this learning mechanism is open to question, since
the addition of translation patterns does not necessarily
guarantee a monotonic improvement in M'I" accuracy.



5 Implementation

Our experimental implementation of a pattern-based
MT system consists of about 500 default-translation pat-
terns, about 2400 idiomatic and collocational patterns,
and about 60,000 lexical items for Inglish-to-Japanese
translation. A sample run of the prototype system is
shown in Figure 1. It shows one of the derivation sec-
quences for the input sentence

John should hear from Mary about the news if
he returns home.

Kach line in the derivation sequence shows an Iinglish
source CFG rule of a pattern used for the derivation.
For example, the first line

[(0 13) S:1:/eFIN,ePRES,eSUBJ,eAUX/
~> S1:1:+eFIN PUNCT:2

in the derivation sequence shows that two nonterminal
symbols, and PUNCT, form a sentence S, that S
is co-indexced with SI, and that S1 must have a finite
form feature +c¢FIN. The current instance of S has four
features - - finite, present (ePRES), with-subject (eS-
UB.J), and with-auailiary-verb (¢AUX) - and it spans
the word positions 0 to 13.° We can also find several
head-constrained patterns there. For example,

[(10 12) VP:1:/eFIN,e3SG,ePRES,e0BJ,eSAT/ —>
VP"return':1:-e0BJ NP"home" :2:+eCAUS

is a pattern for translating “return:V home:NP”. The
default VNP translation pattern will assign a wrong
Japanese case marker for this phrase.

Our prototype took about 9 sec {clapsed time) to
translate this input sentence and produce seven alter-
native translations. The derivation shown in the figure
was the first (i.e., the best), and generates a correct
translation. ]horofore collocational patterns and de-
fault patterns have been appropriately combined under
onr preference strategy.

6 Conclusions and Future Work

In this paper, we have proposed a pattern-based MT
system that satisfies three essential requirements of the
current market: cfficiency, scalability, and ease-of-use.
We are aware that CFG-based patterns are less ade-
quate for describing syntactic dependencies than linguis-
tically motivated grammar formalisms such as TAGs and
M’SG. To achieve the best possible average runtime and
accuracy, perhaps our pattern-based system should be
combined with more powerful grammar formalisms. We
believe that the theory and implementation of pattern-
based MT" will contribute to the realization of computa-
tional linguistic theortes. A corpus integration method
to verify efficiency of the grammar acquisition has yet to
be implemented.

Some of the assumptions on patterns should be re-
examined when we extend the definition of patterns. The
notion of Head constraints may have to be extended into
that of a set membership constraint if we need to handle
coordinated stroctures. Some light-verb phrases cannot
be correctly translated without “exchanging” several fea-
ture values between the verb and its object. A similar
problem has been found in be-verh phrases.

POther featuves include nominative and causative cases, 3rd-
barson-singular forms, and capitalized words.  T'wo
) |
HeARGS” ARGV, are special ones for representing
subject-verb agreement without splitting a pattern into an equiv-
[his

features,
and

alent set of several patterns for a specific type of agreement.

souree derivation sequence 1s actually accompauied by its Japanese
counterpart, which was omitted due to the space lunitation.
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> John should hear from Mary about the news
if he returns home.

[(0 13) 8:1:/eFIN,ePRES,eSUBJ,eAUX/ -> Sl:1:+eFIN PUNCT:2
[(0 12) S1:2:/eFIN,ePRES,eSUBJ,eAUX/ ->
NP:1:%eAGRS+eNOMI VP:2:%eAGRV+eFIN-eSUBJ
[(0 1) NP:1:/e38G,eCAP,eNOMI,eCAUS/ -> NOUN:1i:-ePRO
[(0 1) NOUN:1:/e3SG,eCAP/ -> NOUN"John'"]]
[(1 12) VP:1:/eFIN,ePRES,eAUX/ -> VP:1 SADJ:2
[(1 8) VP:1:/eFIN,ePRES,eAUX/ -> VP:1 PP:2
[(1 5) VP:1;/eFIN,ePRES,eAUX/ ~> VP:1: PP:2
[{1 3) VP:1:/eFIN,ePRES,eAUX/ ->
AUX"should" :~eNEG VP:1:+eINF-eSUBJ-eAUX
[(1 2) AUX:1:/eFIN/ -> AUX"Should”'1]
3) VP:1: /eFIN eINF/ «-> VERB:1:-ePS
[(2 3) VERB:1: /eFIN eINF/ -> VERB"hear":1]]1]
[(3 5) PP:1:/eBSG,eCAP,eNOMI,eCAUS/ -> "from" NP:1
[(4 5) NP:1:/e38G,eCAP,eNOMI,eCAUS/
~> NOUN:1:-ePRO
[(4 5) NOUN:1:/eSG,eCAP/ -> NDUN“Mary“:l]]]]
[(5 8) PP:1:/eDEF,eNOMI,eCAUS,e35G/ ~> 'about'" NP:1
[(6 8) NP:1/eDEF,eNOMI,eCAUS,e3SG/
-> "the" NP:1;-eDEF-eINDEF
[(7 8) NP:1:/eNOMI,eCAUS,e35G/ -> NOUN:1:-ePRO
{(7 8) NOUN:1: /eSSG/ - NOUN'news"]]1]11]
[(8 12) SADJ:2:/eFIN,e3SG,ePRES,eSUBJ,e0BJ,aSAT/ ->
"if" NP:1: *eAGRS+eNUMI VP:2: *eAGRV+eFIN eSUBJ
[(9 10) NP:1:/ePRD,eNOMI,eSSG,eHUM/ ~> PRON:1:-eP0OSS
{(9 10) PRON:1:/ePRO,eNOMI,e35G,eHUM/
-> PRON"he":1]]
[(10 12) VP:1:/eFIN,e35G,ePRES,e0BJ,aSAT/ ->
VP"return":1:~e0BJ NP"home":2:+eCAUS
{(10 11) VP:1:/eFIN,e3SG,ePRES/ ~> VERB:1:-ePS
[(10 11) VERB:1:/eFIN,e3SG,ePRES/
~> VERB"return'":1]]
f(11 12) NP:1:/e3SG,eNOMI,eCAUS/ -> NOUN:1:-cPRO
[(11 12) NOUN:1: /eSSG/ ~> NOUN"home": 1111111
[(12 13) PUNCT:1 -> PUNCT".":1]]
Va i, O LAY KIS i & 471,
xp/(fr |JIJ< 147
I()hn+SUB] if he- FSUBI home-+GOAL return,

news-+0O13.J h(‘,d.I +should

Figure 1: Sample Parsing
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